एलपी स्पेस: Difference between revisions

From Vigyanwiki
No edit summary
Line 9: Line 9:


=== एम्बेडिंग ===
=== एम्बेडिंग ===
सामान्य बोलचाल में अगर <math>1 \leq p < q \leq \infty,</math> है तो इसमें ऐसे <math>L^p(S, \mu)</math>  कई कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व <math>L^q(S, \mu)</math> अधिक फैलाया जा सकता है तथा अर्ध रेखा पर लेबेस्गु माप पर विचार करें इसमें एक सतत कार्य <math>L^1</math> होता है लेकिन अनंत की ओर तेजी से क्षय नहीं होना चाहिए तथा यह दूसरी ओर निरंतर कार्य करता है <math>L^\infty</math> को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति भी नहीं है इस तकनीकी के परिणाम निम्नलिखित है <ref name="VillaniEmbeddings2">{{Citation|title=Another note on the inclusion {{math|''L<sup>p</sup>''(''μ'') ⊂ ''L<sup>q</sup>''(''μ'')}}|last=Villani|first=Alfonso|year=1985|journal=Amer. Math. Monthly|volume=92|number=7|pages=485–487|doi=10.2307/2322503|mr=801221|jstor=2322503}}</ref>  जैसे कि <math>0 < p < q \leq \infty.</math> तब


सामान्य बोलचाल में अगर <math>1 \leq p < q \leq \infty,</math> है तो इसमें ऐसे <math>L^p(S, \mu)</math>  कई कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व <math>L^q(S, \mu)</math> अधिक फैलाया जा सकता है तथा अर्ध रेखा पर लेबेस्गु माप पर विचार करें इसमें एक सतत कार्य <math>L^1</math> होता है लेकिन अनंत की ओर तेजी से क्षय नहीं होना चाहिए तथा यह दूसरी ओर निरंतर कार्य करता है <math>L^\infty</math> को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति भी नहीं है इस तकनीकी के परिणाम निम्नलिखित है <ref name="VillaniEmbeddings">{{Citation|title=Another note on the inclusion {{math|''L<sup>p</sup>''(''μ'') ⊂ ''L<sup>q</sup>''(''μ'')}}|last=Villani|first=Alfonso|year=1985|journal=Amer. Math. Monthly|volume=92|number=7|pages=485–487|doi=10.2307/2322503|mr=801221|jstor=2322503}}</ref>  जैसे कि <math>0 < p < q \leq \infty.</math> तब
# <math>L^q(S, \mu) \subseteq L^p(S, \mu)</math> अगर <math>S</math> परिमित के समूह नहीं होते हैं उदाहरण के लिए कोई परिमित माप।
 
# <math>L^p(S, \mu) \subseteq L^q(S, \mu)</math> और <math>S</math> गैर-शून्य के समूह में सम्मिलित नहीं हैं लेकिन छोटे होते हैं।
#<math>L^q(S, \mu) \subseteq L^p(S, \mu)</math> अगर <math>S</math> परिमित के समूह नहीं होते हैं उदाहरण के लिए कोई परिमित माप।  
#<math>L^p(S, \mu) \subseteq L^q(S, \mu)</math> और <math>S</math> गैर-शून्य के समूह में सम्मिलित नहीं हैं लेकिन छोटे होते हैं।


माप के साथ वास्तविक रेखा के लिए कोई भी शर्त नहीं है जबकि दोनों स्थितियाँ किसी परिमित समूह पर गिनती माप के लिए अग्रसर नहीं हैं ये दोनों ही जगहों में व्याख्या करते हैं जिसकी पहचान एक चालक पर सीमित  है <math>L^q</math> को <math>L^p</math> की जगहों में और <math>L^p</math> को <math>L^q</math> क्षण में यह [[बंद ग्राफ प्रमेय]] और गुणों का परिणाम है तथा <math>L^p</math> रिक्त स्थान और डोमेन <math>S</math> परिमित माप  है जो इस प्रकार है-
माप के साथ वास्तविक रेखा के लिए कोई भी शर्त नहीं है जबकि दोनों स्थितियाँ किसी परिमित समूह पर गिनती माप के लिए अग्रसर नहीं हैं ये दोनों ही जगहों में व्याख्या करते हैं जिसकी पहचान एक चालक पर सीमित  है <math>L^q</math> को <math>L^p</math> की जगहों में और <math>L^p</math> को <math>L^q</math> क्षण में यह [[बंद ग्राफ प्रमेय]] और गुणों का परिणाम है तथा <math>L^p</math> रिक्त स्थान और डोमेन <math>S</math> परिमित माप  है जो इस प्रकार है-

Revision as of 17:54, 2 May 2023


गणित में, एलपी रिक्त स्थान फ़ंक्शन रिक्त स्थान हैं जो परिमित-आयामी वेक्टर रिक्त स्थान के लिए पी-मानदंड के प्राकृतिक सामान्यीकरण का उपयोग करके परिभाषित किए जाते हैं। उन्हें कभी-कभी हेनरी लेबेस्ग्यू (डनफोर्ड एंड श्वार्ट्ज 1958, III.3) के नाम पर लेबेस्ग्यू स्पेस कहा जाता है, हालांकि बॉर्बकी समूह (बोरबाकी 1987) के अनुसार उन्हें पहली बार फ्रिगेस रिज़्ज़ (रीज़्ज़ 1910) द्वारा पेश किया गया था।
 

एलपी रिक्त स्थान कार्यात्मक विश्लेषण और टोपोलॉजिकल वेक्टर रिक्त स्थान में बनच रिक्त स्थान का एक महत्वपूर्ण वर्ग बनाते हैं। माप और संभाव्यता रिक्त स्थान के गणितीय विश्लेषण में उनकी महत्वपूर्ण भूमिका के कारण, भौतिकी, सांख्यिकी, अर्थशास्त्र, वित्त, इंजीनियरिंग और अन्य विषयों में समस्याओं की सैद्धांतिक चर्चा में भी लेबेस्गु रिक्त स्थान का उपयोग किया जाता है।

एम्बेडिंग

सामान्य बोलचाल में अगर है तो इसमें ऐसे कई कार्य सम्मिलित हैं जो अधिक स्थानीय रूप से एकवचन हैं जबकि ये तत्व अधिक फैलाया जा सकता है तथा अर्ध रेखा पर लेबेस्गु माप पर विचार करें इसमें एक सतत कार्य होता है लेकिन अनंत की ओर तेजी से क्षय नहीं होना चाहिए तथा यह दूसरी ओर निरंतर कार्य करता है को बिल्कुल भी क्षय की आवश्यकता नहीं है लेकिन विस्फोट की अनुमति भी नहीं है इस तकनीकी के परिणाम निम्नलिखित है [1] जैसे कि तब

  1. अगर परिमित के समूह नहीं होते हैं उदाहरण के लिए कोई परिमित माप।
  2. और गैर-शून्य के समूह में सम्मिलित नहीं हैं लेकिन छोटे होते हैं।

माप के साथ वास्तविक रेखा के लिए कोई भी शर्त नहीं है जबकि दोनों स्थितियाँ किसी परिमित समूह पर गिनती माप के लिए अग्रसर नहीं हैं ये दोनों ही जगहों में व्याख्या करते हैं जिसकी पहचान एक चालक पर सीमित है को की जगहों में और को क्षण में यह बंद ग्राफ प्रमेय और गुणों का परिणाम है तथा रिक्त स्थान और डोमेन परिमित माप है जो इस प्रकार है-

तब
उपरोक्त असमानता में दिखाई देने वाले निरंतर अर्थ में कि पहचान का मानदंड यह है जहाँ
इसमें समानता ठीक उसी समय प्राप्त किया जा रहा है

सघन उपस्थान

इस पूरे खंड में हम यह मानते हैं एक माप स्थान बनें एक पूर्णांक सरल कार्य पर एक रूप है जो इस प्रकार है

जब अदिश राशि है तो यह परिमित उपाय है और समूह का सूचक कार्य है के लिए एकीकरण के निर्माण से समाकलनीय सरल फलनों का सदिश स्थान सघन होता है

अगर बढ़ते अनुक्रम द्वारा निर्धारित किया जा सकता है खुले समूहों का परिमित माप है फिर स्थान -अभिन्न निरंतर कार्य में सघन है तो यह सीमित निरंतर कार्यों का उपयोग कर सकता है जो खुले समूहों में गायब हो जाते हैं यह विशेष रूप से तब लागू होता है जब और लेबेस्ग उपाय है तथा निरंतर और समर्थित कार्यों का स्थान सघन है जैसे इसी तरह यह स्थान परिबद्ध अंतरालों के संकेतक कार्यों की रैखिक अवधि है जब घिरे हुए आयतों का तथा परिबद्ध अंतरालों के उत्पादों के रूप में होता है।

इसमें सामान्य कार्यों के कई गुण पहले निरंतर रूप से समर्थित कार्यों के लिए सिद्ध होते हैं फिर घनत्व द्वारा सभी कार्यों के लिए विस्तारित होते हैं उदाहरण के लिए यह इस तरह सिद्ध होता है कि अनुवाद निरंतर जारी है जो निम्नलिखित अर्थ में है

तब


बंद उप-स्थान

अगर मापने योग्य स्थान पर एक संभाव्यता माप है तो यह कोई सकारात्मक वास्तविक संख्या है और एक सदिश उप समष्टि है तब बंद उप समष्टि है अगर परिमित-आयामी है[2] तो इस प्रमेय में जो अलेक्जेंडर ग्रोथेंडिक के कारण हैं [2] यह महत्वपूर्ण है जैसे सदिश स्थान का उपसमुच्चय हो तो अनंत-विमीय बंद सदिश उप समष्टि का निर्माण संभव है कहाँ इकाई वृत्त की माप है और संभाव्यता माप है जो इसे इसके द्रव्यमान से विभाजित करने का परिणाम है जैसे [2]

Lp (0 < p < 1)

जहाँ एक माप स्थान बनें तब यह परिभाषित किया जा सकता है जैसे उन औसत दर्जे के कार्यों का भागफल सदिश है तो ऐसा है कि

सामान्यीकरण और विस्तार

समान्यीकरण

समान्यीकरण एक माप स्थान है और वास्तविक या जटिल मूल्यों के साथ एक औसत दर्जे का कार्य का संचयी वितरण समारोह के लिए परिभाषित किया गया है जैसे द्वारा इसे दर्शाया गया है जहाँ

भारित Lp रिक्त स्थान

पहले की तरह माप स्थान है तथा एक मापने योग्य कार्य हो वें भारित अंतरिक्ष के रूप में परिभाषित किया गया है जो पैमाना द्वारा परिभाषित

Lp कई गुना पर रिक्त स्थान

Lp कई रिक्त स्थान परिभाषित कर सकता है पर कई गुना आंतरिक माना जाता है पर घनत्व का उपयोग करते हुए रिक्त स्थान निम्न हैं।

सदिश-मूल्यवान Lp रिक्त स्थान

एक माप स्थान दिया गया और स्थानीय रूप से उत्तल सांस्थितिक सदिश स्थान इसके रिक्त स्थान को परिभाषित करता है यहाँ -पूर्ण करने योग्य -मूल्यवान कार्यों पर कई तरह से परिभाषित किया गया है जो इस प्रकार है तथा यह टेन्सर उत्पाद द्वारा निरूपित किया गया है।

यह भी देखें

टिप्पणियाँ

  1. Villani, Alfonso (1985), "Another note on the inclusion Lp(μ) ⊂ Lq(μ)", Amer. Math. Monthly, 92 (7): 485–487, doi:10.2307/2322503, JSTOR 2322503, MR 0801221
  2. 2.0 2.1 2.2 Rudin 1991, pp. 117–119.


संदर्भ


बाहरी संबंध