ध्वनिक तरंग: Difference between revisions

From Vigyanwiki
m (15 revisions imported from alpha:ध्वनिक_तरंग)
No edit summary
Line 148: Line 148:
{{Reflist}}
{{Reflist}}


[[Category: तरंग यांत्रिकी]] [[Category: ध्वनि-विज्ञान]] [[Category: आवाज़]]  
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 English-language sources (en)]]
 
[[Category:CS1 errors]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 26/04/2023]]
[[Category:Created On 26/04/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:आवाज़]]
[[Category:तरंग यांत्रिकी]]
[[Category:ध्वनि-विज्ञान]]

Revision as of 15:56, 16 May 2023

ध्वनिक तरंगें स्थिरोष्म लोडिंग और अनलोडिंग के माध्यम से ऊर्जा प्रसार का प्रकार है। ध्वनिक तरंगों का वर्णन करने के लिए महत्वपूर्ण मात्राएँ ध्वनिक दबाव, कण वेग, कण विस्थापन और ध्वनिक तीव्रता हैं। ध्वनिक तरंगें विशिष्ट ध्वनिक वेग के साथ यात्रा करती हैं जो उस माध्यम पर निर्भर करता है जिससे वे निर्वाहित हो रहे हैं। ध्वनिक तरंगों के कुछ उदाहरण वक्ता (ध्वनि की गति से वायु के माध्यम से यात्रा करने वाली तरंगें), भूकंपीय तरंग (पृथ्वी के माध्यम से यात्रा करने वाली जमीनी कंपन), या चिकित्सा छवि के लिए उपयोग किए जाने वाले अल्ट्रासाउंड (शरीर के माध्यम से यात्रा करने वाली तरंगें) से श्रव्य ध्वनि हैं।

तरंग गुण

ध्वनिक तरंग यांत्रिक तरंग है जो परमाणुओं और अणुओं के संचलन के माध्यम से ऊर्जा का संचार करती है। ध्वनिक तरंग तरल पदार्थ के माध्यम से अनुदैर्ध्य तरंग में संचारित होती है (कणों की गति तरंग के प्रसार की दिशा के समानांतर होती है); विद्युत चुम्बकीय तरंग के विपरीत जो अनुप्रस्थ तरंग में संचारित होती है (तरंग के प्रसार की दिशा में समकोण पर कणों की गति)। चूँकि, ठोस पदार्थों में, ध्वनिक तरंग पदार्थ की ऐसी अवस्था में अपरूपण मापांक की अनुपस्थिति के कारण अनुदैर्ध्य और अनुप्रस्थ दोनों प्रकार से प्रसारित होती है।[1]

ध्वनिक तरंग समीकरण

ध्वनिक तरंग समीकरण ध्वनि तरंगों के प्रसार का वर्णन करता है। आयाम में ध्वनि दाब के लिए ध्वनिक तरंग समीकरण किसके द्वारा दिया जाता है:

जहाँ

  • , Pa में ध्वनि दबाव है।
  • में तरंग प्रसार की दिशा m में स्थिति है।
  • m/s में ध्वनि की गति है।
  • s में समय है।

कण वेग के लिए तरंग समीकरण का आकार समान होता है और इसके द्वारा दिया जाता है:

जहाँ

  • m/s में कण वेग है।

हानिकारक मीडिया के लिए, आवृत्ति-निर्भर क्षीणन और चरण गति को ध्यान में रखने के लिए अधिक जटिल प्रारूप प्रारम्भ करने की आवश्यकता है। ऐसे प्रारूपों में ध्वनिक तरंग समीकरण सम्मिलित होते हैं जो भिन्नात्मक व्युत्पन्न शब्दों को सम्मिलित करते हैं, ध्वनिक क्षीणन लेख भी देखें।

डी'अलेम्बर्ट ने दोषरहित तरंग समीकरण के लिए सामान्य समाधान दिया। ध्वनि दबाव के लिए, समाधान होगा:

जहाँ

तरंग चलती हुई तरंग बन जाती है जो दाईं ओर चलती है तरंग बाईं ओर चलती हुई यात्रा तरंग बन जाती है। स्थायी तरंग किसके द्वारा प्राप्त की जा सकती है:

चरण

यात्रा तरंग में दबाव और कण वेग चरण में होते हैं, जिसका अर्थ है कि दो मात्राओं के मध्य चरण कोण शून्य है।

आदर्श गैस नियम का उपयोग करके इसे सरलता से सिद्ध किया जा सकता है:

जहाँ

  • पास्कल में दबाव है।
  • m3 में आयतन है।
  • मोल में राशि है।
  • मूल्य के साथ सार्वभौमिक गैस स्थिरांक है।

आयतन पर विचार करें। चूंकि ध्वनिक तरंग मात्रा के माध्यम से विस्तारित होती है, रुद्धोष्म संपीड़न और विसंपीड़न होता है। रुद्धोष्म परिवर्तन के लिए आयतन के मध्य निम्न संबंध बदलिए, तरल पदार्थ और दबाव के पार्सल का रखती है:

जहाँ इकाई और सबस्क्रिप्ट के बिना रुद्धोष्म सूचकांक है, संबंधित चर के माध्य मान को दर्शाता है।

ध्वनि तरंग आयतन के माध्यम से विस्तारित होती है, कण का क्षैतिज विस्थापन तरंग प्रसार दिशा के साथ होता है।

जहाँ

  • , m2 में क्रॉस-आंशिक क्षेत्र है।

इस समीकरण से यह देखा जा सकता है कि जब दबाव अपने अधिकतम पर होता है, तो औसत स्थिति से कण विस्थापन शून्य तक पहुँच जाता है। जैसा कि पूर्व उल्लेख किया गया है, दाहिनी ओर यात्रा करने वाली तरंग के लिए दोलन दबाव द्वारा दिया जा सकता है:

चूंकि दबाव शून्य होने पर विस्थापन अधिकतम होता है, इसलिए 90 डिग्री का चरण अंतर होता है, इसलिए विस्थापन द्वारा दिया जाता है:
कण वेग कण विस्थापन का प्रथम व्युत्पन्न है: ज्या का विभेदन पुनः कोज्या देता है:
रूद्धोष्म परिवर्तन के समय, दबाव के साथ-साथ तापमान में भी परिवर्तन होता है:
इस तथ्य का उपयोग तापध्वनिक के क्षेत्र में किया जाता है।

प्रसार गति

ध्वनिक तरंगों की प्रसार गति, या ध्वनिक वेग, प्रसार के माध्यम का कार्य है। सामान्यतः, ध्वनिक वेग c न्यूटन-लाप्लास समीकरण द्वारा दिया जाता है:

जहाँ

इस प्रकार सामग्री की कठोरता (प्रारम्भ बल द्वारा विरूपण के लिए लोचदार शरीर का प्रतिरोध) के साथ ध्वनिक वेग बढ़ता है, और घनत्व के साथ घट जाती है। राज्य के सामान्य समीकरणों के लिए, यदि शास्त्रीय यांत्रिकी का उपयोग किया जाता है, तो ध्वनिक वेग द्वारा दिया गया है:

दबाव के रूप में और घनत्व, जहां रूद्धोष्म परिवर्तन के संबंध में विभेदन किया जाता है।

घटना

ध्वनिक तरंगें लोचदार तरंगें हैं जो विवर्तन, परावर्तन और हस्तक्षेप जैसी घटनाओं को प्रदर्शित करती हैं। ध्यान दें कि हवा में ध्वनि तरंगें ध्रुवीकरण नहीं होती हैं क्योंकि वे जिस दिशा में चलती हैं उसी दिशा में दोलन करती हैं।

हस्तक्षेप

हस्तक्षेप दो या दो से अधिक तरंगों का योग है जिसके परिणामस्वरूप नया तरंग प्रतिरूप बनता है। ध्वनि तरंगों का हस्तक्षेप तब देखा जा सकता है जब दो लाउडस्पीकर संकेत प्रसारित करते हैं। कुछ स्थानों पर रचनात्मक हस्तक्षेप होता है, स्थानीय ध्वनि दबाव दोगुना हो जाता है। और अन्य स्थानों पर विनाशकारी हस्तक्षेप होता है, जिससे शून्य पास्कल का स्थानीय ध्वनि दबाव होता है।

स्थायी तरंग

स्थायी तरंग विशेष प्रकार की तरंग होती है जो अनुनादक में हो सकती है। यंत्र में घटना का सुपरपोज़िशन होता है और परावर्तक तरंग उत्पन्न होती है, जिससे स्थायी तरंग उत्पन्न होती है। स्थायी तरंग में दबाव और कण वेग 90 डिग्री चरण से बाहर हैं।

अनुनादक के रूप में कार्य करने वाले दो बंद सिरों वाली ट्यूब पर विचार करें। यंत्र द्वारा दी गई आवृत्तियों पर सामान्य मोड होते हैं:

जहाँ

  • , m/s में ध्वनि की गति है।
  • , m में ट्यूब की लंबाई है।

अंत में कण वेग शून्य हो जाता है क्योंकि कोई कण विस्थापन नहीं हो सकता। तथापि परावर्तक तरंग के साथ आपतित तरंग के व्यतिकरण के कारण सिरों पर दाब दोगुना हो जाता है। चूंकि सिरों पर दबाव अधिकतम होता है जबकि वेग शून्य होता है, उनके मध्य 90 डिग्री का चरण अंतर होता है।

प्रतिबिंब

ध्वनिक यात्रा तरंग को ठोस सतह से परावर्तित किया जा सकता है। यदि यात्रा तरंग परावर्तित होती है, तो परावर्तित तरंग घटना तरंग के साथ हस्तक्षेप कर सकती है जिससे निकट और दूर के क्षेत्र में खड़ी तरंग उत्पन्न होती है। परिणामानुसार, निकट क्षेत्र में स्थानीय दबाव दोगुना हो जाता है, और कण वेग शून्य हो जाता है।

क्षीणन परावर्तित तरंग की शक्ति में अल्पता का कारण बनता है क्योंकि परावर्तक सामग्री से दूरी बढ़ जाती है। जैसे-जैसे आपतित तरंग की शक्ति की तुलना में परावर्तक तरंग की शक्ति घटती जाती है, व्यतिकरण भी अल्प होता जाता है। और जैसे-जैसे व्यवधान अल्प होता है, वैसे-वैसे ध्वनि दबाव और कण वेग के मध्य का चरण अंतर भी होता है। परावर्तक सामग्री से अधिक बड़ी दूरी पर, अब कोई हस्तक्षेप नहीं शेष है। इस दूरी पर सुदूर क्षेत्र की बात की जा सकती है।

परावर्तन की मात्रा परावर्तन गुणांक द्वारा दी जाती है जो कि घटना की तीव्रता पर परावर्तित तीव्रता का अनुपात है:

अवशोषण

ध्वनिक तरंगों को अवशोषित किया जा सकता है। अवशोषण की मात्रा अवशोषण गुणांक द्वारा दी जाती है जो इसके द्वारा दी जाती है:

जहाँ

इसके अतिरिक्त प्रायः सामग्री का ध्वनिक अवशोषण डेसिबल में दिया जाता है।

स्तरित मीडिया

जब ध्वनिक तरंग गैर-सजातीय माध्यम में विस्तारित होती है, तो इसका सामना करने वाली अशुद्धियों या विभिन्न सामग्रियों की परतों के मध्य इंटरफेस पर विवर्तन से निकलना होता है। यह परावैद्युत दर्पणों में प्रकाश के अपवर्तन, अवशोषण और संचरण के समान घटना है। आवधिक मीडिया के माध्यम से ध्वनिक तरंग प्रसार की अवधारणा ध्वनिक मेटामेट्री अभियांत्रिकी में बड़ी सफलता के साथ उपयोग की जाती है।[2] बहुपरत सामग्री में ध्वनिक अवशोषण, प्रतिबिंब और संचरण की गणना स्थानांतरण-आव्यूह विधि से की जा सकती है।[3]

यह भी देखें

संदर्भ

  1. Leisure, Robert G. (2017-06-09). "Ultrasonic Spectroscopy: Applications in Condensed Matter Physics and Materials Science". Cambridge University Press. doi:10.1017/9781316658901.004. ISBN 978-1-107-15413-1. {{cite journal}}: Cite journal requires |journal= (help)
  2. Gorishnyy, Taras, Martin Maldovan, Chaitanya Ullal, and Edwin Thomas. "Sound ideas." Physics World 18, no. 12 (2005): 24.
  3. Laude, Vincent (2015-09-14). Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves (in English). Walter de Gruyter GmbH & Co KG. ISBN 978-3-11-030266-0.