पंक्ति और स्तंभ समिष्ट: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 67: Line 67:


=== आधार ===
=== आधार ===
के स्तंभ {{mvar|A}} स्तंभ स्थान को फैलाते हैं, किन्तु यदि स्तंभ सदिश [[रैखिक रूप से स्वतंत्र]] नहीं हैं तो वे [[आधार (रैखिक बीजगणित)]] नहीं बना सकते हैं। सौभाग्य से, [[प्राथमिक पंक्ति संचालन]] स्तंभ सदिश के मध्य निर्भरता संबंधों को प्रभावित नहीं करते हैं। यह स्तंभ स्थान के लिए आधार (रैखिक बीजगणित) खोजने के लिए [[पंक्ति में कमी]] का उपयोग करना संभव बनाता है।
{{mvar|A}} के स्तंभ स्तंभ स्थान का विस्तार करते हैं, किन्तु यदि स्तंभ सदिश [[रैखिक रूप से स्वतंत्र]] नहीं हैं तो वे [[आधार (रैखिक बीजगणित)|आधार]] नहीं बना सकते हैं। [[प्राथमिक पंक्ति संचालन]] स्तंभ सदिश के मध्य निर्भरता संबंधों को प्रभावित नहीं करते हैं। यह स्तंभ स्थान आधार परीक्षण के लिए [[पंक्ति में कमी|पंक्ति में अल्पता]] का उपयोग करना संभव बनाता है।


उदाहरण के लिए, आव्यूह पर विचार करें
उदाहरण के लिए, आव्यूह पर विचार करें:
:<math>A = \begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & 7 & 3 & 9 \\ 1 & 5 & 3 & 1 \\ 1 & 2 & 0 & 8 \end{bmatrix}.</math>
:<math>A = \begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & 7 & 3 & 9 \\ 1 & 5 & 3 & 1 \\ 1 & 2 & 0 & 8 \end{bmatrix}.</math>
इस आव्यूह के स्तंभ स्तंभ स्थान  को फैलाते हैं, किन्तु वे रैखिक रूप से स्वतंत्र नहीं हो सकते हैं, जिस स्थिति में उनमें से कुछ सबसमुच्चय  आधार बनेंगे। इस आधार को खोजने के लिए, हम घटाते हैं {{mvar|A}} पंक्ति सोपानक प्रपत्र कम करने के लिए:
इस आव्यूह के स्तंभ स्तंभ स्थान  को फैलाते हैं, किन्तु वे रैखिक रूप से स्वतंत्र नहीं हो सकते हैं, जिस स्थिति में उनमें से कुछ सबसमुच्चय  आधार बनेंगे। इस आधार को खोजने के लिए, हम घटाते हैं {{mvar|A}} पंक्ति सोपानक प्रपत्र कम करने के लिए:

Revision as of 11:47, 10 April 2023

आव्यूह (गणित) के पंक्ति सदिश । इस आव्यूह का पंक्ति स्थान पंक्ति सदिश द्वारा फैला हुआ सदिश स्थान है।
आव्यूह (गणित) के स्तंभ सदिश । इस आव्यूह का स्तंभ स्थान स्तंभ सदिश द्वारा फैला हुआ सदिश स्थान है।

रैखिक बीजगणित में, आव्यूह A का स्तंभ स्थान (जिसे श्रेणी या छवि भी कहा जाता है) इसके स्तंभ सदिश की रैखिक अवधि (सभी संभावित रैखिक संयोजनों का समुच्चय) है। आव्यूह का स्तंभ स्थान संबंधित आव्यूह परिवर्तन की छवि या श्रेणी है।

मान लें क्षेत्र हो। m × n आव्यूह का स्तंभ स्थान से घटकों के साथ m-स्थान रेखीय उपसमष्टि है। स्तंभ स्थान के आयाम को आव्यूह का रैंक कहा जाता है और यह अधिकतम min(m, n) होता है।[1] रिंग पर आव्यूहों की परिभाषा भी संभव है।

पंक्ति स्थान इसी प्रकार परिभाषित किया गया है।

आव्यूह A के पंक्ति स्थान और स्तंभ स्थान को कभी-कभी क्रमशः C(AT) और C(A) के रूप में निरूपित किया जाता है।[2]

यह लेख वास्तविक संख्याओं के आव्यूहों पर विचार करता है। पंक्ति और स्तंभ स्थान वास्तविक समन्वय स्थान के उप-स्थान क्रमशः और हैं।[3]

अवलोकन

मान लीजिए A m-द्वारा-n आव्यूह है। तब

  1. rank(A) = dim(rowsp(A)) = dim(colsp(A)),[4]
  2. rank(A) = A के किसी सोपानक रूप में धुरी तत्व की संख्या है।
  3. rank(A) = A की रैखिक रूप से स्वतंत्र पंक्तियों या स्तंभों की अधिकतम संख्या है।[5]

यदि कोई आव्यूह को रैखिक परिवर्तन को के रूप में मानता है, तब आव्यूह का स्तंभ स्थान इस रैखिक परिवर्तन की छवि के समान है।

आव्यूह A का स्तंभ स्थान A में स्तंभ के सभी रैखिक संयोजनों का समुच्चय है। यदि A = [a1an], तब colsp(A) = span({a1, ..., an}) है।

पंक्ति स्थान की अवधारणा आव्यूहों को सामान्य करती है , जटिल संख्याओं का क्षेत्र, या किसी भी क्षेत्र (गणित) पर।

सरल रूप से, आव्यूह A दिया गया है, सदिश x पर आव्यूह A की क्रिया गुणांक के रूप में x के निर्देशांक द्वारा भारित A के स्तंभ के रैखिक संयोजन वापस कर देगी। इसे देखने का दूसरा प्रकार यह है कि (1) यह A के पंक्ति स्थान में प्रथम प्रोजेक्ट x होगा, (2) व्युत्क्रमणीय रूपांतरण करते हैं, और (3) परिणामी सदिश y को A स्तंभ स्थान में रखते हैं। इस प्रकार परिणाम y = Ax को A के स्तंभ स्थान में रहना चाहिए। इस दूसरी व्याख्या पर अधिक विवरण के लिए एकवचन मूल्य अपघटन देखें।[clarification needed]

उदाहरण

आव्यूह J दिया गया:

पंक्तियाँ निम्न प्रकार हैं:

, , ,

परिणामस्वरूप, की पंक्ति स्थान J की उपसमष्टि है द्वारा रैखिक अवधि { r1, r2, r3, r4 }.

चूँकि ये चार पंक्ति सदिश रैखिक स्वतंत्रता हैं, पंक्ति स्थान 4-आयामी है। इसके अतिरिक्त , इस स्थिति में यह देखा जा सकता है कि वे सभी सदिश के लिए ओर्थोगोनालिटी हैं n = [6, −1, 4, −4, 0], तो यह निष्कर्ष निकाला जा सकता है कि पंक्ति स्थान में सभी सदिश सम्मिलित हैं जो लंबकोणीय हैं n

स्तंभ स्थान

परिभाषा

मान लें K स्केलर (गणित) का क्षेत्र (गणित) हो। मान लें A सेम m × n आव्यूह , स्तंभ सदिश के साथ v1, v2, ..., vn. इन सदिशों का रैखिक संयोजन किसी भी प्रकार का सदिश होता है

कहाँ c1, c2, ..., cn अदिश हैं। के सभी संभव रैखिक संयोजनों का समुच्चय v1, ..., vn का स्तंभ स्थान कहा जाता है A. अर्थात स्तंभ स्थान A सदिशों की रैखिक अवधि है v1, ..., vn.

आव्यूह के स्तंभ सदिश का कोई रैखिक संयोजन A को गुणनफल के रूप में लिखा जा सकता है A स्तंभ सदिश के साथ:

इसलिए, का स्तंभ स्थान A में सभी संभावित उत्पाद सम्मिलित हैं Ax, के लिए xKn. यह संबंधित आव्यूह परिवर्तन की छवि (गणित) (या किसी फलन की श्रेणी) के समान है।

उदाहरण

यदि , तो स्तंभ सदिश हैं v1 = [1, 0, 2]T और v2 = [0, 1, 0]T. वी का रैखिक संयोजन1 और वी2 फॉर्म का कोई सदिश है

ऐसे सभी सदिशों का समुच्चय का स्तंभ स्थान है A. इस स्थिति में, स्तंभ स्थान उचित सदिशों का समुच्चय है (x, y, z) ∈ R3 समीकरण को संतुष्ट करना z = 2x (कार्टेशियन निर्देशांक का उपयोग करते हुए, यह समुच्चय त्रि-आयामी अंतरिक्ष में उत्पत्ति के माध्यम से विमान (गणित) है)।

आधार

A के स्तंभ स्तंभ स्थान का विस्तार करते हैं, किन्तु यदि स्तंभ सदिश रैखिक रूप से स्वतंत्र नहीं हैं तो वे आधार नहीं बना सकते हैं। प्राथमिक पंक्ति संचालन स्तंभ सदिश के मध्य निर्भरता संबंधों को प्रभावित नहीं करते हैं। यह स्तंभ स्थान आधार परीक्षण के लिए पंक्ति में अल्पता का उपयोग करना संभव बनाता है।

उदाहरण के लिए, आव्यूह पर विचार करें:

इस आव्यूह के स्तंभ स्तंभ स्थान को फैलाते हैं, किन्तु वे रैखिक रूप से स्वतंत्र नहीं हो सकते हैं, जिस स्थिति में उनमें से कुछ सबसमुच्चय आधार बनेंगे। इस आधार को खोजने के लिए, हम घटाते हैं A पंक्ति सोपानक प्रपत्र कम करने के लिए:

[6]

इस बिंदु पर, यह स्पष्ट है कि प्रथम , दूसरा और चौथा स्तंभ रैखिक रूप से स्वतंत्र हैं, जबकि तीसरा स्तंभ पहले दो का रैखिक संयोजन है। (विशेष रूप से, v3 = −2v1 + v2।) इसलिए, मूल आव्यूह के पहले, दूसरे और चौथे स्तंभ स्तंभ स्थान के लिए आधार हैं:

ध्यान दें कि कम पंक्ति सोपानक प्रपत्र के स्वतंत्र स्तंभ बिल्कुल धुरी तत्व वाले स्तंभ हैं। यह यह निर्धारित करना संभव बनाता है कि कौन से स्तंभ केवल पंक्ति सोपानक रूप को कम करके रैखिक रूप से स्वतंत्र हैं।

उपरोक्त एल्गोरिथ्म का उपयोग सामान्य रूप से सदिश के किसी भी समुच्चय के मध्य निर्भरता संबंधों को खोजने और किसी भी फैले समुच्चय से आधार चुनने के लिए किया जा सकता है। के स्तंभ स्थान के लिए आधार भी खोज रहा है A खिसकाना आव्यूह की पंक्ति स्थान के लिए आधार खोजने के समान हैAT

व्यावहारिक सेटिंग में आधार खोजने के लिए (उदाहरण के लिए, बड़े आव्यूहों के लिए), एकवचन-मूल्य अपघटन सामान्यतः उपयोग किया जाता है।

आयाम

स्तंभ स्थान के आयाम को आव्यूह का रैंक कहा जाता है। रैंक अल्प पंक्ति सोपानक रूप में पिवोट्स की संख्या के समान है, और आव्यूह द्वारा चयन किये जा सकने वाले रैखिक रूप से स्वतंत्र स्तंभों की अधिकतम संख्या है। उदाहरण के लिए, ऊपर दिए गए उदाहरण में 4 × 4 आव्यूह की रैंक तीन है।

क्योंकि स्तंभ स्थान संबंधित आव्यूह परिवर्तन की छवि है, आव्यूह का रैंक छवि के आयाम के समान होता है। उदाहरण के लिए, परिवर्तन उपरोक्त आव्यूह द्वारा वर्णित सभी मानचित्र कुछ त्रि-आयामी यूक्लिडियन उप-स्थान के लिए होता है।

आव्यूह की शून्यता शून्य स्थान का आयाम है, और अल्प पंक्ति सोपानक रूप में स्तंभों की संख्या के समान होती है, जिनमें पिवोट्स नहीं होते हैं।[7] n स्तंभ वाले आव्यूह A की रैंक और शून्यता समीकरण द्वारा संबंधित हैं:

इसे रैंक-शून्यता प्रमेय के रूप में जाना जाता है।

बाएँ शून्य स्थान से संबंध

A का बायाँ शून्य स्थान सभी सदिशों x का समुच्चय है, जैसे कि xTA = 0T होता है। यह A के स्थानांतरण के शून्य स्थान के समान है। आव्यूह AT और सदिश x का उत्पाद सदिशों के डॉट गुणनफल के रूप में लिखा जा सकता है:

क्योंकि AT के पंक्ति सदिश A के स्तंभ सदिश vk के स्थानान्तरण हैं। इस प्रकार ATx = 0 यदि और केवल यदि x, A के प्रत्येक स्तंभ सदिश के लिए लंबकोणीय (लंबवत) है।

यह इस प्रकार है कि बायां शून्य स्थान (AT का शून्य स्थान) A के स्तंभ स्थान का लंबकोणीय पूरक है।

आव्यूह A के लिए, स्तंभ स्थान, पंक्ति स्थान, शून्य स्थान और बायाँ शून्य स्थान को कभी-कभी चार मूलभूत उप-स्थान के रूप में संदर्भित किया जाता है।

रिंग के ऊपर आव्यूहों के लिए

इसी प्रकार स्तंभ स्थान (कभी-कभी उचित स्तंभ स्थान के रूप में असंबद्ध) को रिंग K के रूप में आव्यूह के लिए परिभाषित किया जा सकता है।

किसी c1, ..., cn, के लिए, सदिश m-स्थान के प्रतिस्थापन के साथ "उचित मुक्त मॉड्यूल" के साथ, जो सदिश vk के अदिश गुणन के क्रम को अदिश ck में परिवर्तित करता है, जैसे कि यह असामान्य क्रम सदिश-अदिश में लिखा गया है।[8]

पंक्ति स्थान

परिभाषा

मान लीजिए K अदिशों का क्षेत्र है। मान लीजिए A m × n आव्यूह है, पंक्ति सदिश r1, r2, ..., rm के साथ है, इन सदिशों का रैखिक संयोजन किसी भी प्रकार का सदिश होता है।

जहाँ c1, c2, ..., cm अदिश राशियाँ हैं। r1, ..., rm के सभी संभव रैखिक संयोजनों के समुच्चय को A का पंक्ति स्थान कहा जाता है। अर्थात A का पंक्ति स्थान सदिशों r1, ..., rm का विस्तार है।

उदाहरण के लिए, यदि

तो पंक्ति सदिश r1 = [1, 0, 2] और r2 = [0, 1, 0] हैं। r1 और r2 का रैखिक संयोजन रूप का कोई सदिश है:

ऐसे सभी सदिशों का समुच्चय A का पंक्ति स्थान है, इस स्थिति में, पंक्ति स्थान उचित सदिशों (x, y, z) ∈ K3 का समुच्चय है, समीकरण z = 2x को संतुष्ट करता है (कार्टेशियन निर्देशांक का उपयोग करके, यह समुच्चय त्रि-आयामी अंतरिक्ष में उत्पत्ति के माध्यम से विमान है)।

आव्यूह के लिए जो रैखिक समीकरणों की सजातीय प्रणाली का प्रतिनिधित्व करता है, पंक्ति स्थान में सभी रैखिक समीकरण होते हैं जो प्रणाली में उन लोगों से अनुसरण करते हैं।

A का स्तंभ स्थान AT के पंक्ति स्थान के समान है।

आधार

पंक्ति स्थान प्रारंभिक पंक्ति संचालन से प्रभावित नहीं होता है। यह पंक्ति स्थान के लिए आधार परीक्षण के लिए पंक्ति में अल्पता का उपयोग करना संभव बनाता है।

उदाहरण के लिए, आव्यूह पर विचार करें:

इस आव्यूह की पंक्तियाँ पंक्ति स्थान को विस्तारित करती हैं, किन्तु वे रैखिक रूप से स्वतंत्र नहीं हो सकती हैं, इस स्थिति में पंक्तियाँ आधार नहीं होंगी। आधार परीक्षण के लिए, हम A को पंक्ति सोपानक रूप में अल्प करते हैं:

r1, r2, r3 पंक्तियों का प्रतिनिधित्व करता है।

जब आव्यूह सोपानक रूप में होता है, तो गैर-शून्य पंक्तियाँ पंक्ति स्थान के लिए आधार होती हैं। इस स्थिति में आधार { [1, 3, 2], [2, 7, 4] }है। अन्य संभावित आधार { [1, 0, 2], [0, 1, 0] } अल्पता से आता है।[9]

इस एल्गोरिथ्म का उपयोग सामान्य रूप से सदिश के समुच्चय की अवधि के लिए आधार परीक्षण के लिए किया जा सकता है। यदि आव्यूह को पंक्ति सोपानक रूप को अल्प करने के लिए सरल किया जाता है, तो परिणामी आधार विशिष्ट रूप से पंक्ति स्थान द्वारा निर्धारित किया जाता है।

इसके अतिरिक्त मूल आव्यूह की पंक्तियों में से पंक्ति स्थान के लिए आधार परीक्षण कभी-कभी सुविधाजनक होता है (उदाहरण के लिए, यह परिणाम प्राथमिक प्रमाण देने में उपयोगी होता है कि आव्यूह का निर्धारक रैंक इसके रैंक के समान होता है)। चूँकि पंक्ति संचालन पंक्ति सदिशों के रैखिक निर्भरता संबंधों को प्रभावित कर सकता है, इसके अतिरिक्त इस प्रकार के आधार को अप्रत्यक्ष रूप से इस तथ्य का उपयोग करते हुए पाया जाता है कि AT का स्तंभ स्थान A के पंक्ति स्थान के समान है, उपरोक्त उदाहरण आव्यूह A का उपयोग करके, AT ढूँढें और इसे पंक्ति सोपानक रूप में अल्प करें:

पिवोट्स प्रदर्शित करते हैं कि AT के पूर्व दो स्तंभ AT के स्तंभ स्थान का आधार बनता है, इसलिए, A की प्रथम दो पंक्तियाँ (किसी भी पंक्ति में अल्पता से पूर्व) भी A की पंक्ति स्थान का आधार बनता है।

आयाम

पंक्ति स्थान के आयाम को आव्यूह का रैंक कहा जाता है। यह रैखिक रूप से स्वतंत्र पंक्तियों की अधिकतम संख्या के समान है जिसे आव्यूह द्वारा चयन किया जा सकता है, या समान रूप से पिवोट्स की संख्या होती है। उदाहरण के लिए, ऊपर के उदाहरण में 3 ×3 आव्यूह की रैंक दो है।[9]

आव्यूह की रैंक भी स्तंभ स्थान के आयाम के समान होती है। शून्य स्थान के आयाम को आव्यूह की शून्यता कहा जाता है, और निम्न समीकरण द्वारा रैंक से संबंधित है:

जहाँ n आव्यूह A के स्तंभों की संख्या है, उपरोक्त समीकरण को रैंक-शून्यता प्रमेय के रूप में जाना जाता है।

शून्य स्थान से संबंध

आव्यूह A का शून्य स्थान सभी सदिशों x का समुच्चय है, जिसके लिए Ax = 0 है। आव्यूह A और सदिश x का उत्पाद सदिशों के डॉट गुणनफल के रूप में लिखा जा सकता है:

जहाँ r1, ..., rm A के पंक्ति सदिश हैं, इस प्रकार Ax = 0 यदि और केवल यदि x, A के प्रत्येक पंक्ति सदिश के लिए लंबकोणीय (लंबवत) है।

यह इस प्रकार है कि A का रिक्त स्थान पंक्ति स्थान के लिए लंबकोणीय पूरक है। उदाहरण के लिए, यदि पंक्ति स्थान तीन आयामों में मूल के माध्यम से विमान है, तो रिक्त स्थान मूल के माध्यम से लंबवत रेखा होगी। यह रैंक-शून्यता प्रमेय का प्रमाण प्रदान करता है (ऊपर आयाम देखें)।

पंक्ति स्थान और अशक्त स्थान आव्यूह A से जुड़े चार मूलभूत उप-स्थानों में से दो हैं (अन्य दो स्तंभ स्थान हैं और बाएँ रिक्त स्थान हैं)।

सह-प्रतिबिंब से संबंध

यदि V और W सदिश समष्टियाँ हैं, तब रेखीय रूपांतरण T: VW सदिशों vV का समुच्चय है जिसके लिए T(v) = 0 है। रेखीय परिवर्तन का कर्नेल आव्यूह शून्य स्थान के अनुरूप होता है।

यदि V आंतरिक उत्पाद समष्टि है, तो कर्नेल के लंबकोणीय पूरक को पंक्ति स्थान के सामान्यीकरण के रूप में माना जा सकता है। इसे कभी-कभी T का सह-प्रतिबिंब कहा जाता है, रूपान्तरण T अपने सह-प्रतिबिंब पर एक-से-एक है, और सह-प्रतिबिंब मैप्स समाकृतिकता रूप से T की छवि पर है।

जब V आंतरिक उत्पाद समष्टि नहीं है, तो T के सह-प्रतिबिंब को भागफल समष्टि V / ker(T) के रूप में परिभाषित किया जा सकता है।

यह भी देखें

  • यूक्लिडियन उपक्षेत्र

संदर्भ और नोट्स

  1. Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in Lay 2005, Meyer 2001, and Strang 2005.
  2. Strang, Gilbert (2016). रैखिक बीजगणित का परिचय (Fifth ed.). Wellesley, MA: Wellesley-Cambridge Press. pp. 128, 168. ISBN 978-0-9802327-7-6. OCLC 956503593.
  3. Anton (1987, p. 179)
  4. Anton (1987, p. 183)
  5. Beauregard & Fraleigh (1973, p. 254)
  6. This computation uses the Gauss–Jordan row-reduction algorithm. Each of the shown steps involves multiple elementary row operations.
  7. Columns without pivots represent free variables in the associated homogeneous system of linear equations.
  8. Important only if K is not commutative. Actually, this form is merely a product Ac of the matrix A to the column vector c from Kn where the order of factors is preserved, unlike the formula above.
  9. 9.0 9.1 The example is valid over the real numbers, the rational numbers, and other number fields. It is not necessarily correct over fields and rings with non-zero characteristic.

अग्रिम पठन


बाहरी संबंध