पथ-आदेश: Difference between revisions
(Created page with "{{Short description|Procedure of ordering a product operators}} {{about|rearranging a product of operators in physics|the well-orderings on mathematical terms|Path ordering (t...") |
No edit summary |
||
| (6 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
{{Short description|Procedure of ordering a product operators}} | {{Short description|Procedure of ordering a product operators}} | ||
{{about| | {{about|भौतिकी में ऑपरेटरों के उत्पाद को पुनर्व्यवस्थित करना|गणितीय शब्दों पर अच्छी व्यवस्था|पथ क्रमांक (शब्द पुनर्लेखन)}} | ||
[[सैद्धांतिक भौतिकी]] में, पथ-क्रमांक प्रक्रिया (या [[मेटा-ऑपरेटर]] <math>\mathcal P</math>) है, जो चुने हुए [[पैरामीटर|मापांक]] के मान के अनुसार ऑपरेटरों के उत्पाद का क्रमांक देता है: | |||
[[सैद्धांतिक भौतिकी]] में, पथ- | |||
:<math>\mathcal P \left\{O_1(\sigma_1) O_2(\sigma_2) \cdots O_N(\sigma_N)\right\} | :<math>\mathcal P \left\{O_1(\sigma_1) O_2(\sigma_2) \cdots O_N(\sigma_N)\right\} | ||
\equiv O_{p_1}(\sigma_{p_1}) O_{p_2}(\sigma_{p_2}) \cdots O_{p_N}(\sigma_{p_N}).</math> | \equiv O_{p_1}(\sigma_{p_1}) O_{p_2}(\sigma_{p_2}) \cdots O_{p_N}(\sigma_{p_N}).</math> | ||
यहाँ p | यहाँ p क्रमचय है, जो मापांक को मान के आधार पर क्रमित करता है: | ||
:<math>p : \{1, 2, \dots, N\} \to \{1, 2, \dots, N\}</math> | :<math>p : \{1, 2, \dots, N\} \to \{1, 2, \dots, N\}</math> | ||
| Line 17: | Line 16: | ||
== उदाहरण == | == उदाहरण == | ||
यदि | यदि [[ऑपरेटर (भौतिकी)]] को केवल उत्पाद के रूप में व्यक्त नहीं किया जाता है, लेकिन किसी अन्य ऑपरेटर के कार्य के रूप में, हमें पहले इस फलन का [[टेलर विस्तार]] करना होगा। यह [[विल्सन लूप]] की स्थिति है, जिसे पथ-क्रमांकित घातांक के रूप में परिभाषित किया गया है जिससे यह सुनिश्चित किया जा सके कि विल्सन लूप [[गेज कनेक्शन]] की पवित्रता को कूटबद्ध करता है। मापांक σ जो क्रम को निर्धारित करता है, [[समोच्च एकीकरण]] का वर्णन करने वाला मापांक है, और क्योंकि समोच्च बंद है, [[गेज-इनवेरिएंट]] होने के लिए विल्सन लूप को [[ट्रेस (रैखिक बीजगणित)]] के रूप में परिभाषित किया जाना चाहिए। | ||
== समय | == समय क्रमांक == | ||
[[क्वांटम क्षेत्र सिद्धांत]] में ऑपरेटरों के समय- | [[क्वांटम क्षेत्र सिद्धांत]] में ऑपरेटरों के समय-क्रमांकित उत्पाद को लेना उपयोगी होता है। इस <math>\mathcal T</math> ऑपरेशन द्वारा दर्शाया गया है। (यद्यपि <math>\mathcal T</math> अधिकांशतः समय-क्रम ऑपरेटर कहा जाता है, द्रढ़ता से बोलना न तो स्थितिओं पर [[रैखिक ऑपरेटर]] है और न ही ऑपरेटरों पर [[सुपरऑपरेटर]] है।) | ||
दो ऑपरेटरों | दो ऑपरेटरों ''A''(''x'') और ''B''(''y'') के लिए जो स्पेसटाइम स्थानों ''x'' और ''y'' पर निर्भर करते हैं, हम परिभाषित करते हैं: | ||
:<math>\mathcal T \left\{A(x) B(y)\right\} := \begin{cases} A(x) B(y) & \text{if } \tau_x > \tau_y, \\ \pm B(y)A(x) & \text{if } \tau_x < \tau_y. \end{cases} </math> | :<math>\mathcal T \left\{A(x) B(y)\right\} := \begin{cases} A(x) B(y) & \text{if } \tau_x > \tau_y, \\ \pm B(y)A(x) & \text{if } \tau_x < \tau_y. \end{cases} </math> | ||
यहाँ <math>\tau_x</math> और <math>\tau_y</math> बिंदु x और y के अपरिवर्तनीय अदिश समय-निर्देशांक को निरूपित | यहाँ <math>\tau_x</math> और <math>\tau_y</math> बिंदु x और y के अपरिवर्तनीय अदिश समय-निर्देशांक को निरूपित करेंगे।<ref>[[Steven Weinberg]], ''The Quantum Theory of Fields'', Vol. 3, Cambridge University Press, 1995, {{ISBN|0-521-55001-7}}, p. 143.</ref> | ||
स्पष्ट रूप से हमारे पास है | स्पष्ट रूप से हमारे पास है | ||
:<math>\mathcal T \left\{A(x) B(y)\right\} := \theta (\tau_x - \tau_y) A(x) B(y) \pm \theta (\tau_y - \tau_x) B(y) A(x), </math> | :<math>\mathcal T \left\{A(x) B(y)\right\} := \theta (\tau_x - \tau_y) A(x) B(y) \pm \theta (\tau_y - \tau_x) B(y) A(x), </math> | ||
जहाँ <math>\theta</math> [[हैवीसाइड स्टेप फंक्शन|हैवीसाइड चरण फलन]] को दर्शाता है और <math>\pm</math> यह इस बात पर निर्भर करता है कि क्या ऑपरेटर प्रकृति में बोसोनिक या फर्मिओनिक हैं। यदि बोसोनिक है, तो + चिन्ह सदैव चुना जाता है, यदि फर्मिओनिक है, तो चिन्ह उचित समय क्रम को प्राप्त करने के लिए आवश्यक ऑपरेटर इंटरचेंज की संख्या पर निर्भर करेगा। ध्यान दें कि सांख्यिकीय कारक यहां अंकित नहीं होते हैं। | |||
चूंकि ऑपरेटर [[spacelike]] में अपने स्थान पर निर्भर करते हैं (अर्थात केवल समय नहीं) यह | चूंकि ऑपरेटर [[spacelike|स्पेसटाइम]] में अपने स्थान पर निर्भर करते हैं (अर्थात केवल समय नहीं) यह समय-क्रम ऑपरेशन केवल स्वतंत्र रूप से समन्वयित होता है यदि ऑपरेटर स्पेसलाइक जैसे अलग-अलग बिंदुओं पर [[ क्रमविनिमेयता |क्रमविनिमेयता]] करते हैं। यही कारण है कि <math>t_0</math> के अतिरिक्त <math>\tau</math> का उपयोग करना आवश्यक है, क्योंकि <math>t_0</math> सामान्यतः स्पेसटाइम बिंदु के समन्वय निर्भर समय-जैसे सूचकांक को इंगित करता है। ध्यान दें कि समय-क्रम सामान्यतः समय तर्क के साथ दाएं से बाएं बढ़ते हुए लिखा जाता है। | ||
सामान्य तौर पर, | सामान्य तौर पर, n क्षेत्र ऑपरेटरों के उत्पाद के लिए {{nowrap|''A''<sub>1</sub>(''t''<sub>1</sub>), …, ''A''<sub>''n''</sub>(''t''<sub>''n''</sub>)}} ऑपरेटरों के समय-क्रमांकित उत्पाद को निम्नानुसार परिभाषित किया गया है: | ||
:<math> | :<math> | ||
| Line 42: | Line 42: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहां योग सभी | जहां योग सभी ''p'' और ''n'' डिग्री क्रमपरिवर्तन के [[सममित समूह]] पर चलता है और | ||
: <math> | : <math> | ||
\varepsilon(p) \equiv \begin{cases} | \varepsilon(p) \equiv \begin{cases} | ||
| Line 49: | Line 49: | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
क्वांटम क्षेत्र सिद्धांत में [[ एस मैट्रिक्स ]] समय- | क्वांटम क्षेत्र सिद्धांत में [[ एस मैट्रिक्स |एस आव्यूह]] समय-क्रमांकित उत्पाद का उदाहरण है। एस-आव्यूह, स्थिति को {{nowrap|''t'' {{=}} −∞}} से {{nowrap|''t'' {{=}} +∞}} पर स्थिति में परिवर्तन के बारे में भी एक प्रकार की "होलोनॉमी" के रूप में सोचा जा सकता है, जो विल्सन लूप के अनुरूप है। हम निम्नलिखित कारणों से समयबद्ध व्यंजक प्राप्त करते हैं: | ||
हम घातांक के लिए इस सरल सूत्र से | हम घातांक के लिए इस सरल सूत्र से प्रारंभ करते हैं: | ||
:<math>\exp h = \lim_{N\to\infty} \left(1 + \frac{h}{N}\right)^N. </math> | :<math>\exp h = \lim_{N\to\infty} \left(1 + \frac{h}{N}\right)^N. </math> | ||
अब विवेकाधीन [[विकास संचालक]] पर विचार करें | अब विवेकाधीन [[विकास संचालक|विकास ऑपरेटर]] पर विचार करें | ||
:<math>S = \cdots (1+h_{+3})(1+h_{+2})(1+h_{+1})(1+h_0)(1+h_{-1})(1+h_{-2})\cdots</math> | :<math>S = \cdots (1+h_{+3})(1+h_{+2})(1+h_{+1})(1+h_0)(1+h_{-1})(1+h_{-2})\cdots</math> | ||
जहाँ <math>1+h_{j}</math> अतिसूक्ष्म समय अंतराल <math>[j\varepsilon,(j+1)\varepsilon]</math> पर विकास ऑपरेटर है। उच्च क्रमांक नियमों को सीमा <math>\varepsilon\to 0</math> में उपेक्षित किया जा सकता है। ऑपरेटर <math>h_j</math> द्वारा परिभाषित किया गया है | |||
:<math>h_j =\frac{1}{i\hbar} \int_{j\varepsilon}^{(j+1)\varepsilon} \, dt \int d^3 x \, H(\vec x,t). </math> | :<math>h_j =\frac{1}{i\hbar} \int_{j\varepsilon}^{(j+1)\varepsilon} \, dt \int d^3 x \, H(\vec x,t). </math> | ||
ध्यान दें कि पिछले समय के अंतराल में विकास | ध्यान दें कि पिछले समय के अंतराल में विकास ऑपरेटर उत्पाद के दाईं ओर दिखाई देते हैं। हम देखते हैं कि सूत्र घातांक से संतुष्ट उपरोक्त पहचान के अनुरूप है, और हम लिख सकते हैं: | ||
:<math> S = {\mathcal T} \exp \left(\sum_{j=-\infty}^\infty h_j\right) = \mathcal T \exp \left(\int dt\, d^3 x \, \frac{H(\vec x,t)}{i\hbar}\right).</math> | :<math> S = {\mathcal T} \exp \left(\sum_{j=-\infty}^\infty h_j\right) = \mathcal T \exp \left(\int dt\, d^3 x \, \frac{H(\vec x,t)}{i\hbar}\right).</math> | ||
एकमात्र सूक्ष्मता जिसे हमें | एकमात्र सूक्ष्मता जिसे हमें सम्मिलित करना था वह समय-क्रमांक देने वाला ऑपरेटर <math>\mathcal T</math> था क्योंकि उपरोक्त S को परिभाषित करने वाले उत्पाद में कारक भी समय-क्रमांकित थे, (और ऑपरेटर सामान्य रूप से यात्रा नहीं करते हैं) और ऑपरेटर <math>\mathcal T</math> सुनिश्चित करता है कि यह क्रमांक संरक्षित रहेगा। | ||
== यह भी देखें == | == यह भी देखें == | ||
* क्रमबद्ध घातीय (अनिवार्य रूप से | * क्रमबद्ध घातीय (अनिवार्य रूप से समान अवधारणा) | ||
* [[गेज सिद्धांत]] | * [[गेज सिद्धांत]] | ||
* एस- | * एस-आव्यूह | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
{{DEFAULTSORT:Path-Ordering}} | {{DEFAULTSORT:Path-Ordering}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Path-Ordering]] | ||
[[Category:Created On 20/04/2023]] | [[Category:Created On 20/04/2023|Path-Ordering]] | ||
[[Category:Lua-based templates|Path-Ordering]] | |||
[[Category:Machine Translated Page|Path-Ordering]] | |||
[[Category:Pages with script errors|Path-Ordering]] | |||
[[Category:Templates Vigyan Ready|Path-Ordering]] | |||
[[Category:Templates that add a tracking category|Path-Ordering]] | |||
[[Category:Templates that generate short descriptions|Path-Ordering]] | |||
[[Category:Templates using TemplateData|Path-Ordering]] | |||
[[Category:क्वांटम क्षेत्र सिद्धांत|Path-Ordering]] | |||
[[Category:गेज सिद्धांत|Path-Ordering]] | |||
Latest revision as of 13:42, 1 May 2023
सैद्धांतिक भौतिकी में, पथ-क्रमांक प्रक्रिया (या मेटा-ऑपरेटर ) है, जो चुने हुए मापांक के मान के अनुसार ऑपरेटरों के उत्पाद का क्रमांक देता है:
यहाँ p क्रमचय है, जो मापांक को मान के आधार पर क्रमित करता है:
उदाहरण के लिए:
उदाहरण
यदि ऑपरेटर (भौतिकी) को केवल उत्पाद के रूप में व्यक्त नहीं किया जाता है, लेकिन किसी अन्य ऑपरेटर के कार्य के रूप में, हमें पहले इस फलन का टेलर विस्तार करना होगा। यह विल्सन लूप की स्थिति है, जिसे पथ-क्रमांकित घातांक के रूप में परिभाषित किया गया है जिससे यह सुनिश्चित किया जा सके कि विल्सन लूप गेज कनेक्शन की पवित्रता को कूटबद्ध करता है। मापांक σ जो क्रम को निर्धारित करता है, समोच्च एकीकरण का वर्णन करने वाला मापांक है, और क्योंकि समोच्च बंद है, गेज-इनवेरिएंट होने के लिए विल्सन लूप को ट्रेस (रैखिक बीजगणित) के रूप में परिभाषित किया जाना चाहिए।
समय क्रमांक
क्वांटम क्षेत्र सिद्धांत में ऑपरेटरों के समय-क्रमांकित उत्पाद को लेना उपयोगी होता है। इस ऑपरेशन द्वारा दर्शाया गया है। (यद्यपि अधिकांशतः समय-क्रम ऑपरेटर कहा जाता है, द्रढ़ता से बोलना न तो स्थितिओं पर रैखिक ऑपरेटर है और न ही ऑपरेटरों पर सुपरऑपरेटर है।)
दो ऑपरेटरों A(x) और B(y) के लिए जो स्पेसटाइम स्थानों x और y पर निर्भर करते हैं, हम परिभाषित करते हैं:
यहाँ और बिंदु x और y के अपरिवर्तनीय अदिश समय-निर्देशांक को निरूपित करेंगे।[1]
स्पष्ट रूप से हमारे पास है
जहाँ हैवीसाइड चरण फलन को दर्शाता है और यह इस बात पर निर्भर करता है कि क्या ऑपरेटर प्रकृति में बोसोनिक या फर्मिओनिक हैं। यदि बोसोनिक है, तो + चिन्ह सदैव चुना जाता है, यदि फर्मिओनिक है, तो चिन्ह उचित समय क्रम को प्राप्त करने के लिए आवश्यक ऑपरेटर इंटरचेंज की संख्या पर निर्भर करेगा। ध्यान दें कि सांख्यिकीय कारक यहां अंकित नहीं होते हैं।
चूंकि ऑपरेटर स्पेसटाइम में अपने स्थान पर निर्भर करते हैं (अर्थात केवल समय नहीं) यह समय-क्रम ऑपरेशन केवल स्वतंत्र रूप से समन्वयित होता है यदि ऑपरेटर स्पेसलाइक जैसे अलग-अलग बिंदुओं पर क्रमविनिमेयता करते हैं। यही कारण है कि के अतिरिक्त का उपयोग करना आवश्यक है, क्योंकि सामान्यतः स्पेसटाइम बिंदु के समन्वय निर्भर समय-जैसे सूचकांक को इंगित करता है। ध्यान दें कि समय-क्रम सामान्यतः समय तर्क के साथ दाएं से बाएं बढ़ते हुए लिखा जाता है।
सामान्य तौर पर, n क्षेत्र ऑपरेटरों के उत्पाद के लिए A1(t1), …, An(tn) ऑपरेटरों के समय-क्रमांकित उत्पाद को निम्नानुसार परिभाषित किया गया है:
जहां योग सभी p और n डिग्री क्रमपरिवर्तन के सममित समूह पर चलता है और
क्वांटम क्षेत्र सिद्धांत में एस आव्यूह समय-क्रमांकित उत्पाद का उदाहरण है। एस-आव्यूह, स्थिति को t = −∞ से t = +∞ पर स्थिति में परिवर्तन के बारे में भी एक प्रकार की "होलोनॉमी" के रूप में सोचा जा सकता है, जो विल्सन लूप के अनुरूप है। हम निम्नलिखित कारणों से समयबद्ध व्यंजक प्राप्त करते हैं:
हम घातांक के लिए इस सरल सूत्र से प्रारंभ करते हैं:
अब विवेकाधीन विकास ऑपरेटर पर विचार करें
जहाँ अतिसूक्ष्म समय अंतराल पर विकास ऑपरेटर है। उच्च क्रमांक नियमों को सीमा में उपेक्षित किया जा सकता है। ऑपरेटर द्वारा परिभाषित किया गया है
ध्यान दें कि पिछले समय के अंतराल में विकास ऑपरेटर उत्पाद के दाईं ओर दिखाई देते हैं। हम देखते हैं कि सूत्र घातांक से संतुष्ट उपरोक्त पहचान के अनुरूप है, और हम लिख सकते हैं:
एकमात्र सूक्ष्मता जिसे हमें सम्मिलित करना था वह समय-क्रमांक देने वाला ऑपरेटर था क्योंकि उपरोक्त S को परिभाषित करने वाले उत्पाद में कारक भी समय-क्रमांकित थे, (और ऑपरेटर सामान्य रूप से यात्रा नहीं करते हैं) और ऑपरेटर सुनिश्चित करता है कि यह क्रमांक संरक्षित रहेगा।
यह भी देखें
- क्रमबद्ध घातीय (अनिवार्य रूप से समान अवधारणा)
- गेज सिद्धांत
- एस-आव्यूह
संदर्भ
- ↑ Steven Weinberg, The Quantum Theory of Fields, Vol. 3, Cambridge University Press, 1995, ISBN 0-521-55001-7, p. 143.