आयनिक बंध: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{short description|Chemical bonding involving attraction between ions}}
{{short description|Chemical bonding involving attraction between ions}}
[[File:NaF.gif|300px|thumb|right|[[सोडियम]] आयन और फ्लोराइड आयन बनाने के लिए सोडियम और [[एक अधातु तत्त्व]] परमाणु एक रेडॉक्स प्रतिक्रिया से गुजर रहे हैं। सोडियम अपने बाहरी [[इलेक्ट्रॉन]] को एक स्थिर इलेक्ट्रॉन विन्यास देने के लिए खो देता है, और यह इलेक्ट्रॉन फ्लोरीन परमाणु में [[एक्ज़ोथिर्मिक]] रूप से प्रवेश करता है। विपरीत रूप से चार्ज किए गए आयन - आम तौर पर उनमें से बहुत से - ठोस [[सोडियम फ्लोराइड]] बनाने के लिए एक दूसरे से आकर्षित होते हैं।]][[आयन]]िक बॉन्डिंग एक प्रकार का [[रासायनिक बंध]]न है जिसमें कूलम्ब का नियम विपरीत रूप से चार्ज किए गए आयनों के बीच, या दो [[परमाणुओं]] के मध्य तीव्रता से भिन्न-भिन्न [[वैद्युतीयऋणात्मकता]] के सापेक्ष होता है,<ref>{{Cite book|chapter-url=https://doi.org/10.1351/goldbook.IT07058|doi = 10.1351/goldbook.IT07058|chapter = Ionic bond|title = रासायनिक शब्दावली का IUPAC संग्रह|year = 2009|isbn = 978-0-9678550-9-7}}</ref> और [[आयनिक यौगिक]]ों में होने वाली प्राथमिक अंतःक्रिया है। यह [[सहसंयोजक बंधन]] और [[धात्विक बंधन]] के सापेक्ष-सापेक्ष मुख्य प्रकार के बंधनों में से एक है। आयन इलेक्ट्रोस्टैटिक चार्ज वाले परमाणु (या परमाणुओं के समूह) होते हैं। इलेक्ट्रॉन ग्रहण करने वाले परमाणु ऋणावेशित आयन (आयन कहलाते हैं) बनाते हैं। इलेक्ट्रॉन खोने वाले परमाणु सकारात्मक रूप से आवेशित आयन (जिन्हें धनायन कहा जाता है) बनाते हैं। इलेक्ट्रॉनों के इस स्थानांतरण को सहसंयोजक बंधन के विपरीत इलेक्ट्रोवैलेंस के रूप में जाना जाता है। सबसे सरल मामले में, धनायन एक [[धातु]] परमाणु है और [[ऋणायन]] एक [[अधातु]] परमाणु है,परंतु ये आयन अधिक जटिल प्रकृति के हो सकते हैं, उदा। बहुपरमाणुक आयन पसंद करते हैं {{chem|NH|4|+}} या {{chem|SO|4|2−}}. सरल शब्दों में, दोनों परमाणुओं के लिए पूर्ण वैलेंस शेल प्राप्त करने के लिए धातु से गैर-धातु में इलेक्ट्रॉनों के स्थानांतरण के परिणामस्वरूप एक आयनिक बंधन होता है।
[[File:NaF.gif|300px|thumb|right|[[सोडियम]] आयन और फ्लोराइड आयन बनाने के लिए सोडियम और [[एक अधातु तत्त्व]] परमाणु एक रेडॉक्स प्रतिक्रिया से गुजर रहे हैं। सोडियम अपने बाहरी [[इलेक्ट्रॉन]] को एक स्थिर इलेक्ट्रॉन विन्यास देने के लिए खो देता है, और यह इलेक्ट्रॉन फ्लोरीन परमाणु में [[एक्ज़ोथिर्मिक]] रूप से प्रवेश करता है। विपरीत रूप से चार्ज किए गए आयन - सामान्यतः उनमें से बहुत से - ठोस [[सोडियम फ्लोराइड]] बनाने के लिए एक दूसरे से आकर्षित होते हैं।]][[आयन]]िक बॉन्डिंग एक प्रकार का [[रासायनिक बंध]]न है जिसमें कूलम्ब का नियम विपरीत रूप से चार्ज किए गए आयनों के बीच, या दो [[परमाणुओं]] के मध्य तीव्रता से भिन्न-भिन्न [[वैद्युतीयऋणात्मकता]] के सापेक्ष होता है,<ref>{{Cite book|chapter-url=https://doi.org/10.1351/goldbook.IT07058|doi = 10.1351/goldbook.IT07058|chapter = Ionic bond|title = रासायनिक शब्दावली का IUPAC संग्रह|year = 2009|isbn = 978-0-9678550-9-7}}</ref> और [[आयनिक यौगिक]]ों में होने वाली प्राथमिक अंतःक्रिया है। यह [[सहसंयोजक बंधन]] और [[धात्विक बंधन]] के सापेक्ष-सापेक्ष मुख्य प्रकार के बंधनों में से एक है। आयन इलेक्ट्रोस्टैटिक चार्ज वाले परमाणु (या परमाणुओं के समूह) होते हैं। इलेक्ट्रॉन ग्रहण करने वाले परमाणु ऋणावेशित आयन (आयन कहलाते हैं) बनाते हैं। इलेक्ट्रॉन खोने वाले परमाणु सकारात्मक रूप से आवेशित आयन (जिन्हें धनायन कहा जाता है) बनाते हैं। इलेक्ट्रॉनों के इस स्थानांतरण को सहसंयोजक बंधन के विपरीत इलेक्ट्रोवैलेंस के रूप में जाना जाता है। सबसे सरल मामले में, धनायन एक [[धातु]] परमाणु है और [[ऋणायन]] एक [[अधातु]] परमाणु है,परंतु ये आयन अधिक जटिल प्रकृति के हो सकते हैं, उदा। बहुपरमाणुक आयन पसंद करते हैं {{chem|NH|4|+}} या {{chem|SO|4|2−}}. सरल शब्दों में, दोनों परमाणुओं के लिए पूर्ण वैलेंस शेल प्राप्त करने के लिए धातु से गैर-धातु में इलेक्ट्रॉनों के स्थानांतरण के परिणामस्वरूप एक आयनिक बंधन होता है।


यह पहचानना महत्वपूर्ण है कि स्वच्छ आयनिक संबंध - जिसमें एक परमाणु या अणु पूरी तरह से एक इलेक्ट्रॉन को दूसरे में स्थानांतरित करता है - उपस्थित नहीं हो सकता है: सभी आयनिक यौगिकों में कुछ हद तक सहसंयोजक बंधन या इलेक्ट्रॉन साझाकरण होता है। इस प्रकार, आयनिक बंधन शब्द तब दिया जाता है जब आयनिक वर्ण सहसंयोजक वर्ण से अधिक होता है - अर्थात, एक बंधन जिसमें दो परमाणुओं के मध्य एक बड़ा [[वैद्युतीयऋणात्मकता]] अंतर उपस्थित होता है, जिसके कारण बंधन सहसंयोजक बंधन की सापेक्ष में अधिक ध्रुवीय (आयनिक) होता है। जहां इलेक्ट्रॉनों को अधिक समान रूप से साझा किया जाता है। आंशिक रूप से आयनिक और आंशिक रूप से सहसंयोजक वर्ण वाले बंधों को ध्रुवीय सहसंयोजक बंध कहा जाता है।
यह पहचानना महत्वपूर्ण है कि स्वच्छ आयनिक संबंध - जिसमें एक परमाणु या अणु पूरी तरह से एक इलेक्ट्रॉन को दूसरे में स्थानांतरित करता है - उपस्थित नहीं हो सकता है: सभी आयनिक यौगिकों में कुछ हद तक सहसंयोजक बंधन या इलेक्ट्रॉन साझाकरण होता है। इस प्रकार, आयनिक बंधन शब्द तब दिया जाता है जब आयनिक वर्ण सहसंयोजक वर्ण से अधिक होता है - अर्थात, एक बंधन जिसमें दो परमाणुओं के मध्य एक बड़ा [[वैद्युतीयऋणात्मकता]] अंतर उपस्थित होता है, जिसके कारण बंधन सहसंयोजक बंधन की सापेक्ष में अधिक ध्रुवीय (आयनिक) होता है। जहां इलेक्ट्रॉनों को अधिक समान रूप से साझा किया जाता है। आंशिक रूप से आयनिक और आंशिक रूप से सहसंयोजक वर्ण वाले बंधों को ध्रुवीय सहसंयोजक बंध कहा जाता है।
Line 11: Line 11:


== गठन ==
== गठन ==
आयनिक बंधन एक [[रेडोक्स]] प्रतिक्रिया से उत्पन्न हो सकता है जब एक तत्व (सामान्यतः धातु) के परमाणु, जिनकी [[आयनीकरण ऊर्जा]] न्यूनतम होती है, एक स्थिर इलेक्ट्रॉन विन्यास प्राप्त करने के लिए अपने कुछ इलेक्ट्रॉन देते हैं। ऐसा करने पर धनायन बनते हैं। अधिक इलेक्ट्रॉन बंधुता वाले दूसरे तत्व (सामान्यतः अधातु) का एक परमाणु एक स्थिर इलेक्ट्रॉन विन्यास प्राप्त करने के लिए एक या अधिक इलेक्ट्रॉनों को स्वीकार करता है, और इलेक्ट्रॉनों को स्वीकार करने के उपरांत एक परमाणु एक ऋणायन बन जाता है। सामान्यतः, स्थिर इलेक्ट्रॉन विन्यास [[एस ब्लॉक]] और [[पी-ब्लॉक]] में तत्वों के लिए महान गैसों में से एक है, और [[डी-ब्लॉक]] और [[एफ ब्लॉक]] तत्वों के लिए विशेष इलेक्ट्रॉन कॉन्फ़िगरेशन है। आयनों और धनायनों के मध्य इलेक्ट्रोस्टैटिक आकर्षण [[क्रिस्टलोग्राफिक जाली]] के सापेक्ष एक ठोस के गठन की ओर जाता है जिसमें आयन एक वैकल्पिक फैशन में ढेर होते हैं। ऐसी जाली में, सामान्यतः असतत आणविक इकाइयों में अंतर करना संभव नहीं होता है, क्योंकी बनने वाले यौगिक प्रकृति में आणविक न हों। हालांकि, आयन स्वयं जटिल हो सकते हैं और एसीटेट आयनों या अमोनियम केशन जैसे आणविक आयनों का निर्माण कर सकते हैं।
आयनिक बंधन एक [[रेडोक्स]] प्रतिक्रिया से उत्पन्न हो सकता है जब एक तत्व (सामान्यतः धातु) के परमाणु, जिनकी [[आयनीकरण ऊर्जा]] न्यूनतम होती है, एक स्थिर इलेक्ट्रॉन विन्यास प्राप्त करने के लिए अपने कुछ इलेक्ट्रॉन देते हैं। ऐसा करने पर धनायन बनते हैं। अधिक इलेक्ट्रॉन बंधुता वाले दूसरे तत्व (सामान्यतः अधातु) का एक परमाणु एक स्थिर इलेक्ट्रॉन विन्यास प्राप्त करने के लिए एक या अधिक इलेक्ट्रॉनों को स्वीकार करता है, और इलेक्ट्रॉनों को स्वीकार करने के उपरांत एक परमाणु एक ऋणायन बन जाता है। सामान्यतः, स्थिर इलेक्ट्रॉन विन्यास [[एस ब्लॉक]] और [[पी-ब्लॉक]] में तत्वों के लिए महान गैसों में से एक है, और [[डी-ब्लॉक]] और [[एफ ब्लॉक]] तत्वों के लिए विशेष इलेक्ट्रॉन कॉन्फ़िगरेशन है। आयनों और धनायनों के मध्य इलेक्ट्रोस्टैटिक आकर्षण [[क्रिस्टलोग्राफिक जाली]] के सापेक्ष एक ठोस के गठन की ओर जाता है जिसमें आयन एक वैकल्पिक फैशन में ढेर होते हैं। ऐसी जाली में, सामान्यतः असतत आणविक इकाइयों में अंतर करना संभव नहीं होता है, क्योंकी बनने वाले यौगिक प्रकृति में आणविक न हों। यद्यपि, आयन स्वयं जटिल हो सकते हैं और एसीटेट आयनों या अमोनियम केशन जैसे आणविक आयनों का निर्माण कर सकते हैं।
[[Image:Ionic Bonding LiF.svg|thumb|right|250px|[[[[लिथियम]] फ्लोराइड]] बनाने के लिए लिथियम और फ्लोरीन के मध्य आयनिक बंधन का प्रतिनिधित्व। लिथियम में न्यूनतम आयनीकरण ऊर्जा होती है और आसानी से एक फ्लोरीन परमाणु को अपना अकेला वैलेंस इलेक्ट्रॉन देता है, जिसमें सकारात्मक इलेक्ट्रॉन संबंध होता है और लिथियम परमाणु द्वारा दान किए गए इलेक्ट्रॉन को स्वीकार करता है। अंतिम परिणाम यह है कि लिथियम [[हीलियम]] के सापेक्ष समइलेक्ट्रॉनिक है और फ्लोरीन [[नीयन]] के सापेक्ष [[isoelectronicity]] है। इलेक्ट्रोस्टैटिक इंटरैक्शन दो परिणामी आयनों के मध्य होता है,परंतु आम तौर पर एकत्रीकरण उनमें से दो तक सीमित नहीं होता है। इसके बजाय, आयनिक बंधन द्वारा एक सापेक्ष आयोजित एक संपूर्ण जाली में एकत्रीकरण का परिणाम है।]]उदाहरण के लिए, सामान्य टेबल [[नमक]] [[सोडियम क्लोराइड]] है। जब सोडियम (Na) और [[क्लोरीन]] (Cl) संयुक्त होते हैं, तो सोडियम परमाणु प्रत्येक एक इलेक्ट्रॉन खो देते हैं, जिससे धनायन (Na<sup>+</sup>), और क्लोरीन परमाणु प्रत्येक आयनों को बनाने के लिए एक इलेक्ट्रॉन प्राप्त करते हैं (Cl<sup>-</sup>). ये आयन तब सोडियम क्लोराइड (NaCl) बनाने के लिए 1:1 के अनुपात में एक दूसरे की ओर आकर्षित होते हैं।
[[Image:Ionic Bonding LiF.svg|thumb|right|250px|[[[[लिथियम]] फ्लोराइड]] बनाने के लिए लिथियम और फ्लोरीन के मध्य आयनिक बंधन का प्रतिनिधित्व। लिथियम में न्यूनतम आयनीकरण ऊर्जा होती है और आसानी से एक फ्लोरीन परमाणु को अपना अकेला वैलेंस इलेक्ट्रॉन देता है, जिसमें सकारात्मक इलेक्ट्रॉन संबंध होता है और लिथियम परमाणु द्वारा दान किए गए इलेक्ट्रॉन को स्वीकार करता है। अंतिम परिणाम यह है कि लिथियम [[हीलियम]] के सापेक्ष समइलेक्ट्रॉनिक है और फ्लोरीन [[नीयन]] के सापेक्ष [[isoelectronicity]] है। इलेक्ट्रोस्टैटिक इंटरैक्शन दो परिणामी आयनों के मध्य होता है,परंतु सामान्यतः एकत्रीकरण उनमें से दो तक सीमित नहीं होता है। इसके अतिरिक्त, आयनिक बंधन द्वारा एक सापेक्ष आयोजित एक संपूर्ण जाली में एकत्रीकरण का परिणाम है।]]उदाहरण के लिए, सामान्य टेबल [[नमक]] [[सोडियम क्लोराइड]] है। जब सोडियम (Na) और [[क्लोरीन]] (Cl) संयुक्त होते हैं, तो सोडियम परमाणु प्रत्येक एक इलेक्ट्रॉन खो देते हैं, जिससे धनायन (Na<sup>+</sup>), और क्लोरीन परमाणु प्रत्येक आयनों को बनाने के लिए एक इलेक्ट्रॉन प्राप्त करते हैं (Cl<sup>-</sup>). ये आयन तब सोडियम क्लोराइड (NaCl) बनाने के लिए 1:1 के अनुपात में एक दूसरे की ओर आकर्षित होते हैं।
: ना + सीएल ना<sup>+</sup> + सीएल<sup>−</sup> → NaCl
: Na + Cl Na<sup>+</sup> + Cl<sup>−</sup> → NaCl


हालांकि, चार्ज तटस्थता बनाए रखने के लिए, आयनों और उद्धरणों के मध्य सख्त अनुपात देखा जाता है क्योंकी आयनिक यौगिक सामान्य रूप से आणविक यौगिक न होने के बावजूद स्टोइकोमेट्री के नियमों का पालन करें। यौगिकों के लिए जो मिश्र धातुओं के लिए संक्रमणकालीन हैं और मिश्रित आयनिक और धात्विक संबंध रखते हैं, यह अब स्थिति नहीं हो सकता है। कई सल्फाइड, उदाहरण के लिए, गैर-स्टोइकियोमेट्रिक यौगिक बनाते हैं।
यद्यपि, चार्ज तटस्थता बनाए रखने के लिए, आयनों और उद्धरणों के मध्य सख्त अनुपात देखा जाता है क्योंकी आयनिक यौगिक सामान्य रूप से आणविक यौगिक न होने के बावजूद स्टोइकोमेट्री के नियमों का पालन करें। यौगिकों के लिए जो मिश्र धातुओं के लिए संक्रमणकालीन हैं और मिश्रित आयनिक और धात्विक संबंध रखते हैं, यह अब स्थिति नहीं हो सकता है। कई सल्फाइड, उदाहरण के लिए, गैर-स्टोइकियोमेट्रिक यौगिक बनाते हैं।


कई आयनिक यौगिकों को लवण के रूप में संदर्भित किया जाता है क्योंकि वे अरहेनियस बेस जैसे NaOH की एचसीएल जैसे अरहेनियस एसिड के सापेक्ष तटस्थीकरण प्रतिक्रिया द्वारा भी बन सकते हैं।
कई आयनिक यौगिकों को लवण के रूप में संदर्भित किया जाता है क्योंकि वे अरहेनियस बेस जैसे NaOH की एचसीएल जैसे अरहेनियस एसिड के सापेक्ष तटस्थीकरण प्रतिक्रिया द्वारा भी बन सकते हैं।


: NaOH + एचसीएल → NaCl + एच<sub>2</sub>हे
: NaOH + HCl → NaCl + H<sub>2</sub>O


नमक NaCl को तब एसिड रेस्ट Cl से मिलकर कहा जाता है<sup>−</sup> और बेस रेस्ट Na<sup>+</sup>.
नमक NaCl को तब एसिड रेस्ट Cl से मिलकर कहा जाता है<sup>−</sup> और बेस रेस्ट Na<sup>+</sup>.


कटियन बनाने के लिए इलेक्ट्रॉनों को हटाना एंडोथर्मिक है, जिससे प्रणाली की समग्र ऊर्जा बढ़ जाती है। उपस्थिता बंधनों को तोड़ने या आयनों को बनाने के लिए एक से अधिक इलेक्ट्रॉनों को जोड़ने से जुड़े ऊर्जा परिवर्तन भी हो सकते हैं। हालांकि, ऋणायन की क्रिया, धनायन की वैलेंस इलेक्ट्रॉनों को स्वीकार करती है और उपरांत में आयनों का एक दूसरे के प्रति आकर्षण (जाली) ऊर्जा जारी करता है और इस प्रकार, प्रणाली की समग्र ऊर्जा को न्यूनतम करता है।
कटियन बनाने के लिए इलेक्ट्रॉनों को हटाना एंडोथर्मिक है, जिससे प्रणाली की समग्र ऊर्जा बढ़ जाती है। उपस्थिता बंधनों को तोड़ने या आयनों को बनाने के लिए एक से अधिक इलेक्ट्रॉनों को जोड़ने से जुड़े ऊर्जा परिवर्तन भी हो सकते हैं। यद्यपि, ऋणायन की क्रिया, धनायन की वैलेंस इलेक्ट्रॉनों को स्वीकार करती है और उपरांत में आयनों का एक दूसरे के प्रति आकर्षण (जाली) ऊर्जा जारी करता है और इस प्रकार, प्रणाली की समग्र ऊर्जा को न्यूनतम करता है।


आयनिक बंधन तभी होगा जब प्रतिक्रिया के लिए समग्र ऊर्जा परिवर्तन अनुकूल हो। सामान्य तौर पर, प्रतिक्रिया ऊष्माक्षेपी होती है,परंतु, उदाहरण के लिए, मर्क्यूरिक ऑक्साइड (HgO) का निर्माण एंडोथर्मिक होता है। परिणामी आयनों का आवेश आयनिक बंधन की शक्ति का एक प्रमुख कारक है, उदा। एक नमक सी<sup>+</sup>ए<sup>−</sup> स्थिरवैद्युत बलों द्वारा C से मोटे तौर पर चार गुना न्यूनतमजोर है<sup>2+</sup>ए<sup>2−</sup> कूलम्ब के नियम के अनुसार, जहां C और A क्रमशः एक सामान्य धनायन और ऋणायन का प्रतिनिधित्व करते हैं। आयनों के आकार और जाली के विशेष पैकिंग को इस अपेक्षाकृत सरल तर्क में नजरअंदाज कर दिया गया है।
आयनिक बंधन तभी होगा जब प्रतिक्रिया के लिए समग्र ऊर्जा परिवर्तन अनुकूल हो। सामान्य तौर पर, प्रतिक्रिया ऊष्माक्षेपी होती है,परंतु, उदाहरण के लिए, मर्क्यूरिक ऑक्साइड (HgO) का निर्माण एंडोथर्मिक होता है। परिणामी आयनों का आवेश आयनिक बंधन की शक्ति का एक प्रमुख कारक है, उदा। एक नमक सी<sup>+</sup>ए<sup>−</sup> स्थिरवैद्युत बलों द्वारा C से मोटे तौर पर चार गुना न्यूनतमजोर है<sup>2+</sup>ए<sup>2−</sup> कूलम्ब के नियम के अनुसार, जहां C और A क्रमशः एक सामान्य धनायन और ऋणायन का प्रतिनिधित्व करते हैं। आयनों के आकार और जाली के विशेष पैकिंग को इस अपेक्षाकृत सरल तर्क में नजरअंदाज कर दिया गया है।
Line 45: Line 45:


विशुद्ध रूप से आयनिक बंधन उपस्थित नहीं हो सकता है, क्योंकि संबंध में सम्मिलित संस्थाओं की निकटता उनके मध्य कुछ हद तक [[इलेक्ट्रॉन घनत्व]] साझा करने की अनुमति देती है। इसलिए, सभी आयनिक बंधनों में कुछ सहसंयोजक गुण होते हैं। इस प्रकार, बंधन को आयनिक माना जाता है जहां आयनिक वर्ण सहसंयोजक वर्ण से अधिक होता है। बॉन्डिंग में सम्मिलित दो प्रकार के परमाणुओं के मध्य इलेक्ट्रोनगेटिविटी में जितना बड़ा अंतर होता है, उतना ही अधिक आयनिक (ध्रुवीय) होता है। आंशिक रूप से आयनिक और आंशिक रूप से सहसंयोजक वर्ण वाले बंधों को ध्रुवीय सहसंयोजक बंध कहा जाता है। उदाहरण के लिए, Na-Cl और Mg-O अन्योन्यक्रियाओं में कुछ प्रतिशत सहसंयोजकता होती है, जबकि Si-O बांड सामान्यतः ~ 50% आयनिक और ~ 50% सहसंयोजक होते हैं। [[लिनस पॉलिंग]] ने अनुमान लगाया कि 1.7 (विद्युतऋणात्मकता # पॉलिंग वैद्युतीयऋणात्मकता पर) का एक वैद्युतीयऋणात्मकता अंतर 50% आयनिक वर्ण से मेल खाता है, इसलिए 1.7 से अधिक का अंतर एक बंधन से मेल खाता है जो मुख्य रूप से आयनिक है।<ref>L. Pauling ''The Nature of the Chemical Bond'' (3rd ed., Oxford University Press 1960) p.98-100.</ref>
विशुद्ध रूप से आयनिक बंधन उपस्थित नहीं हो सकता है, क्योंकि संबंध में सम्मिलित संस्थाओं की निकटता उनके मध्य कुछ हद तक [[इलेक्ट्रॉन घनत्व]] साझा करने की अनुमति देती है। इसलिए, सभी आयनिक बंधनों में कुछ सहसंयोजक गुण होते हैं। इस प्रकार, बंधन को आयनिक माना जाता है जहां आयनिक वर्ण सहसंयोजक वर्ण से अधिक होता है। बॉन्डिंग में सम्मिलित दो प्रकार के परमाणुओं के मध्य इलेक्ट्रोनगेटिविटी में जितना बड़ा अंतर होता है, उतना ही अधिक आयनिक (ध्रुवीय) होता है। आंशिक रूप से आयनिक और आंशिक रूप से सहसंयोजक वर्ण वाले बंधों को ध्रुवीय सहसंयोजक बंध कहा जाता है। उदाहरण के लिए, Na-Cl और Mg-O अन्योन्यक्रियाओं में कुछ प्रतिशत सहसंयोजकता होती है, जबकि Si-O बांड सामान्यतः ~ 50% आयनिक और ~ 50% सहसंयोजक होते हैं। [[लिनस पॉलिंग]] ने अनुमान लगाया कि 1.7 (विद्युतऋणात्मकता # पॉलिंग वैद्युतीयऋणात्मकता पर) का एक वैद्युतीयऋणात्मकता अंतर 50% आयनिक वर्ण से मेल खाता है, इसलिए 1.7 से अधिक का अंतर एक बंधन से मेल खाता है जो मुख्य रूप से आयनिक है।<ref>L. Pauling ''The Nature of the Chemical Bond'' (3rd ed., Oxford University Press 1960) p.98-100.</ref>
सहसंयोजक बंधों में आयनिक चरित्र को चतुष्कोणीय नाभिक वाले परमाणुओं के लिए सीधे मापा जा सकता है (<sup>2</sup>एच, <sup>14</sup>एन, <sup>81,79</sup>भाई, <sup>35,37</sup>Cl या <sup>127</sup>मैं)। ये नाभिक आम तौर पर NQR [[परमाणु चतुष्कोण अनुनाद]] और NMR परमाणु चुंबकीय अनुनाद अध्ययन की वस्तुएं हैं। परमाणु चतुष्कोणीय क्षणों Q और विद्युत क्षेत्र प्रवणता (EFG) के मध्य परस्पर क्रिया को परमाणु चतुर्भुज युग्मन स्थिरांक के माध्यम से चित्रित किया जाता है
सहसंयोजक बंधों में आयनिक चरित्र को चतुष्कोणीय नाभिक वाले परमाणुओं के लिए सीधे मापा जा सकता है (<sup>2</sup>एच, <sup>14</sup>एन, <sup>81,79</sup>भाई, <sup>35,37</sup>Cl या <sup>127</sup>मैं)। ये नाभिक सामान्यतः NQR [[परमाणु चतुष्कोण अनुनाद]] और NMR परमाणु चुंबकीय अनुनाद अध्ययन की वस्तुएं हैं। परमाणु चतुष्कोणीय क्षणों Q और विद्युत क्षेत्र प्रवणता (EFG) के मध्य परस्पर क्रिया को परमाणु चतुर्भुज युग्मन स्थिरांक के माध्यम से चित्रित किया जाता है
: क्यूसीसी = {{sfrac|''e''<sup>2</sup>''q''<sub>zz</sub>''Q''|''h''}} जहां ईक<sub>zz</sub> शब्द ईएफजी टेंसर के प्रमुख घटक से मेल खाता है और ई प्राथमिक शुल्क है। बदले में, विद्युत क्षेत्र ढाल अणुओं में बंधन मोड के वर्णन का रास्ता खोलता है जब क्यूसीसी मान एनएमआर या एनक्यूआर विधियों द्वारा सटीक रूप से निर्धारित किए जाते हैं।
: QCC = {{sfrac|''e''<sup>2</sup>''q''<sub>zz</sub>''Q''|''h''}}
:जहां ईक<sub>zz</sub> शब्द ईएफजी टेंसर के प्रमुख घटक से मेल खाता है और ई प्राथमिक शुल्क है। बदले में, विद्युत क्षेत्र ढाल अणुओं में बंधन मोड के वर्णन का रास्ता खोलता है जब क्यूसीसी मान एनएमआर या एनक्यूआर विधियों द्वारा सटीक रूप से निर्धारित किए जाते हैं।


सामान्य तौर पर, जब ठोस (या तरल) अवस्था में आयनिक बंधन होता है, तो दो भिन्न-भिन्न परमाणुओं के मध्य एक एकल आयनिक बंधन के बारे में बात करना संभव नहीं होता है, क्योंकि जाली को एक सापेक्ष रखने वाले संसक्त बल अधिक सामूहिक प्रकृति के होते हैं। सहसंयोजक बंधन के मामले में यह काफी अलग है, जहां हम प्रायः दो विशेष परमाणुओं के मध्य स्थानीयकृत एक अलग बंधन के बारे में बात कर सकते हैं।यद्यपि, भले ही आयनिक बंधन को कुछ सहसंयोजकता के सापेक्ष जोड़ दिया जाए, परिणाम आवश्यक रूप से स्थानीय चरित्र के असतत बंधन नहीं हैं। ऐसे मामलों में, परिणामी बॉन्डिंग को प्रायः एक बैंड संरचना के रूप में विवरण की आवश्यकता होती है जिसमें पूरे क्रिस्टल में फैले विशाल आणविक ऑर्बिटल्स होते हैं। इस प्रकार, ठोस में बंधन प्रायः स्थानीयकृत प्रकृति के बजाय सामूहिक प्रकृति को बनाए रखता है। जब वैद्युतीयऋणात्मकता में अंतर न्यूनतम हो जाता है, तो बंधन तब एक अर्धचालक, एक [[अर्द्ध धातु]] या अंततः धातु के बंधन के सापेक्ष एक धातु [[सेमीकंडक्टर]] का कारण बन सकता है।
सामान्य तौर पर, जब ठोस (या तरल) अवस्था में आयनिक बंधन होता है, तो दो भिन्न-भिन्न परमाणुओं के मध्य एक एकल आयनिक बंधन के बारे में बात करना संभव नहीं होता है, क्योंकि जाली को एक सापेक्ष रखने वाले संसक्त बल अधिक सामूहिक प्रकृति के होते हैं। सहसंयोजक बंधन के मामले में यह काफी अलग है, जहां हम प्रायः दो विशेष परमाणुओं के मध्य स्थानीयकृत एक अलग बंधन के बारे में बात कर सकते हैं।यद्यपि, भले ही आयनिक बंधन को कुछ सहसंयोजकता के सापेक्ष जोड़ दिया जाए, परिणाम आवश्यक रूप से स्थानीय चरित्र के असतत बंधन नहीं हैं। ऐसे मामलों में, परिणामी बॉन्डिंग को प्रायः एक बैंड संरचना के रूप में विवरण की आवश्यकता होती है जिसमें पूरे क्रिस्टल में फैले विशाल आणविक ऑर्बिटल्स होते हैं। इस प्रकार, ठोस में बंधन प्रायः स्थानीयकृत प्रकृति के अतिरिक्त सामूहिक प्रकृति को बनाए रखता है। जब वैद्युतीयऋणात्मकता में अंतर न्यूनतम हो जाता है, तो बंधन तब एक अर्धचालक, एक [[अर्द्ध धातु]] या अंततः धातु के बंधन के सापेक्ष एक धातु [[सेमीकंडक्टर]] का कारण बन सकता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 19:50, 18 April 2023

सोडियम आयन और फ्लोराइड आयन बनाने के लिए सोडियम और एक अधातु तत्त्व परमाणु एक रेडॉक्स प्रतिक्रिया से गुजर रहे हैं। सोडियम अपने बाहरी इलेक्ट्रॉन को एक स्थिर इलेक्ट्रॉन विन्यास देने के लिए खो देता है, और यह इलेक्ट्रॉन फ्लोरीन परमाणु में एक्ज़ोथिर्मिक रूप से प्रवेश करता है। विपरीत रूप से चार्ज किए गए आयन - सामान्यतः उनमें से बहुत से - ठोस सोडियम फ्लोराइड बनाने के लिए एक दूसरे से आकर्षित होते हैं।

आयनिक बॉन्डिंग एक प्रकार का रासायनिक बंधन है जिसमें कूलम्ब का नियम विपरीत रूप से चार्ज किए गए आयनों के बीच, या दो परमाणुओं के मध्य तीव्रता से भिन्न-भिन्न वैद्युतीयऋणात्मकता के सापेक्ष होता है,[1] और आयनिक यौगिकों में होने वाली प्राथमिक अंतःक्रिया है। यह सहसंयोजक बंधन और धात्विक बंधन के सापेक्ष-सापेक्ष मुख्य प्रकार के बंधनों में से एक है। आयन इलेक्ट्रोस्टैटिक चार्ज वाले परमाणु (या परमाणुओं के समूह) होते हैं। इलेक्ट्रॉन ग्रहण करने वाले परमाणु ऋणावेशित आयन (आयन कहलाते हैं) बनाते हैं। इलेक्ट्रॉन खोने वाले परमाणु सकारात्मक रूप से आवेशित आयन (जिन्हें धनायन कहा जाता है) बनाते हैं। इलेक्ट्रॉनों के इस स्थानांतरण को सहसंयोजक बंधन के विपरीत इलेक्ट्रोवैलेंस के रूप में जाना जाता है। सबसे सरल मामले में, धनायन एक धातु परमाणु है और ऋणायन एक अधातु परमाणु है,परंतु ये आयन अधिक जटिल प्रकृति के हो सकते हैं, उदा। बहुपरमाणुक आयन पसंद करते हैं NH+
4
या SO2−
4
. सरल शब्दों में, दोनों परमाणुओं के लिए पूर्ण वैलेंस शेल प्राप्त करने के लिए धातु से गैर-धातु में इलेक्ट्रॉनों के स्थानांतरण के परिणामस्वरूप एक आयनिक बंधन होता है।

यह पहचानना महत्वपूर्ण है कि स्वच्छ आयनिक संबंध - जिसमें एक परमाणु या अणु पूरी तरह से एक इलेक्ट्रॉन को दूसरे में स्थानांतरित करता है - उपस्थित नहीं हो सकता है: सभी आयनिक यौगिकों में कुछ हद तक सहसंयोजक बंधन या इलेक्ट्रॉन साझाकरण होता है। इस प्रकार, आयनिक बंधन शब्द तब दिया जाता है जब आयनिक वर्ण सहसंयोजक वर्ण से अधिक होता है - अर्थात, एक बंधन जिसमें दो परमाणुओं के मध्य एक बड़ा वैद्युतीयऋणात्मकता अंतर उपस्थित होता है, जिसके कारण बंधन सहसंयोजक बंधन की सापेक्ष में अधिक ध्रुवीय (आयनिक) होता है। जहां इलेक्ट्रॉनों को अधिक समान रूप से साझा किया जाता है। आंशिक रूप से आयनिक और आंशिक रूप से सहसंयोजक वर्ण वाले बंधों को ध्रुवीय सहसंयोजक बंध कहा जाता है।

आयनिक यौगिक पिघले हुए या घोल में बिजली का संचालन करते हैं, सामान्यतः ठोस होने पर नहीं। आयनिक यौगिकों में सामान्यतः एक उच्च गलनांक होता है, जो उन आयनों के आवेश पर निर्भर करता है जिनमें वे सम्मिलित होते हैं। जितना अधिक चार्ज होता है, उतनी ही अधिक संसजक शक्ति और उच्च गलनांक होता है। वे पानी में घुलनशीलता भी रखते हैं; संसंजक बल जितना मजबूत होगा, विलेयता उतनी ही न्यूनतम होगी।[2]


सिंहावलोकन

जिन परमाणुओं में लगभग पूर्ण या लगभग खाली रासायनिक संयोजन शेल होता है, वे बहुत ही रासायनिक प्रतिक्रिया करते हैं। परमाणु जो दृढ़ता से विद्युतीय होते हैं (जैसा कि हलोजन के मामले में होता है) प्रायः उनके वैलेंस शेल में केवल एक या दो खाली ऑर्बिटल्स होते हैं, और प्रायः अन्य अणुओं के सापेक्ष रासायनिक बंधन या आयनों को बनाने के लिए इलेक्ट्रॉन प्राप्त करते हैं। ऐसे परमाणु जो न्यूनतमजोर विद्युतीय होते हैं (जैसे क्षार धातु) में अपेक्षाकृत न्यूनतम रासायनिक संयोजन इलेक्ट्रॉन होते हैं, जिन्हें आसानी से उन परमाणुओं के सापेक्ष साझा किया जा सकता है जो दृढ़ता से विद्युतीय होते हैं। नतीजतन, न्यूनतमजोर विद्युतीय परमाणु अपने इलेक्ट्रॉन उपरांतल को विकृत करते हैं और धनायनों का निर्माण करते हैं।

गठन

आयनिक बंधन एक रेडोक्स प्रतिक्रिया से उत्पन्न हो सकता है जब एक तत्व (सामान्यतः धातु) के परमाणु, जिनकी आयनीकरण ऊर्जा न्यूनतम होती है, एक स्थिर इलेक्ट्रॉन विन्यास प्राप्त करने के लिए अपने कुछ इलेक्ट्रॉन देते हैं। ऐसा करने पर धनायन बनते हैं। अधिक इलेक्ट्रॉन बंधुता वाले दूसरे तत्व (सामान्यतः अधातु) का एक परमाणु एक स्थिर इलेक्ट्रॉन विन्यास प्राप्त करने के लिए एक या अधिक इलेक्ट्रॉनों को स्वीकार करता है, और इलेक्ट्रॉनों को स्वीकार करने के उपरांत एक परमाणु एक ऋणायन बन जाता है। सामान्यतः, स्थिर इलेक्ट्रॉन विन्यास एस ब्लॉक और पी-ब्लॉक में तत्वों के लिए महान गैसों में से एक है, और डी-ब्लॉक और एफ ब्लॉक तत्वों के लिए विशेष इलेक्ट्रॉन कॉन्फ़िगरेशन है। आयनों और धनायनों के मध्य इलेक्ट्रोस्टैटिक आकर्षण क्रिस्टलोग्राफिक जाली के सापेक्ष एक ठोस के गठन की ओर जाता है जिसमें आयन एक वैकल्पिक फैशन में ढेर होते हैं। ऐसी जाली में, सामान्यतः असतत आणविक इकाइयों में अंतर करना संभव नहीं होता है, क्योंकी बनने वाले यौगिक प्रकृति में आणविक न हों। यद्यपि, आयन स्वयं जटिल हो सकते हैं और एसीटेट आयनों या अमोनियम केशन जैसे आणविक आयनों का निर्माण कर सकते हैं। [[Image:Ionic Bonding LiF.svg|thumb|right|250px|[[लिथियम फ्लोराइड]] बनाने के लिए लिथियम और फ्लोरीन के मध्य आयनिक बंधन का प्रतिनिधित्व। लिथियम में न्यूनतम आयनीकरण ऊर्जा होती है और आसानी से एक फ्लोरीन परमाणु को अपना अकेला वैलेंस इलेक्ट्रॉन देता है, जिसमें सकारात्मक इलेक्ट्रॉन संबंध होता है और लिथियम परमाणु द्वारा दान किए गए इलेक्ट्रॉन को स्वीकार करता है। अंतिम परिणाम यह है कि लिथियम हीलियम के सापेक्ष समइलेक्ट्रॉनिक है और फ्लोरीन नीयन के सापेक्ष isoelectronicity है। इलेक्ट्रोस्टैटिक इंटरैक्शन दो परिणामी आयनों के मध्य होता है,परंतु सामान्यतः एकत्रीकरण उनमें से दो तक सीमित नहीं होता है। इसके अतिरिक्त, आयनिक बंधन द्वारा एक सापेक्ष आयोजित एक संपूर्ण जाली में एकत्रीकरण का परिणाम है।]]उदाहरण के लिए, सामान्य टेबल नमक सोडियम क्लोराइड है। जब सोडियम (Na) और क्लोरीन (Cl) संयुक्त होते हैं, तो सोडियम परमाणु प्रत्येक एक इलेक्ट्रॉन खो देते हैं, जिससे धनायन (Na+), और क्लोरीन परमाणु प्रत्येक आयनों को बनाने के लिए एक इलेक्ट्रॉन प्राप्त करते हैं (Cl-). ये आयन तब सोडियम क्लोराइड (NaCl) बनाने के लिए 1:1 के अनुपात में एक दूसरे की ओर आकर्षित होते हैं।

Na + Cl → Na+ + Cl → NaCl

यद्यपि, चार्ज तटस्थता बनाए रखने के लिए, आयनों और उद्धरणों के मध्य सख्त अनुपात देखा जाता है क्योंकी आयनिक यौगिक सामान्य रूप से आणविक यौगिक न होने के बावजूद स्टोइकोमेट्री के नियमों का पालन करें। यौगिकों के लिए जो मिश्र धातुओं के लिए संक्रमणकालीन हैं और मिश्रित आयनिक और धात्विक संबंध रखते हैं, यह अब स्थिति नहीं हो सकता है। कई सल्फाइड, उदाहरण के लिए, गैर-स्टोइकियोमेट्रिक यौगिक बनाते हैं।

कई आयनिक यौगिकों को लवण के रूप में संदर्भित किया जाता है क्योंकि वे अरहेनियस बेस जैसे NaOH की एचसीएल जैसे अरहेनियस एसिड के सापेक्ष तटस्थीकरण प्रतिक्रिया द्वारा भी बन सकते हैं।

NaOH + HCl → NaCl + H2O

नमक NaCl को तब एसिड रेस्ट Cl से मिलकर कहा जाता है और बेस रेस्ट Na+.

कटियन बनाने के लिए इलेक्ट्रॉनों को हटाना एंडोथर्मिक है, जिससे प्रणाली की समग्र ऊर्जा बढ़ जाती है। उपस्थिता बंधनों को तोड़ने या आयनों को बनाने के लिए एक से अधिक इलेक्ट्रॉनों को जोड़ने से जुड़े ऊर्जा परिवर्तन भी हो सकते हैं। यद्यपि, ऋणायन की क्रिया, धनायन की वैलेंस इलेक्ट्रॉनों को स्वीकार करती है और उपरांत में आयनों का एक दूसरे के प्रति आकर्षण (जाली) ऊर्जा जारी करता है और इस प्रकार, प्रणाली की समग्र ऊर्जा को न्यूनतम करता है।

आयनिक बंधन तभी होगा जब प्रतिक्रिया के लिए समग्र ऊर्जा परिवर्तन अनुकूल हो। सामान्य तौर पर, प्रतिक्रिया ऊष्माक्षेपी होती है,परंतु, उदाहरण के लिए, मर्क्यूरिक ऑक्साइड (HgO) का निर्माण एंडोथर्मिक होता है। परिणामी आयनों का आवेश आयनिक बंधन की शक्ति का एक प्रमुख कारक है, उदा। एक नमक सी+ स्थिरवैद्युत बलों द्वारा C से मोटे तौर पर चार गुना न्यूनतमजोर है2+2− कूलम्ब के नियम के अनुसार, जहां C और A क्रमशः एक सामान्य धनायन और ऋणायन का प्रतिनिधित्व करते हैं। आयनों के आकार और जाली के विशेष पैकिंग को इस अपेक्षाकृत सरल तर्क में नजरअंदाज कर दिया गया है।

संरचनाएं

सेंधा नमक जाली में, प्रत्येक सोडियम आयन (बैंगनी क्षेत्र) में इसके आठ निकटतम-पड़ोसी क्लोराइड आयनों (हरे रंग के गोले) के सापेक्ष एक इलेक्ट्रोस्टैटिक इंटरैक्शन होता है।

ठोस अवस्था में आयनिक यौगिक जालक संरचनाएँ बनाते हैं। जाली के रूप का निर्धारण करने वाले दो प्रमुख कारक आयनों के सापेक्ष आवेश और उनके सापेक्ष आकार हैं। कुछ संरचनाओं को कई यौगिकों द्वारा अपनाया जाता है; उदाहरण के लिए, सेंधा नमक सोडियम क्लोराइड की संरचना भी कई क्षार धातुओं के हलाइड्स और बाइनरी ऑक्साइड जैसे मैग्नीशियम ऑक्साइड द्वारा अपनाई जाती है। पॉलिंग के नियम आयनिक क्रिस्टल की क्रिस्टल संरचनाओं की भविष्यवाणी और युक्तिकरण के लिए दिशानिर्देश प्रदान करते हैं

बंधन की ताकत

एक ठोस क्रिस्टलीय आयनिक यौगिक के लिए गैसीय आयनों से ठोस बनाने में तापीय धारिता परिवर्तन को जालक ऊर्जा कहा जाता है। बोर्न-हैबर चक्र का उपयोग करके जाली ऊर्जा के लिए प्रायोगिक मूल्य निर्धारित किया जा सकता है। इलेक्ट्रोस्टैटिक संभावित ऊर्जा के योग के रूप में बोर्न-लैंड समीकरण का उपयोग करके इसकी गणना (भविष्यवाणी) की जा सकती है, जो कि धनायनों और आयनों के मध्य अंतःक्रियाओं द्वारा गणना की जाती है, और एक लघु-श्रेणी प्रतिकारक संभावित ऊर्जा शब्द है। इलेक्ट्रोस्टैटिक क्षमता को इंटरियोनिक पृथक्करण और एक स्थिरांक (मैडेलुंग स्थिरांक) के रूप में व्यक्त किया जा सकता है जो क्रिस्टल की ज्यामिति को ध्यान में रखता है। नाभिक से जितना दूर होगा ढाल उतना ही न्यूनतमजोर होगा। बोर्न-लैंडे समीकरण, उदाहरण के लिए, सोडियम क्लोराइड की जाली ऊर्जा के लिए एक उचित फिट देता है, जहां परिकलित (अनुमानित) मान -756 kJ/mol है, जो बोर्न-हैबर चक्र का उपयोग करके -787 kJ/mol की सापेक्ष करता है।[3][4] जलीय घोल में बाध्यकारी शक्ति को जेरम प्लॉट या फ्यूओस समीकरण द्वारा आयन आवेशों के कार्य के रूप में वर्णित किया जा सकता है, बल्कि आयनों की प्रकृति जैसे कि ध्रुवीकरण या आकार से स्वतंत्र [5] नमक पुलों की ताकत का मूल्यांकन प्रायः समाधान में सबसे अधिक बार cationic और anionic साइटों वाले अणुओं के मध्य संतुलन के माप द्वारा किया जाता है। [6] पानी में संतुलन स्थिरांक प्रत्येक नमक पुल के लिए योगात्मक मुक्त ऊर्जा योगदान का संकेत देते हैं। जटिल अणुओं में भी हाइड्रोजन बंधों की पहचान के लिए एक अन्य विधि क्रिस्टलोग्राफी है, कभी-कभी एनएमआर-स्पेक्ट्रोस्कोपी भी।

आयनिक बंधन की ताकत को परिभाषित करने वाली आकर्षक ताकतों को कूलम्ब के नियम | कूलम्ब के नियम द्वारा प्रतिरूपित किया जा सकता है। आयोनिक बॉन्ड स्ट्रेंथ सामान्यतः 170 और 1500 kJ/mol के मध्य होती हैं (उद्धृत रेंज भिन्न-भिन्न होती हैं)।[7][8]


ध्रुवीकरण शक्ति प्रभाव

विशुद्ध रूप से आयनिक यौगिकों के क्रिस्टल लैटिस में आयन गोलाकार होते हैं;यद्यपि, यदि धनात्मक आयन छोटा और/या अत्यधिक आवेशित है, तो यह ऋणात्मक आयन के इलेक्ट्रॉन उपरांतल को विकृत कर देगा, एक प्रभाव जिसे फजन्स के नियमों में संक्षेपित किया गया है। नकारात्मक आयन का यह ध्रुवीकरण (इलेक्ट्रोस्टैटिक्स) दो परमाणु नाभिकों के मध्य अतिरिक्त चार्ज घनत्व का निर्माण करता है, जो कि आंशिक सहसंयोजकता के लिए होता है। बड़े नकारात्मक आयन अधिक आसानी से ध्रुवीकृत होते हैं,परंतु प्रभाव सामान्यतः केवल तभी महत्वपूर्ण होता है जब 3+ के विद्युत आवेश वाले सकारात्मक आयन (जैसे, Al3+) सम्मिलित हैं।यद्यपि, 2+ आयन (Be2+) या 1+ (Li+) कुछ ध्रुवीकरण शक्ति दर्शाते हैं क्योंकि उनके आकार इतने छोटे होते हैं (उदाहरण के लिए, LiI आयनिक हैपरंतु कुछ सहसंयोजक बंधन उपस्थित हैं)। ध्यान दें कि यह आयनिक ध्रुवीकरण प्रभाव नहीं है जो विद्युत क्षेत्र के अनुप्रयोग के कारण जाली में आयनों के विस्थापन को संदर्भित करता है।

सहसंयोजक बंधन के सापेक्ष सापेक्ष

आयनिक बंधन में, परमाणु विपरीत रूप से आवेशित आयनों के आकर्षण से बंधे होते हैं, जबकि सहसंयोजक बंधन में परमाणु स्थिर इलेक्ट्रॉन विन्यास प्राप्त करने के लिए इलेक्ट्रॉनों को साझा करके बंधे होते हैं। सहसंयोजक बंधन में, प्रत्येक परमाणु के चारों ओर आणविक ज्यामिति वैलेंस शेल इलेक्ट्रॉन जोड़ी प्रतिकर्षण वीएसईपीआर नियमों द्वारा निर्धारित की जाती है, जबकि आयनिक सामग्री में, ज्यामिति अधिकतम क्लोज-पैकिंग नियमों का पालन करती है। कोई कह सकता है कि सहसंयोजक बंधन इस अर्थ में अधिक दिशात्मक है कि इष्टतम बंधन कोणों का पालन न करने के लिए ऊर्जा जुर्माना बड़ा है, जबकि आयनिक बंधन में ऐसा कोई दंड नहीं है। एक दूसरे को पीछे हटाने के लिए कोई साझा इलेक्ट्रॉन जोड़े नहीं हैं, आयनों को यथासंभव कुशलता से पैक किया जाना चाहिए। यह प्रायः बहुत अधिक समन्वय संख्या की ओर जाता है। NaCl में, प्रत्येक आयन में 6 बंध होते हैं और सभी बंध कोण 90° होते हैं। CsCl में समन्वय संख्या 8 है। सापेक्षत्मक रूप से कार्बन में सामान्यतः अधिकतम चार बंधन होते हैं।

विशुद्ध रूप से आयनिक बंधन उपस्थित नहीं हो सकता है, क्योंकि संबंध में सम्मिलित संस्थाओं की निकटता उनके मध्य कुछ हद तक इलेक्ट्रॉन घनत्व साझा करने की अनुमति देती है। इसलिए, सभी आयनिक बंधनों में कुछ सहसंयोजक गुण होते हैं। इस प्रकार, बंधन को आयनिक माना जाता है जहां आयनिक वर्ण सहसंयोजक वर्ण से अधिक होता है। बॉन्डिंग में सम्मिलित दो प्रकार के परमाणुओं के मध्य इलेक्ट्रोनगेटिविटी में जितना बड़ा अंतर होता है, उतना ही अधिक आयनिक (ध्रुवीय) होता है। आंशिक रूप से आयनिक और आंशिक रूप से सहसंयोजक वर्ण वाले बंधों को ध्रुवीय सहसंयोजक बंध कहा जाता है। उदाहरण के लिए, Na-Cl और Mg-O अन्योन्यक्रियाओं में कुछ प्रतिशत सहसंयोजकता होती है, जबकि Si-O बांड सामान्यतः ~ 50% आयनिक और ~ 50% सहसंयोजक होते हैं। लिनस पॉलिंग ने अनुमान लगाया कि 1.7 (विद्युतऋणात्मकता # पॉलिंग वैद्युतीयऋणात्मकता पर) का एक वैद्युतीयऋणात्मकता अंतर 50% आयनिक वर्ण से मेल खाता है, इसलिए 1.7 से अधिक का अंतर एक बंधन से मेल खाता है जो मुख्य रूप से आयनिक है।[9] सहसंयोजक बंधों में आयनिक चरित्र को चतुष्कोणीय नाभिक वाले परमाणुओं के लिए सीधे मापा जा सकता है (2एच, 14एन, 81,79भाई, 35,37Cl या 127मैं)। ये नाभिक सामान्यतः NQR परमाणु चतुष्कोण अनुनाद और NMR परमाणु चुंबकीय अनुनाद अध्ययन की वस्तुएं हैं। परमाणु चतुष्कोणीय क्षणों Q और विद्युत क्षेत्र प्रवणता (EFG) के मध्य परस्पर क्रिया को परमाणु चतुर्भुज युग्मन स्थिरांक के माध्यम से चित्रित किया जाता है

QCC = e2qzzQ/h
जहां ईकzz शब्द ईएफजी टेंसर के प्रमुख घटक से मेल खाता है और ई प्राथमिक शुल्क है। बदले में, विद्युत क्षेत्र ढाल अणुओं में बंधन मोड के वर्णन का रास्ता खोलता है जब क्यूसीसी मान एनएमआर या एनक्यूआर विधियों द्वारा सटीक रूप से निर्धारित किए जाते हैं।

सामान्य तौर पर, जब ठोस (या तरल) अवस्था में आयनिक बंधन होता है, तो दो भिन्न-भिन्न परमाणुओं के मध्य एक एकल आयनिक बंधन के बारे में बात करना संभव नहीं होता है, क्योंकि जाली को एक सापेक्ष रखने वाले संसक्त बल अधिक सामूहिक प्रकृति के होते हैं। सहसंयोजक बंधन के मामले में यह काफी अलग है, जहां हम प्रायः दो विशेष परमाणुओं के मध्य स्थानीयकृत एक अलग बंधन के बारे में बात कर सकते हैं।यद्यपि, भले ही आयनिक बंधन को कुछ सहसंयोजकता के सापेक्ष जोड़ दिया जाए, परिणाम आवश्यक रूप से स्थानीय चरित्र के असतत बंधन नहीं हैं। ऐसे मामलों में, परिणामी बॉन्डिंग को प्रायः एक बैंड संरचना के रूप में विवरण की आवश्यकता होती है जिसमें पूरे क्रिस्टल में फैले विशाल आणविक ऑर्बिटल्स होते हैं। इस प्रकार, ठोस में बंधन प्रायः स्थानीयकृत प्रकृति के अतिरिक्त सामूहिक प्रकृति को बनाए रखता है। जब वैद्युतीयऋणात्मकता में अंतर न्यूनतम हो जाता है, तो बंधन तब एक अर्धचालक, एक अर्द्ध धातु या अंततः धातु के बंधन के सापेक्ष एक धातु सेमीकंडक्टर का कारण बन सकता है।

यह भी देखें

संदर्भ

  1. "Ionic bond". रासायनिक शब्दावली का IUPAC संग्रह. 2009. doi:10.1351/goldbook.IT07058. ISBN 978-0-9678550-9-7.
  2. Schneider, Hans-Jörg (2012). "Ionic Interactions in Supramolecular Complexes". प्राकृतिक और सिंथेटिक मैक्रोमोलेक्यूल्स में आयनिक सहभागिता. pp. 35–47. doi:10.1002/9781118165850.ch2. ISBN 9781118165850.
  3. David Arthur Johnson, Metals and Chemical Change, Open University, Royal Society of Chemistry, 2002, ISBN 0-85404-665-8
  4. Linus Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Cornell University Press, 1960 ISBN 0-801-40333-2 doi:10.1021/ja01355a027
  5. Schneider, H.-J.; Yatsimirsky, A. (2000) Principles and Methods in Supramolecular Chemistry. Wiley ISBN 9780471972532
  6. Biedermann F, Schneider HJ (May 2016). "सुपरमॉलेक्युलर कॉम्प्लेक्स में प्रायोगिक बंधन ऊर्जा". Chemical Reviews. 116 (9): 5216–300. doi:10.1021/acs.chemrev.5b00583. PMID 27136957.
  7. Soboyejo, W.O (2003). Mechanical properties of engineered materials. Marcel Dekker. pp. 16–17. ISBN 0-203-91039-7. OCLC 54091550.
  8. Askeland, Donald R. (January 2015). The science and engineering of materials. Wright, Wendelin J. (Seventh ed.). Boston, MA. pp. 38. ISBN 978-1-305-07676-1. OCLC 903959750.
  9. L. Pauling The Nature of the Chemical Bond (3rd ed., Oxford University Press 1960) p.98-100.