संरचना कारक: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Mathematical description in crystallography}} | {{Short description|Mathematical description in crystallography}} | ||
[[संघनित पदार्थ भौतिकी]] और [[क्रिस्टलोग्राफी]] में, स्थैतिक संरचना कारक (या संक्षेप में संरचना कारक) एक गणितीय वर्णन है कि कैसे एक सामग्री स्कैटर घटना विकिरण है। एक्स-रे [[विवर्तन]] | एक्स-रे, [[इलेक्ट्रॉन विवर्तन]] और [[न्यूट्रॉन विवर्तन]] विवर्तन प्रयोगों में प्राप्त स्कैटरिंग | [[संघनित पदार्थ भौतिकी]] और [[क्रिस्टलोग्राफी]] में, स्थैतिक संरचना कारक (या संक्षेप में संरचना कारक) एक गणितीय वर्णन है कि कैसे एक सामग्री स्कैटर घटना विकिरण है। '''एक्स-रे [[विवर्तन]] |''' एक्स-रे, [[इलेक्ट्रॉन विवर्तन]] और [[न्यूट्रॉन विवर्तन]] विवर्तन प्रयोगों में प्राप्त स्कैटरिंग प्रतिरूप ([[हस्तक्षेप पैटर्न|हस्तक्षेप प्रतिरूप]] ) की व्याख्या में संरचना कारक एक महत्वपूर्ण उपकरण है। | ||
अस्पष्टतः रूप से, उपयोग में दो अलग-अलग गणितीय अभिव्यक्तियाँ हैं, दोनों को 'संरचना कारक' कहा जाता है। एक सामान्यतः लिखा जाता है <math>S(\mathbf{q})</math>; यह अधिक सामान्यतः मान्य है, और एक बिखरने वाली इकाई द्वारा उत्पादित प्रति परमाणु विवर्तित तीव्रता से संबंधित है। दूसरा सामान्यतः <math>F</math> या <math>F_{hk\ell}</math> लिखा जाता है और केवल लंबी दूरी की स्थितीय व्यवस्था - क्रिस्टल वाले प्रणाली के लिए मान्य है। यह व्यंजक क्रिस्टल के '''यह अभिव्यक्ति द्वारा विवर्तित बीम के आयाम और चरण से संबंधित''' <math>(hk\ell)</math> तलों '''क्रिस्टल के विमान''' (<math>(hk\ell)</math> समतलों के मिलर सूचकांक हैं)द्वारा विवर्तित किरणपुंज के आयाम और कला को एक एकल द्वारा उत्पादित किरण से संबंधित करता है। आदिम इकाई सेल के शीर्ष पर प्रकीर्णन इकाई।<math>F_{hk\ell}</math> <math>S(\mathbf{q})</math>; <math>S(\mathbf{q})</math> की कोई विशेष स्थिति नहीं है, जो प्रकीर्णन तीव्रता देता है''',बिखरने की तीव्रता देता है,''' किन्तु <math>F_{hk\ell}</math> आयाम देता है। यह मापांक वर्ग है <math>|F_{hk\ell}|^2</math> है जो बिखरने की तीव्रता देता है। <math>F_{hk\ell}</math> एक पूर्ण क्रिस्टल के लिए परिभाषित किया गया है, और इसका उपयोग क्रिस्टलोग्राफी में किया जाता है, जबकि <math>S(\mathbf{q})</math> अव्यवस्थित प्रणालियों के लिए सबसे उपयोगी है। पॉलिमर के क्रिस्टलाइजेशन जैसे आंशिक रूप से आदेशित प्रणाली के लिए स्पष्ट रूप से अतिव्यापन होता है, और विशेषज्ञ आवश्यकतानुसार एक अभिव्यक्ति से दूसरी अभिव्यक्ति में बदलाव करते है। | |||
स्थैतिक संरचना कारक को बिखरे फोटॉनों/इलेक्ट्रॉनों/न्यूट्रॉनों की ऊर्जा को हल किए बिना मापा जाता है। ऊर्जा-समाधान माप [[गतिशील संरचना कारक]] उत्पन्न करते हैं। | स्थैतिक संरचना कारक को बिखरे फोटॉनों/इलेक्ट्रॉनों/न्यूट्रॉनों की ऊर्जा को हल किए बिना मापा जाता है। ऊर्जा-समाधान माप [[गतिशील संरचना कारक]] उत्पन्न करते हैं। | ||
| Line 192: | Line 192: | ||
[[File:square lattice scattering.png|thumb|वर्गाकार (तलीय) जालक द्वारा प्रकीर्णन का आरेख। घटना और आउटगोइंग बीम को दिखाया गया है, साथ ही साथ उनके वेव वैक्टर के बीच संबंध भी <math>\mathbf{k}_i</math>, <math>\mathbf{k}_o</math> और बिखरने वाला वेक्टर <math>\mathbf{q}</math>.]]चित्रा 2-डी पारस्परिक जाली के एक वेक्टर के निर्माण और एक बिखरने वाले प्रयोग के संबंध को दर्शाता है। | [[File:square lattice scattering.png|thumb|वर्गाकार (तलीय) जालक द्वारा प्रकीर्णन का आरेख। घटना और आउटगोइंग बीम को दिखाया गया है, साथ ही साथ उनके वेव वैक्टर के बीच संबंध भी <math>\mathbf{k}_i</math>, <math>\mathbf{k}_o</math> और बिखरने वाला वेक्टर <math>\mathbf{q}</math>.]]चित्रा 2-डी पारस्परिक जाली के एक वेक्टर के निर्माण और एक बिखरने वाले प्रयोग के संबंध को दर्शाता है। | ||
वेव वेक्टर के साथ एक समानांतर बीम <math>\mathbf{k}_i</math> प्राचल के वर्गाकार जालक पर आपतित होता है <math>a</math>. बिखरी हुई लहर का पता एक निश्चित कोण पर लगाया जाता है, जो आउटगोइंग बीम के वेव वेक्टर को परिभाषित करता है, <math>\mathbf{k}_o</math> (लोचदार बिखरने की धारणा के अनुसार , <math>|\mathbf{k}_o| = |\mathbf{k}_i|</math>). कोई समान रूप से बिखरने वाले वेक्टर को परिभाषित कर सकता है <math>\mathbf{q}=\mathbf{k}_o - \mathbf{k}_i</math> और हार्मोनिक | वेव वेक्टर के साथ एक समानांतर बीम <math>\mathbf{k}_i</math> प्राचल के वर्गाकार जालक पर आपतित होता है <math>a</math>. बिखरी हुई लहर का पता एक निश्चित कोण पर लगाया जाता है, जो आउटगोइंग बीम के वेव वेक्टर को परिभाषित करता है, <math>\mathbf{k}_o</math> (लोचदार बिखरने की धारणा के अनुसार , <math>|\mathbf{k}_o| = |\mathbf{k}_i|</math>). कोई समान रूप से बिखरने वाले वेक्टर को परिभाषित कर सकता है <math>\mathbf{q}=\mathbf{k}_o - \mathbf{k}_i</math> और हार्मोनिक प्रतिरूप का निर्माण करें <math>\exp (i \mathbf{q}\mathbf{r})</math>. दर्शाए गए उदाहरण में, इस प्रतिरूप का अंतर कण पंक्तियों के बीच की दूरी से मेल खाता है: <math>q = 2\pi /a</math>, जिससे सभी कणों से बिखरने में योगदान चरण (रचनात्मक हस्तक्षेप) में हो। इस प्रकार, दिशा में कुल संकेत <math>\mathbf{k}_o</math> शक्तिशाली है, और <math>\mathbf{q}</math> पारस्परिक जाली के अंतर्गत आता है। यह आसानी से दिखाया गया है कि यह विन्यास ब्रैग के नियम को पूरा करता है। | ||
[[File:Sq linear.svg|thumb|विभिन्न कण संख्याओं के लिए आवर्त श्रृंखला का संरचना कारक <math>N</math>.]] | [[File:Sq linear.svg|thumb|विभिन्न कण संख्याओं के लिए आवर्त श्रृंखला का संरचना कारक <math>N</math>.]] | ||
Revision as of 11:51, 13 April 2023
संघनित पदार्थ भौतिकी और क्रिस्टलोग्राफी में, स्थैतिक संरचना कारक (या संक्षेप में संरचना कारक) एक गणितीय वर्णन है कि कैसे एक सामग्री स्कैटर घटना विकिरण है। एक्स-रे विवर्तन | एक्स-रे, इलेक्ट्रॉन विवर्तन और न्यूट्रॉन विवर्तन विवर्तन प्रयोगों में प्राप्त स्कैटरिंग प्रतिरूप (हस्तक्षेप प्रतिरूप ) की व्याख्या में संरचना कारक एक महत्वपूर्ण उपकरण है।
अस्पष्टतः रूप से, उपयोग में दो अलग-अलग गणितीय अभिव्यक्तियाँ हैं, दोनों को 'संरचना कारक' कहा जाता है। एक सामान्यतः लिखा जाता है ; यह अधिक सामान्यतः मान्य है, और एक बिखरने वाली इकाई द्वारा उत्पादित प्रति परमाणु विवर्तित तीव्रता से संबंधित है। दूसरा सामान्यतः या लिखा जाता है और केवल लंबी दूरी की स्थितीय व्यवस्था - क्रिस्टल वाले प्रणाली के लिए मान्य है। यह व्यंजक क्रिस्टल के यह अभिव्यक्ति द्वारा विवर्तित बीम के आयाम और चरण से संबंधित तलों क्रिस्टल के विमान ( समतलों के मिलर सूचकांक हैं)द्वारा विवर्तित किरणपुंज के आयाम और कला को एक एकल द्वारा उत्पादित किरण से संबंधित करता है। आदिम इकाई सेल के शीर्ष पर प्रकीर्णन इकाई। ; की कोई विशेष स्थिति नहीं है, जो प्रकीर्णन तीव्रता देता है,बिखरने की तीव्रता देता है, किन्तु आयाम देता है। यह मापांक वर्ग है है जो बिखरने की तीव्रता देता है। एक पूर्ण क्रिस्टल के लिए परिभाषित किया गया है, और इसका उपयोग क्रिस्टलोग्राफी में किया जाता है, जबकि अव्यवस्थित प्रणालियों के लिए सबसे उपयोगी है। पॉलिमर के क्रिस्टलाइजेशन जैसे आंशिक रूप से आदेशित प्रणाली के लिए स्पष्ट रूप से अतिव्यापन होता है, और विशेषज्ञ आवश्यकतानुसार एक अभिव्यक्ति से दूसरी अभिव्यक्ति में बदलाव करते है।
स्थैतिक संरचना कारक को बिखरे फोटॉनों/इलेक्ट्रॉनों/न्यूट्रॉनों की ऊर्जा को हल किए बिना मापा जाता है। ऊर्जा-समाधान माप गतिशील संरचना कारक उत्पन्न करते हैं।
की व्युत्पत्ति S(q)
तरंग दैर्ध्य के एक किरण के प्रकीर्णन पर विचार करें की सभा द्वारा कणों या परमाणुओं के पदों पर स्थिर . मान लें कि प्रकीर्णन अशक्त है, जिससे घटना बीम का आयाम पूरे नमूना आयतन (जन्म सन्निकटन) में स्थिर रहे, और अवशोषण, अपवर्तन और एकाधिक प्रकीर्णन को उपेक्षित किया जा सके (कीनेमेटिक विवर्तन)। किसी भी प्रकीर्णित तरंग की दिशा उसके प्रकीर्णन सदिश द्वारा परिभाषित की जाती है . , कहाँ और ( ) बिखरी हुई और आपतित किरण तरंग सदिश हैं, और उनके बीच का कोण है। लोचदार बिखरने के लिए, और , की संभावित सीमा को सीमित करना (एवाल्ड क्षेत्र देखें)। इस प्रकीर्णित तरंग का आयाम और कला सभी परमाणुओं से प्रकीर्णित तरंगों का सदिश योग होगा [1][2] परमाणुओं के संयोजन के लिए, का परमाणु रूप कारक है -वाँ परमाणु। बिखरी हुई तीव्रता इस फ़ंक्शन को इसके जटिल संयुग्म द्वारा गुणा करके प्राप्त की जाती है
-
(1)
संरचना कारक को इस तीव्रता द्वारा सामान्यीकृत के रूप में परिभाषित किया गया है [3]
-
(2)
यदि सभी परमाणु समान हैं, तो समीकरण (1) बन जाता है और इसलिए
-
(3)
एक अन्य उपयोगी सरलीकरण यह है कि सामग्री आइसोट्रोपिक है, जैसे पाउडर या एक साधारण तरल। उस मामले में, तीव्रता पर निर्भर करता है और . तीन आयामों में, समीकरण (2) फिर डेबी प्रकीर्णन समीकरण को सरल करता है:[1]
-
(4)
एक वैकल्पिक व्युत्पत्ति अच्छी जानकारी देती है, किन्तु फूरियर रूपांतरण और कनवल्शन का उपयोग करती है। सामान्य होने के लिए, एक अदिश (वास्तविक) मात्रा पर विचार करें मात्रा में परिभाषित किया गया है ; उदाहरण के लिए, यह द्रव्यमान या आवेश वितरण या एक विषम माध्यम के अपवर्तक सूचकांक के अनुरूप हो सकता है। यदि स्केलर फ़ंक्शन पूर्णांक है, तो हम इसके फूरियर रूपांतरण को लिख सकते हैं . बोर्न सन्निकटन में बिखरी हुई लहर का आयाम बिखरने वाले वेक्टर के अनुरूप होता है फूरियर रूपांतरण के समानुपाती होता है .[1]जब अध्ययन के अनुसार प्रणाली एक संख्या से बना है समान घटकों (परमाणु, अणु, कोलाइडल कण, आदि) जिनमें से प्रत्येक में द्रव्यमान या आवेश का वितरण होता है तब कुल वितरण को डिराक डेल्टा समारोह के एक सेट के साथ इस फ़ंक्शन का कनवल्शन माना जा सकता है।
-
(5)
साथ कण की स्थिति पहले की तरह। संपत्ति का उपयोग करते हुए कि एक कनवल्शन उत्पाद का फूरियर रूपांतरण केवल दो कारकों के फूरियर रूपांतरण का उत्पाद है, हमारे पास है , जिससे:
-
(6)
यह स्पष्ट रूप से समीकरण के समान है (1) यहाँ के अतिरिक्त सभी कण समान हैं के एक कार्य के रूप में स्पष्ट रूप से दिखाया गया है .
सामान्यतः , कण की स्थिति निश्चित नहीं होती है और माप एक परिमित कठिन परिस्थिति समय पर और एक मैक्रोस्कोपिक नमूने (इंटरपार्टिकल दूरी से बहुत बड़ा) के साथ होता है। प्रयोगात्मक रूप से सुलभ तीव्रता इस प्रकार एक औसत है ; हमें यह निर्दिष्ट करने की आवश्यकता नहीं है कि क्या एक समय या पहनावा औसत दर्शाता है। इसे ध्यान में रखने के लिए हम समीकरण को फिर से लिख सकते हैं (3) जैसा:
-
(7)
बिल्कुल सही क्रिस्टल
एक क्रिस्टल में, संवैधानिक कणों को समय-समय पर व्यवस्थित किया जाता है, साथ ही एक क्रिस्टल लैटिस बनाने के लिए अनुवादकीय समरूपता होती है। क्रिस्टल संरचना को परमाणुओं के एक समूह के साथ ब्रावाइस जाली के रूप में वर्णित किया जा सकता है, जिसे आधार कहा जाता है, प्रत्येक जाली बिंदु पर रखा जाता है; वह है, [क्रिस्टल संरचना] = [जाली] [आधार]। यदि जाली अनंत और पूरी तरह से नियमित है, तो प्रणाली एक आदर्श क्रिस्टल है। ऐसी प्रणाली के लिए, केवल विशिष्ट मूल्यों का एक सेट प्रकीर्णन दे सकता है, और अन्य सभी मानों के लिए प्रकीर्णन आयाम शून्य है। मूल्यों का यह सेट एक जाली बनाता है, जिसे पारस्परिक जाली कहा जाता है, जो वास्तविक-अंतरिक्ष क्रिस्टल जाली का फूरियर रूपांतरण है।
सिद्धांत रूप में बिखरने वाला कारक एक आदर्श क्रिस्टल से बिखरने को निर्धारित करने के लिए उपयोग किया जा सकता है; सरल मामले में जब आधार मूल में एक एकल परमाणु होता है (और फिर से सभी तापीय गति की उपेक्षा करता है, जिससे औसत की कोई आवश्यकता न हो) सभी परमाणुओं का वातावरण समान होता है। समीकरण (1) के रूप में लिखा जा सकता है
- और .
संरचना कारक तब जाली के फूरियर रूपांतरण का वर्गित मापांक होता है, और उन दिशाओं को दर्शाता है जिनमें बिखरने की गैर-शून्य तीव्रता हो सकती है। इन मूल्यों पर प्रत्येक जाली बिंदु से तरंग चरण में है। इन सभी पारस्परिक जाली बिंदुओं के लिए संरचना कारक का मान समान है, और तीव्रता केवल परिवर्तन के कारण भिन्न होती है साथ .
इकाइयां
संरचना-कारक आयाम की इकाइयाँ आपतित विकिरण पर निर्भर करती हैं। एक्स-रे क्रिस्टलोग्राफी के लिए वे एक एकल इलेक्ट्रॉन (2.82.2) द्वारा प्रकीर्णन की इकाई के गुणक हैं एम); परमाणु नाभिक द्वारा न्यूट्रॉन प्रकीर्णन के लिए प्रकीर्णन लंबाई की इकाई मी. का सामान्य रूप से प्रयोग किया जाता है।
उपरोक्त चर्चा तरंग वैक्टर का उपयोग करती है और . चूंकि , क्रिस्टलोग्राफी अधिकांशतः वेव वैक्टर का उपयोग करती है और . इसलिए, विभिन्न स्रोतों से समीकरणों की तुलना करते समय, कारक प्रकट और गायब हो सकते हैं, और सही संख्यात्मक परिणाम प्राप्त करने के लिए लगातार मात्रा बनाए रखने की देखभाल की आवश्यकता होती है।
की परिभाषा Fhkl
क्रिस्टलोग्राफी में, आधार और जाली का अलग-अलग व्यवहार किया जाता है। एक आदर्श क्रिस्टल के लिए जाली पारस्परिक जाली देती है, जो विवर्तित बीमों की स्थिति (कोण) निर्धारित करती है, और आधार संरचना कारक देता है जो विवर्तित बीम के आयाम और चरण को निर्धारित करता है:
-
(8)
जहां यूनिट सेल में सभी परमाणुओं का योग होता है, के स्थितीय निर्देशांक हैं -वाँ परमाणु, और का प्रकीर्णन कारक है -वाँ परमाणु।[4] निर्देशांक जाली वैक्टर की दिशाएँ और आयाम हैं . अर्थात्, (0,0,0) जाली बिंदु पर है, यूनिट सेल में स्थिति की उत्पत्ति; (1,0,0) साथ में अगले जाली बिंदु पर है और (1/2, 1/2, 1/2) यूनिट सेल के बॉडी सेंटर पर है। एक पारस्परिक जाली बिंदु को परिभाषित करता है जो मिलर इंडेक्स द्वारा परिभाषित वास्तविक-अंतरिक्ष विमान से मेल खाती है (देखें ब्रैग का नियम)।
यूनिट सेल के अंदर सभी परमाणुओं से तरंगों का सदिश योग है। किसी भी जाली बिंदु पर एक परमाणु में सभी के लिए संदर्भ चरण कोण शून्य होता है के बाद से हमेशा एक पूर्णांक होता है। (1/2, 0, 0) पर एक परमाणु से प्रकीर्णित एक तरंग चरण में होगी यदि सम है, यदि चरण से बाहर है अजीब है।
फिर से कनवल्शन का उपयोग करने वाला एक वैकल्पिक दृश्य सहायता हो सकता है। चूंकि [क्रिस्टल संरचना] = [जाली] [आधार], [क्रिस्टल संरचना] = [जाली] [आधार]; अर्थात् बिखरना [पारस्परिक जाली] [संरचना कारक]।
=== के उदाहरण Fhkl 3-डी === में
शरीर केंद्रित घन (बीसीसी)
शरीर-केंद्रित क्यूबिक ब्राविस जाली (cI) के लिए, हम बिंदुओं का उपयोग करते हैं और जो हमें ले जाता है
और इसलिए
चेहरा केंद्रित घन (एफसीसी)
चेहरा-केंद्रित घन जाली एक ब्रावाइस जाली है, और इसका फूरियर रूपांतरण एक शरीर-केंद्रित घन जाली है। चूंकि प्राप्त करने के लिए इस शॉर्टकट के बिना, प्रत्येक जाली बिंदु पर एक परमाणु के साथ एक एफसीसी क्रिस्टल पर विचार करें, मूल में 4 परमाणुओं के आधार के साथ एक आदिम या सरल घन के रूप में और तीन आसन्न फलक केंद्रों पर, , और . समीकरण (8) बन जाता है
नतीजे के साथ
FCC संरचना में क्रिस्टलीकृत होने वाली सामग्री से सबसे तीव्र विवर्तन शिखर सामान्यतः (111) होता है। सोना जैसी एफसीसी सामग्री की फिल्में त्रिकोणीय सतह समरूपता के साथ (111) ओरिएंटेशन में बढ़ती हैं। विवर्तित पुंजों के समूह के लिए शून्य विवर्तित तीव्रता (यहाँ, मिश्रित समता की) को व्यवस्थित अनुपस्थिति कहा जाता है।
हीरा क्रिस्टल संरचना
डायमंड क्यूबिक क्रिस्टल संरचना उदाहरण के लिए हीरा घनकार्बन), विश्वास करना और अधिकांश अर्धचालकों के लिए होती है। क्यूबिक यूनिट सेल में 8 परमाणु होते हैं। हम संरचना को 8 परमाणुओं के आधार पर एक साधारण घन के रूप में मान सकते हैं
किन्तु उपरोक्त FCC से इसकी तुलना करने पर, हम देखते हैं कि (0, 0, 0) और (1/4, 1/4, 1/4) पर दो परमाणुओं के आधार पर FCC के रूप में संरचना का वर्णन करना सरल है। इस आधार पर, समीकरण (8) बन जाता है:
और फिर हीरे की घन संरचना के लिए संरचना कारक इसका उत्पाद है और ऊपर एफसीसी के लिए संरचना कारक है, (केवल एक बार परमाणु रूप कारक सहित)
नतीजे के साथ
- यदि h, k, ℓ मिश्रित समता (विषम और सम मान संयुक्त) के हैं तो पहला (FCC) शब्द शून्य है, इसलिए
- यदि h, k, ℓ सभी सम या सभी विषम हैं तो पहला (FCC) पद 4 है
- यदि h+k+ℓ विषम है तो
- यदि h+k+ℓ सम है और 4 से पूर्णतः विभाज्य है () तब
- यदि h+k+ℓ सम है किन्तु 4 से पूरी तरह से विभाज्य नहीं है () दूसरा कार्यकाल शून्य है और
इन बिंदुओं को निम्नलिखित समीकरणों द्वारा समझाया गया है:
कहाँ एक पूर्णांक है।
जिंकब्लेंड क्रिस्टल संरचना
जिंकब्लेंड संरचना हीरे की संरचना के समान है, सिवाय इसके कि यह सभी समान तत्वों के अतिरिक्त दो अलग-अलग इंटरपेनेट्रेटिंग एफसीसी लैटिस का एक यौगिक है। द्वारा यौगिक में दो तत्वों को नकारना और , परिणामी संरचना कारक है
सीज़ियम क्लोराइड
सीज़ियम क्लोराइड Cs (0,0,0) और Cl पर (1/2, 1/2, 1/2) (या इसके विपरीत, इससे कोई फर्क नहीं पड़ता) के आधार पर एक साधारण क्यूबिक क्रिस्टल जाली है। समीकरण (8) बन जाता है
हम फिर एक विमान से बिखरने के लिए संरचना कारक के लिए निम्नलिखित परिणाम पर पहुंचते हैं :
और बिखरी हुई तीव्रता के लिए,
षट्कोणीय निविड संकुलित (HCP)
एक HCP क्रिस्टल जैसे ग्रेफाइट में, दो निर्देशांकों में मूल बिंदु सम्मिलित होता है और अगला विमान c/2 पर स्थित c अक्ष के ऊपर है, और इसलिए , जो हमें देता है
इससे डमी चर को परिभाषित करना सुविधाजनक होता है , और वहां से मापांक वर्ग पर विचार करें इसलिए
यह हमें संरचना कारक के लिए निम्नलिखित शर्तों की ओर ले जाता है:
एक और दो आयामों में बिल्कुल सही क्रिस्टल
पारस्परिक जाली आसानी से एक आयाम में निर्मित होती है: एक अवधि के साथ एक रेखा पर कणों के लिए , पारस्परिक जाली अंतर के साथ बिंदुओं की एक अनंत सरणी है . दो आयामों में, केवल पाँच ब्राविस जालक हैं। संबंधित पारस्परिक जाली में प्रत्यक्ष जाली के समान समरूपता होती है। 2-डी लैटिस एक फ्लैट स्क्रीन पर सरल विवर्तन ज्यामिति का प्रदर्शन करने के लिए उत्कृष्ट हैं, जैसा कि नीचे दिया गया है। समीकरण (1)–(7) संरचना कारक के लिए सीमित आयामीता के बिखरने वाले वेक्टर के साथ प्रयुक्त करें और एक क्रिस्टलोग्राफिक संरचना कारक को 2-डी में परिभाषित किया जा सकता है .
चूंकि , याद रखें कि वास्तविक 2-डी क्रिस्टल जैसे ग्राफीन 3-डी में उपस्थित हैं। 2-डी हेक्सागोनल शीट की पारस्परिक जाली जो 3-डी अंतरिक्ष में उपस्थित है समतल समानांतर रेखाओं की एक षट्कोणीय सरणी है या अक्ष जिसका विस्तार होता है और निरंतर के किसी भी विमान को काटता है अंक की एक हेक्सागोनल सरणी में।
चित्रा 2-डी पारस्परिक जाली के एक वेक्टर के निर्माण और एक बिखरने वाले प्रयोग के संबंध को दर्शाता है।
वेव वेक्टर के साथ एक समानांतर बीम प्राचल के वर्गाकार जालक पर आपतित होता है . बिखरी हुई लहर का पता एक निश्चित कोण पर लगाया जाता है, जो आउटगोइंग बीम के वेव वेक्टर को परिभाषित करता है, (लोचदार बिखरने की धारणा के अनुसार , ). कोई समान रूप से बिखरने वाले वेक्टर को परिभाषित कर सकता है और हार्मोनिक प्रतिरूप का निर्माण करें . दर्शाए गए उदाहरण में, इस प्रतिरूप का अंतर कण पंक्तियों के बीच की दूरी से मेल खाता है: , जिससे सभी कणों से बिखरने में योगदान चरण (रचनात्मक हस्तक्षेप) में हो। इस प्रकार, दिशा में कुल संकेत शक्तिशाली है, और पारस्परिक जाली के अंतर्गत आता है। यह आसानी से दिखाया गया है कि यह विन्यास ब्रैग के नियम को पूरा करता है।
अपूर्ण क्रिस्टल
विधि ी रूप से एक पूर्ण क्रिस्टल अनंत होना चाहिए, इसलिए एक परिमित आकार एक अपूर्णता है। वास्तविक क्रिस्टल हमेशा अपने परिमित आकार के अतिरिक्त अपने क्रम की खामियों को प्रदर्शित करते हैं, और इन खामियों का सामग्री के गुणों पर गहरा प्रभाव पड़ सकता है। आंद्रे गिनियर[5] क्रिस्टल की लंबी दूरी के क्रम को संरक्षित करने वाली खामियों के बीच एक व्यापक रूप से नियोजित अंतर का प्रस्ताव रखा जिसे उन्होंने पहली तरह का विकार कहा और जो इसे नष्ट करते हैं उन्हें दूसरी तरह का विकार कहा जाता है। पहले का एक उदाहरण तापीय कंपन है; दूसरे का एक उदाहरण अव्यवस्थाओं का कुछ घनत्व है।
सामान्यतः प्रयुक्त संरचना कारक किसी भी अपूर्णता के प्रभाव को सम्मिलित करने के लिए उपयोग किया जा सकता है। क्रिस्टलोग्राफी में, इन प्रभावों को संरचना कारक से अलग माना जाता है , इसलिए आकार या थर्मल प्रभावों के लिए अलग-अलग कारकों को बिखरी हुई तीव्रता के भावों में प्रस्तुत किया जाता है, जिससे सही क्रिस्टल संरचना कारक अपरिवर्तित रहता है। इसलिए, इस लेख में क्रिस्टलोग्राफिक संरचना मॉडलिंग और विवर्तन द्वारा संरचना निर्धारण में इन कारकों का विस्तृत विवरण उचित नहीं है।
परिमित-आकार के प्रभाव
के लिए एक परिमित क्रिस्टल का अर्थ है कि समीकरण 1-7 में राशि अब एक परिमित से अधिक है . प्रभाव को बिंदुओं के 1-डी जाली के साथ सबसे आसानी से प्रदर्शित किया जाता है। चरण कारकों का योग एक ज्यामितीय श्रृंखला है और संरचना कारक बन जाता है:
के विभिन्न मानों के लिए यह फलन चित्र में दिखाया गया है . जब प्रत्येक कण से प्रकीर्णन चरण में होता है, जो तब होता है जब प्रकीर्णन एक पारस्परिक जाली बिंदु पर होता है , आयामों का योग होना चाहिए और इसलिए तीव्रता में अधिकतम हैं . उपरोक्त अभिव्यक्ति के लिए और सीमा का अनुमान उदाहरण के लिए, L'Hôpital's नियम का उपयोग करके) यह दर्शाता है जैसा कि चित्र में देखा गया है। मध्यबिंदु पर (प्रत्यक्ष मूल्यांकन द्वारा) और चोटी की चौड़ाई घट जाती है . बड़े में सीमा, चोटियाँ असीम रूप से तीक्ष्ण डायराक डेल्टा फ़ंक्शंस बन जाती हैं, पूर्ण 1-डी जाली का पारस्परिक जाल।
क्रिस्टलोग्राफी में जब प्रयोग किया जाता है, बड़ा है, और विवर्तन पर औपचारिक आकार के प्रभाव को लिया जाता है , जो कि अभिव्यक्ति के समान है ऊपर पारस्परिक जाली बिंदुओं के पास, . कनवल्शन का उपयोग करके, हम परिमित वास्तविक क्रिस्टल संरचना का वर्णन [जाली] के रूप में कर सकते हैं [आधार] आयताकार फलन, जहां आयताकार फलन का मान क्रिस्टल के अंदर 1 और उसके बाहर 0 होता है। तब [क्रिस्टल संरचना] = [जाली] [आधार] [आयताकार समारोह]; अर्थात् बिखरना [पारस्परिक जाली] [संरचना कारक] [[[ sinc ]] फ़ंक्शन]। इस प्रकार तीव्रता, जो पूर्ण क्रिस्टल के लिए स्थिति का एक डेल्टा कार्य है, बन जाती है अधिकतम के साथ हर बिंदु के आसपास कार्य करें , एक चौड़ाई , क्षेत्र .
पहले प्रकार का विकार
क्रिस्टल में विकार के लिए यह मॉडल एक आदर्श क्रिस्टल के संरचना कारक से प्रारंभिक ू होता है। सादगी के लिए एक-आयाम में और एन विमानों के साथ, हम ऊपर की अभिव्यक्ति के साथ एक पूर्ण परिमित जाली के लिए प्रारंभिक ू करते हैं, और फिर यह विकार केवल बदलता है एक गुणक कारक द्वारा, देने के लिए[1]
जहां स्थिति के माध्य-वर्ग विस्थापन द्वारा विकार को मापा जाता है एक पूर्ण एक आयामी जाली में उनकी स्थिति से: , अर्थात।, , कहाँ एक छोटा है (से बहुत कम ) यादृच्छिक विस्थापन। प्रथम प्रकार के विकार के लिए, प्रत्येक यादृच्छिक विस्थापन दूसरों से स्वतंत्र है, और एक पूर्ण जाली के संबंध में। इस प्रकार विस्थापन क्रिस्टल के अनुवाद क्रम को नष्ट न करें। इसका परिणाम यह है कि अनंत क्रिस्टल के लिए () संरचना कारक में अभी भी डेल्टा-फ़ंक्शन ब्रैग चोटियाँ हैं - चोटी की चौड़ाई अभी भी शून्य हो जाती है , इस तरह के विकार के साथ। चूंकि , यह चोटियों के आयाम को कम करता है, और इसके कारक के कारण घातीय कारक में, यह बड़े पैमाने पर चोटियों को कम करता है छोटी चोटियों से कहीं अधिक .
संरचना बस एक से कम हो जाती है और विकार पर निर्भर शब्द क्योंकि पहली तरह के सभी विकार बिखरने वाले विमानों को धुंधला कर देते हैं, प्रभावी रूप से फार्म कारक को कम करते हैं।
तीन आयामों में प्रभाव समान होता है, संरचना फिर से गुणक कारक से कम हो जाती है, और इस कारक को अधिकांशतः डेबी-वॉलर कारक कहा जाता है। ध्यान दें कि डेबी-वालर कारक को अधिकांशतः तापीय गति के लिए जिम्मेदार ठहराया जाता है, अर्थात तापीय गति के कारण होते हैं, किन्तु एक आदर्श जाली के बारे में कोई भी यादृच्छिक विस्थापन, न केवल थर्मल वाले, डेबी-वालर कारक में योगदान करेंगे।
दूसरे प्रकार का विकार
चूंकि , उतार-चढ़ाव जो परमाणुओं के जोड़े के बीच सहसंबंध को कम करने का कारण बनता है क्योंकि उनका अलगाव बढ़ता है, क्रिस्टल के संरचना कारक में ब्रैग चोटियों को चौड़ा करने का कारण बनता है। यह कैसे काम करता है यह देखने के लिए, हम एक आयामी खिलौना मॉडल पर विचार करते हैं: माध्य रिक्ति के साथ प्लेटों का ढेर . व्युत्पत्ति इस प्रकार है कि गिनीयर की पाठ्यपुस्तक के अध्याय 9 में।[6] इस मॉडल को होसमैन और सहयोगियों द्वारा कई सामग्रियों के लिए अग्रणी और प्रयुक्त किया गया है[7] कई वर्षों में। गिनीयर और उन्होंने दूसरी तरह के इस विकार को करार दिया, और होसमैन ने विशेष रूप से इस अपूर्ण क्रिस्टलीय ऑर्डरिंग को पैराक्रिस्टलाइन ऑर्डरिंग के रूप में संदर्भित किया। पहले प्रकार का विकार डिबाई-वालर कारक का स्रोत है।
मॉडल को प्राप्त करने के लिए हम परिभाषा (एक आयाम में) से प्रारंभिक ू करते हैं
आरंभ करने के लिए हम सरलता के लिए एक अनंत क्रिस्टल पर विचार करेंगे, अर्थात, . हम नीचे दूसरे प्रकार के विकार वाले परिमित क्रिस्टल पर विचार करेंगे।
हमारे अनंत क्रिस्टल के लिए, हम जाली साइटों के जोड़े पर विचार करना चाहते हैं। अनंत क्रिस्टल के बड़े प्रत्येक तल के लिए, दो निकटतम होते हैं विमान दूर, इसलिए उपरोक्त दोहरा योग एक परमाणु के दोनों ओर, स्थिति में पड़ोसियों के जोड़े पर एक एकल योग बन जाता है और जाली स्पेसिंग दूर, बार . तो फिर
कहाँ पृथक्करण के लिए प्रायिकता घनत्व फलन है विमानों की एक जोड़ी की, जाली रिक्ति अलग। निकटतम विमानों के पृथक्करण के लिए हम सरलता के लिए मान लेते हैं कि औसत निकटतम अंतराल के आसपास के उतार-चढ़ाव गाऊसी हैं, अर्थात,
और हम यह भी मानते हैं कि एक तल और उसके निकटतम के बीच और इस निकटतम और अगले तल के बीच उतार-चढ़ाव स्वतंत्र हैं। तब सिर्फ दो का कनवल्शन है एस, आदि। जैसा कि दो गॉसियन का कनवल्शन सिर्फ एक और गॉसियन है, हमारे पास वह है
में योग तब गॉसियन के फूरियर रूपांतरणों का योग है, और इसी तरह
के लिए . योग योग का वास्तविक भाग है और इसलिए अनंत किन्तु अव्यवस्थित क्रिस्टल का संरचना कारक है
इसमें मैक्सिमा की चोटियाँ हैं , कहाँ . इन चोटियों की ऊंचाई है
अर्थात , लगातार चोटियों की ऊंचाई चोटी के क्रम के अनुसार गिरती है (और इसलिए ) चुकता। परिमित-आकार के प्रभावों के विपरीत जो चोटियों को चौड़ा करते हैं किन्तु उनकी ऊंचाई कम नहीं करते हैं, विकार चरम ऊंचाई को कम करता है। ध्यान दें कि यहां हम मानते हैं कि विकार अपेक्षाकृत अशक्त है, इसलिए हमारे पास अभी भी अपेक्षाकृत अच्छी तरह से परिभाषित चोटियां हैं। यह सीमा है , कहाँ . इस सीमा में, एक चोटी के पास हम अनुमान लगा सकते हैं , साथ और प्राप्त करें
जो FWHM का कॉची वितरण है , अर्थात , एफडब्ल्यूएचएम चोटी के क्रम के वर्ग के रूप में बढ़ता है, और इसलिए लहर वेक्टर के वर्ग के रूप में चरम पर।
अंत में, चोटी की ऊंचाई और FWHM का गुणनफल स्थिर और बराबर होता है , में सीमा। पहले कुछ चोटियों के लिए कहाँ बड़ा नहीं है, यह बस है सीमा।
दूसरी तरह के विकार के साथ परिमित क्रिस्टल
आकार के एक आयामी क्रिस्टल के लिए
जहां कोष्ठक में कारक इस तथ्य से आता है कि योग निकटतम-निकटतम जोड़े से अधिक है (), अगले निकटतम-निकटतम (), ... और एक क्रिस्टल के लिए विमान, हैं निकटतम पड़ोसियों के जोड़े, अगले-निकटतम पड़ोसियों के जोड़े, आदि।
तरल पदार्थ
क्रिस्टल के विपरीत, तरल पदार्थ में कोई लंबी दूरी का क्रम नहीं होता है (विशेष रूप से, कोई नियमित जाली नहीं होती है), इसलिए संरचना कारक तेज चोटियों को प्रदर्शित नहीं करता है। चूंकि , वे अपने घनत्व और कणों के बीच बातचीत की ताकत के आधार पर एक निश्चित मात्रा में कम दूरी का आदेश दिखाते हैं। तरल पदार्थ समदैशिक होते हैं, जिससे, समीकरण में औसत संक्रिया के बाद (4), संरचना कारक केवल बिखरने वाले वेक्टर के पूर्ण परिमाण पर निर्भर करता है . आगे के मूल्यांकन के लिए, विकर्ण शर्तों को अलग करना सुविधाजनक है दोहरे योग में, जिसका चरण समान रूप से शून्य है, और इसलिए प्रत्येक एक इकाई स्थिरांक का योगदान करता है:
-
.
(9)
कोई के लिए एक वैकल्पिक अभिव्यक्ति प्राप्त कर सकता है रेडियल वितरण समारोह के संदर्भ में :[8]
-
.
(10)
आदर्श गैस
बिना किसी संपर्क के सीमित मामले में, प्रणाली एक आदर्श गैस है और संरचना कारक पूरी तरह से सुविधा रहित है: , क्योंकि पदों के बीच कोई संबंध नहीं है और विभिन्न कणों के (वे स्वतंत्र यादृच्छिक चर हैं), इसलिए समीकरण में ऑफ-विकर्ण शब्द (9) औसत से शून्य: .
उच्च-q सीमा
यहां तक कि परस्पर क्रिया करने वाले कणों के लिए, उच्च प्रकीर्णन वेक्टर पर संरचना कारक 1 हो जाता है। यह परिणाम समीकरण से प्राप्त होता है (10), तब से नियमित कार्य का फूरियर रूपांतरण है और इस प्रकार तर्क के उच्च मूल्यों के लिए शून्य हो जाता है . यह तर्क एक पूर्ण क्रिस्टल के लिए नहीं है, जहां वितरण समारोह असीम रूप से तेज चोटियों को प्रदर्शित करता है।
कम-q सीमा
नीच में- सीमा, क्योंकि प्रणाली की जांच बड़ी लंबाई के पैमाने पर की जाती है, संरचना कारक में थर्मोडायनामिक जानकारी होती है, जो इज़ोटेर्माल संपीड्यता से संबंधित होती है संपीड्यता समीकरण द्वारा तरल का:
- .
हार्ड-गोला तरल पदार्थ
कठिन क्षेत्र मॉडल में, कणों को त्रिज्या के साथ अभेद्य गोले के रूप में वर्णित किया गया है ; इस प्रकार, उनकी केंद्र से केंद्र की दूरी और वे इस दूरी से परे किसी भी तरह की बातचीत का अनुभव नहीं करते हैं। उनकी अंतःक्रियात्मक क्षमता को इस प्रकार लिखा जा सकता है:
इस मॉडल का एक विश्लेषणात्मक समाधान है[9] पर्कस-येविक सन्निकटन में। चूंकि अत्यधिक सरलीकृत, यह तरल धातुओं से लेकर प्रणालियों के लिए एक अच्छा विवरण प्रदान करता है[10] कोलाइडल निलंबन के लिए।[11] एक दृष्टान्त में, आयतन अंशों के लिए, एक कठोर-गोले द्रव के लिए संरचना कारक चित्र में दिखाया गया है 1% से 40% तक।
पॉलीमर
बहुलक प्रणालियों में, सामान्य परिभाषा (4) धारण करता है; प्राथमिक घटक अब चेन बनाने वाले मोनोमर्स हैं। चूंकि , संरचना कारक कण की स्थिति के बीच सहसंबंध का एक उपाय है, कोई भी उचित रूप से उम्मीद कर सकता है कि यह सहसंबंध एक ही श्रृंखला या विभिन्न श्रृंखलाओं से संबंधित मोनोमर्स के लिए अलग होगा।
आइए मान लें कि वॉल्यूम रोकना समान अणु, जिनमें से प्रत्येक बना है मोनोमर्स, जैसे कि ( पोलीमराइज़ेशन की डिग्री के रूप में भी जाना जाता है)। हम फिर से लिख सकते हैं (4) जैसा:
-
,
(11)
जहां सूचकांक विभिन्न अणुओं को लेबल करें और प्रत्येक अणु के साथ अलग-अलग मोनोमर्स। दाईं ओर हमने इंट्रामोल्युलर को अलग किया () और इंटरमॉलिक्युलर () शर्तें। जंजीरों की समानता का प्रयोग करके, (11) को सरल बनाया जा सकता है:[12]
-
,
(12)
कहाँ एकल-श्रृंखला संरचना कारक है।
यह भी देखें
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 1.3 Warren, B. E. (1969). एक्स - रे विवर्तन. Addison Wesley.
- ↑ Cowley, J. M. (1992). इलेक्ट्रॉन विवर्तन तकनीक वॉल्यूम 1. Oxford Science. ISBN 9780198555582.
- ↑ Egami, T.; Billinge, S. J. L. (2012). Underneath the Bragg Peaks: Structural Analysis of Complex Material (2nd ed.). Elsevier. ISBN 9780080971339.
- ↑ "संरचना कारक". Online Dictionary of CRYSTALLOGRAPHY. IUCr. Retrieved 15 September 2016.
- ↑ See Guinier, chapters 6-9
- ↑ Guinier, A (1963). एक्स - रे विवर्तन. San Francisco and London: WH Freeman.
- ↑ Lindenmeyer, PH; Hosemann, R (1963). "पॉलीएक्रिलोनाइट्राइल के क्रिस्टल संरचना विश्लेषण के लिए पैराक्रिस्टल के सिद्धांत का अनुप्रयोग". Journal of Applied Physics. 34 (1): 42. Bibcode:1963JAP....34...42L. doi:10.1063/1.1729086. Archived from the original on 2016-08-17.
- ↑ See Chandler, section 7.5.
- ↑ Wertheim, M. (1963). "कठिन क्षेत्रों के लिए पर्कस-येविक इंटीग्रल समीकरण का सटीक समाधान". Physical Review Letters. 10 (8): 321–323. Bibcode:1963PhRvL..10..321W. doi:10.1103/PhysRevLett.10.321.
- ↑ Ashcroft, N.; Lekner, J. (1966). "तरल धातुओं की संरचना और प्रतिरोधकता". Physical Review. 145 (1): 83–90. Bibcode:1966PhRv..145...83A. doi:10.1103/PhysRev.145.83.
- ↑ Pusey, P. N.; Van Megen, W. (1986). "लगभग कठोर कोलाइडल क्षेत्रों के केंद्रित निलंबन का चरण व्यवहार". Nature. 320 (6060): 340. Bibcode:1986Natur.320..340P. doi:10.1038/320340a0. S2CID 4366474.
- ↑ See Teraoka, Section 2.4.4.
संदर्भ
- Als-Nielsen, N. and McMorrow, D. (2011). Elements of Modern X-ray Physics (2nd edition). John Wiley & Sons.
- Guinier, A. (1963). X-ray Diffraction. In Crystals, Imperfect Crystals, and Amorphous Bodies. W. H. Freeman and Co.
- Chandler, D. (1987). Introduction to Modern Statistical Mechanics. Oxford University Press.
- Hansen, J. P. and McDonald, I. R. (2005). Theory of Simple Liquids (3rd edition). Academic Press.
- Teraoka, I. (2002). Polymer Solutions: An Introduction to Physical Properties. John Wiley & Sons.