यूलर ईंट: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Cuboid whose edges and face diagonals have integer lengths}}
{{short description|Cuboid whose edges and face diagonals have integer lengths}}
[[गणित]] में, एक '''यूलर ईंट''', जिसका नाम '''<small>[[लियोनहार्ड ऑयलर|लियोनहार्ड यूलर]]</small>''' के नाम पर रखा गया है, एक [[आयताकार घनाभ]] है जिसके [[किनारों]] और [[फलक विकर्णों]] की लंबाई पूर्णांक होती है। एक '''अभाज्य यूलर ईंट''' एक ऑयलर ईंट होती है जिसके किनारे की लंबाई [[सापेक्षतः अभाज्य]] होती है। एक '''<small>[[पूर्ण ऑयलर ईंट|पूर्ण यूलर ईंट]]</small>''' वह है जिसका अंतरिक्ष विकर्ण भी एक पूर्णांक हो, लेकिन ऐसी ईंट अभी तक नहीं मिली है।
[[गणित]] में, एक '''यूलर ईंट''', जिसका नाम '''<small>[[लियोनहार्ड ऑयलर|लियोनहार्ड यूलर]]</small>''' के नाम पर रखा गया है, एक [[आयताकार घनाभ]] है जिसके [[किनारों]] और [[फलक विकर्णों]] की लंबाई पूर्णांक होती है। एक '''अभाज्य यूलर ईंट''' एक यूलर ईंट होती है जिसके किनारों की लंबाई [[सापेक्षतः अभाज्य]] होती है। एक '''<small>[[पूर्ण ऑयलर ईंट|पूर्ण यूलर ईंट]]</small>''' वह है जिसका अंतरिक्ष विकर्ण भी एक पूर्णांक हो, लेकिन ऐसी ईंट अभी तक नहीं मिली है।
[[File:Euler_brick.svg|right|399x199px|अंगूठा|किनारे वाली यूलर ईंट {{math|''a'', ''b'', ''c''}} और विकर्णों का सामना करें {{math|''d'', ''e'', ''f''}}]]
[[File:Euler_brick.svg|right|399x199px|अंगूठा|किनारे वाली यूलर ईंट {{math|''a'', ''b'', ''c''}} और विकर्णों का सामना करें {{math|''d'', ''e'', ''f''}}]]


== परिभाषा ==
== '''परिभाषा''' ==
ज्यामितीय पदों में ऑयलर ईंट की परिभाषा डायोफैंटिन समीकरणों की निम्नलिखित पद्धति के समाधान के बराबर है:
ज्यामितीय पदों में यूलर ईंट की परिभाषा डायोफैंटिन समीकरणों की निम्नलिखित पद्धति के समाधान के बराबर है:
:<math>\begin{cases} a^2 + b^2 = d^2\\ a^2 + c^2 = e^2\\ b^2 + c^2 = f^2\end{cases}</math>
:<math>\begin{cases} a^2 + b^2 = d^2\\ a^2 + c^2 = e^2\\ b^2 + c^2 = f^2\end{cases}</math>
जहाँ {{math|''a'', ''b'', ''c''}} किनारे हैं और {{math|''d'', ''e'', ''f''}} विकर्ण हैं।
जहाँ {{math|''a'', ''b'', ''c''}} किनारे हैं और {{math|''d'', ''e'', ''f''}} विकर्ण हैं।


== गुण ==
== '''गुण''' ==
 
* यदि {{math|(''a'', ''b'', ''c'')}} एक समाधान है, तो {{math|(''ka'', ''kb'', ''kc'')}} भी किसी भी (''k'')का एक समाधान है। अतः,[[परिमेय संख्याओं]] में समाधान पूर्णांक समाधानों के सभी पुनर्विक्रय हैं। किनारे-लंबाई {{math|(''a'', ''b'', ''c'')}}के साथ एक यूलर ईंट को देखते हुए, त्रिक {{math|(''bc'', ''ac'', ''ab'')}} भी एक यूलर ईंट बनाता है।<ref name=Sierpinski>[[Wacław Sierpiński]], ''[[Pythagorean Triangles]]'', Dover Publications, 2003 (orig. ed. 1962).</ref>{{rp|p. 106}}
* यदि {{math|(''a'', ''b'', ''c'')}} एक समाधान है, तो {{math|(''ka'', ''kb'', ''kc'')}} भी किसी भी (''k'')का एक समाधान है। अतः,[[परिमेय संख्याओं]] में समाधान पूर्णांक समाधानों के सभी पुनर्विक्रय हैं। किनारे-लंबाई {{math|(''a'', ''b'', ''c'')}}के साथ एक यूलर ईंट को देखते हुए, त्रिक {{math|(''bc'', ''ac'', ''ab'')}} भी एक यूलर ईंट बनाता है।<ref name=Sierpinski>[[Wacław Sierpiński]], ''[[Pythagorean Triangles]]'', Dover Publications, 2003 (orig. ed. 1962).</ref>{{rp|p. 106}}


* ''अभाज्य'' ऑयलर ईंट का ठीक एक किनारा और दो फलक विकर्ण विषम होते हैं।
* ''अभाज्य'' यूलर ईंट का ठीक एक किनारा और दो फलक विकर्ण विषम होते हैं।


* यूलर ईंट के कम से कम दो किनारे 3 से विभाज्य होते हैं।<ref name=Sierpinski/>{{rp|p. 106}}
* यूलर ईंट के कम से कम दो किनारे 3 से विभाज्य होते हैं।<ref name=Sierpinski/>{{rp|p. 106}}
Line 20: Line 19:
* यूलर ईंट का कम से कम एक किनारा 11 से विभाज्य है।<ref name=Sierpinski/>{{rp|p. 106}}
* यूलर ईंट का कम से कम एक किनारा 11 से विभाज्य है।<ref name=Sierpinski/>{{rp|p. 106}}


== उदाहरण ==
== '''उदाहरण''' ==
1719 में [[पॉल हल्के|पॉल हाल्के]] द्वारा खोजी गई सबसे छोटी यूलर ईंट के किनारे {{math|(''a'', ''b'', ''c'') <nowiki>=</nowiki> (44, 117, 240)}} और फलक विकर्ण {{math|(''d'', ''e'', ''f'' ) <nowiki>=</nowiki> (125, 244, 267)}} हैं।<ref>''[https://books.google.com/books?id=S8SBBRNbj6cC&dq=smallest+Euler+brick%2C+discovered+by+Paul+Halcke&pg=PT219 Visions of Infinity: The Great Mathematical Problems]'' By Ian Stewart, Chapter 17</ref> किनारे {{math|(''a'', ''b'', ''c'')}} - फलक विकर्ण {{math|(''d'', ''e'', ''f'')}} के रूप में दिए गए कुछ अन्य छोटे ''प्राथमिक'' समाधान नीचे हैं:
1719 में [[पॉल हल्के|पॉल हाल्के]] द्वारा खोजी गई सबसे छोटी यूलर ईंट के किनारे {{math|(''a'', ''b'', ''c'') <nowiki>=</nowiki> (44, 117, 240)}} और फलक विकर्ण {{math|(''d'', ''e'', ''f'' ) <nowiki>=</nowiki> (125, 244, 267)}} हैं।<ref>''[https://books.google.com/books?id=S8SBBRNbj6cC&dq=smallest+Euler+brick%2C+discovered+by+Paul+Halcke&pg=PT219 Visions of Infinity: The Great Mathematical Problems]'' By Ian Stewart, Chapter 17</ref> किनारे {{math|(''a'', ''b'', ''c'')}} - फलक विकर्ण {{math|(''d'', ''e'', ''f'')}} के रूप में दिए गए कुछ अन्य छोटे ''प्राथमिक'' समाधान नीचे हैं:
[[File:Euler_brick_examples.svg|thumb|400px|1000 से कम आयामों वाली सभी पांच अभाज्य ऑयलर ईंटें]]:{| style="border-collapse:collapse;text-align:right;white-space:nowrap;"
[[File:Euler_brick_examples.svg|thumb|400px|1000 से कम आयामों वाली सभी पांच अभाज्य यूलर ईंटें]]:
:{| style="border-collapse:collapse;text-align:right;white-space:nowrap;"
|(|| 85,|| 132,|| 720||) — (|| 157,|| 725,|| 732||)
|(|| 85,|| 132,|| 720||) — (|| 157,|| 725,|| 732||)
|-
|-
Line 43: Line 43:




== सूत्र बनाना ==
 
 
 
 
 
 
 
 
 
 
== '''सूत्र बनाना''' ==


यूलर ने समस्या के कम से कम दो [[पैरामीट्रिक समाधान|प्राचलिक समाधान]] खोजे, लेकिन दोनों में से कोई भी सभी समाधान नहीं देता।<ref>{{mathworld|urlname=EulerBrick|title=Euler Brick}}</ref>
यूलर ने समस्या के कम से कम दो [[पैरामीट्रिक समाधान|प्राचलिक समाधान]] खोजे, लेकिन दोनों में से कोई भी सभी समाधान नहीं देता।<ref>{{mathworld|urlname=EulerBrick|title=Euler Brick}}</ref>
Line 64: Line 74:
* विषम किनारा 2.5 × 10<sup>13</sup> से अधिक होना चाहिए<sup>13</sup>,<ref name=Matson>{{cite web |first=Robert D. |last=Matson |title=एक पूर्ण घनाभ के लिए कंप्यूटर खोज के परिणाम|url=http://unsolvedproblems.org/S58.pdf |work=unsolvedproblems.org |accessdate=February 24, 2020}}</ref>
* विषम किनारा 2.5 × 10<sup>13</sup> से अधिक होना चाहिए<sup>13</sup>,<ref name=Matson>{{cite web |first=Robert D. |last=Matson |title=एक पूर्ण घनाभ के लिए कंप्यूटर खोज के परिणाम|url=http://unsolvedproblems.org/S58.pdf |work=unsolvedproblems.org |accessdate=February 24, 2020}}</ref>
* सबसे छोटा किनारा {{val|5e11}} से बड़ा होना चाहिए।<ref name=Matson/>          *अंतरिक्ष विकर्ण 9 × 10<sup>15</sup> से अधिक होना चाहिए<sup>15</sup>.<ref name=Belogourov>Alexander Belogourov, Distributed search for a perfect cuboid, https://www.academia.edu/39920706/Distributed_search_for_a_perfect_cuboid</ref>
* सबसे छोटा किनारा {{val|5e11}} से बड़ा होना चाहिए।<ref name=Matson/>          *अंतरिक्ष विकर्ण 9 × 10<sup>15</sup> से अधिक होना चाहिए<sup>15</sup>.<ref name=Belogourov>Alexander Belogourov, Distributed search for a perfect cuboid, https://www.academia.edu/39920706/Distributed_search_for_a_perfect_cuboid</ref>
[[मॉड्यूलर अंकगणित|मापांक अंकगणित]] के आधार पर, गुणों के बारे में कुछ तथ्यों को जाना जाता है, जो एक अभाज्य पूर्ण घन द्वारा संतुष्ट होना चाहिए, यदि कुछ मौजूद है:<ref>M. Kraitchik, On certain Rational Cuboids, Scripta Mathematica, volume 11 (1945).</ref>
[[मॉड्यूलर अंकगणित|मापांक अंकगणित]] के आधार पर, गुणों के बारे में कुछ तथ्यों को जाना जाता है, जो एक अभाज्य पूर्ण घनाभ द्वारा संतुष्ट होना चाहिए, यदि कुछ मौजूद है:<ref>M. Kraitchik, On certain Rational Cuboids, Scripta Mathematica, volume 11 (1945).</ref>
* एक किनारा, दो फलक विकर्ण और अंतरिक्ष विकर्ण विषम होना चाहिए, एक किनारा और शेष फलक विकर्ण 4 से विभाज्य होना चाहिए, और शेष किनारा 16 से विभाज्य होना चाहिए।
* एक किनारा, दो फलक विकर्ण और अंतरिक्ष विकर्ण विषम होना चाहिए, एक किनारा और शेष फलक विकर्ण 4 से विभाज्य होना चाहिए, और शेष किनारा 16 से विभाज्य होना चाहिए।
* दो किनारों की लंबाई 3 से विभाज्य होनी चाहिए और उनमें से कम से कम एक किनारे की लंबाई 9 से विभाज्य होनी चाहिए।
* दो किनारों की लंबाई 3 से विभाज्य होनी चाहिए और उनमें से कम से कम एक किनारे की लंबाई 9 से विभाज्य होनी चाहिए।
Line 147: Line 157:
{{Asof|2020|July}}, 200,000,000,027 से कम सबसे छोटे पूर्णांक किनारे वाले 167,043 पाए गए घनाभ हैं: 61,042 यूलर (समिति) घनाभ हैं, 16,612 एक सम्मिश्र संख्या किनारे की लंबाई वाले किनारे के घनाभ हैं, 32,286 किनारे के घनाभ थे, और 57,103 फलक घनाभ थे।<ref>{{cite arXiv |eprint=1705.05929v4 |class=math.NT |first=Randall L. |last=Rathbun |title=पूर्णांक घनाभ तालिका|date=14 Jul 2020}}</ref>
{{Asof|2020|July}}, 200,000,000,027 से कम सबसे छोटे पूर्णांक किनारे वाले 167,043 पाए गए घनाभ हैं: 61,042 यूलर (समिति) घनाभ हैं, 16,612 एक सम्मिश्र संख्या किनारे की लंबाई वाले किनारे के घनाभ हैं, 32,286 किनारे के घनाभ थे, और 57,103 फलक घनाभ थे।<ref>{{cite arXiv |eprint=1705.05929v4 |class=math.NT |first=Randall L. |last=Rathbun |title=पूर्णांक घनाभ तालिका|date=14 Jul 2020}}</ref>


{{Asof|2017|December}}, एक विस्तृत खोज ने 1,125,899,906,842,624: 194,652 से कम पूर्णांक अंतरिक्ष विकर्ण के साथ सभी किनारे और चेहरे के घनाभों को गिना, 350,778 चेहरे के घनाभ थे।<ref name=Belogourov/>
{{Asof|2017|December}}, एक विस्तृत खोज ने 1,125,899,906,842,624: 194,652 से कम पूर्णांक अंतरिक्ष विकर्ण के साथ सभी किनारे और फलक घनाभों को गिना, 350,778 फलक घनाभ थे।<ref name=Belogourov/>




== पूर्ण समानांतर चतुर्भुज ==
== पूर्ण समान्तरषटफलक ==
एक पूर्ण समानांतर चतुर्भुज पूर्णांक-लंबाई वाले किनारों, चेहरे के विकर्णों और शरीर के विकर्णों के साथ एक समानांतर चतुर्भुज है, लेकिन जरूरी नहीं कि सभी समकोण हों; एक आदर्श घनाभ एक पूर्ण समांतर चतुर्भुज का एक विशेष मामला है। 2009 में, दर्जनों संपूर्ण समानांतर चतुर्भुजों का अस्तित्व दिखाया गया था,<ref>{{Cite journal|first1=Jorge F.|last1=Sawyer|first2=Clifford A.|last2=Reiter|year=2011|title=बिल्कुल सही समांतर चतुर्भुज मौजूद हैं|journal=[[Mathematics of Computation]]|volume=80|issue=274|pages=1037–1040|arxiv=0907.0220|doi=10.1090/s0025-5718-2010-02400-7|s2cid=206288198 }}.</ref> रिचर्ड के. गाइ के एक खुले प्रश्न का उत्तर देना। इनमें से कुछ पूर्ण समांतर चतुर्भुजों में दो आयताकार फलक होते हैं। सबसे छोटे पूर्ण समांतर चतुर्भुज के किनारे 271, 106 और 103 हैं; लघु फलक विकर्ण 101, 266 और 255; लंबे फलक विकर्ण 183, 312 और 323; और शरीर के विकर्ण 374, 300, 278 और 272 हैं।
एक पूर्ण [[समान्तरषटफलक]] पूर्णांक-लंबाई वाले किनारों, फलक विकर्णों और निकाय के विकर्णों के साथ एक समान्तरषटफलक है, लेकिन जरूरी नहीं कि सभी समकोण हों; एक आदर्श घनाभ एक पूर्ण समान्तरषटफलक की एक विशेष स्थिति  है। 2009 में, [[रिचर्ड गाइ]] के एक अनिर्णीत प्रश्न का उत्तर देते हुए,<ref>{{Cite journal|first1=Jorge F.|last1=Sawyer|first2=Clifford A.|last2=Reiter|year=2011|title=बिल्कुल सही समांतर चतुर्भुज मौजूद हैं|journal=[[Mathematics of Computation]]|volume=80|issue=274|pages=1037–1040|arxiv=0907.0220|doi=10.1090/s0025-5718-2010-02400-7|s2cid=206288198 }}.</ref> दर्जनों सटीक समान्तरषटफलकों का अस्तित्व दिखाया गया था। इनमें से कुछ पूर्ण समान्तरषटफलकों में दो आयताकार फलक होते हैं। सबसे छोटे पूर्ण समान्तरषटफलक के किनारे 271, 106 और 103 हैं; लघु फलक विकर्ण 101, 266 और 255; लंबे फलक विकर्ण 183, 312 और 323; और निकाय के विकर्ण 374, 300, 278 और 272 हैं।


== यह भी देखें ==
== यह भी देखें ==
* पायथागॉरियन चौगुनी
* [[पाइथागोरियन]] [[चतुष्कोण]]


== टिप्पणियाँ ==
== टिप्पणियाँ ==
Line 168: Line 178:


{{DEFAULTSORT:Euler Brick}}
{{DEFAULTSORT:Euler Brick}}
[[Category: ठोस ज्यामिति की अंकगणितीय समस्याएं]] [[Category: डायोफैंटाइन समीकरण]] [[Category: पाइथागोरस प्रमेय]] [[Category: संख्या सिद्धांत विषयक अनसुलझी समस्याएं]] [[Category: घनाभ]]


[[Category: Machine Translated Page]]
[[Category:All articles containing potentially dated statements|Euler Brick]]
[[Category:Created On 17/03/2023]]
[[Category:Articles containing potentially dated statements from December 2017|Euler Brick]]
[[Category:Articles containing potentially dated statements from July 2020|Euler Brick]]
[[Category:Articles containing potentially dated statements from September 2020|Euler Brick]]
[[Category:Articles with invalid date parameter in template|Euler Brick]]
[[Category:Created On 17/03/2023|Euler Brick]]
[[Category:Lua-based templates|Euler Brick]]
[[Category:Machine Translated Page|Euler Brick]]
[[Category:Pages with script errors|Euler Brick]]
[[Category:Short description with empty Wikidata description|Euler Brick]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Vigyan Ready|Euler Brick]]
[[Category:Templates that add a tracking category|Euler Brick]]
[[Category:Templates that generate short descriptions|Euler Brick]]
[[Category:Templates using TemplateData|Euler Brick]]
[[Category:घनाभ|Euler Brick]]
[[Category:ठोस ज्यामिति की अंकगणितीय समस्याएं|Euler Brick]]
[[Category:डायोफैंटाइन समीकरण|Euler Brick]]
[[Category:पाइथागोरस प्रमेय|Euler Brick]]
[[Category:संख्या सिद्धांत विषयक अनसुलझी समस्याएं|Euler Brick]]

Latest revision as of 11:03, 14 April 2023

गणित में, एक यूलर ईंट, जिसका नाम लियोनहार्ड यूलर के नाम पर रखा गया है, एक आयताकार घनाभ है जिसके किनारों और फलक विकर्णों की लंबाई पूर्णांक होती है। एक अभाज्य यूलर ईंट एक यूलर ईंट होती है जिसके किनारों की लंबाई सापेक्षतः अभाज्य होती है। एक पूर्ण यूलर ईंट वह है जिसका अंतरिक्ष विकर्ण भी एक पूर्णांक हो, लेकिन ऐसी ईंट अभी तक नहीं मिली है।

किनारे वाली यूलर ईंट a, b, c और विकर्णों का सामना करें d, e, f

परिभाषा

ज्यामितीय पदों में यूलर ईंट की परिभाषा डायोफैंटिन समीकरणों की निम्नलिखित पद्धति के समाधान के बराबर है:

जहाँ a, b, c किनारे हैं और d, e, f विकर्ण हैं।

गुण

  • यदि (a, b, c) एक समाधान है, तो (ka, kb, kc) भी किसी भी (k)का एक समाधान है। अतः,परिमेय संख्याओं में समाधान पूर्णांक समाधानों के सभी पुनर्विक्रय हैं। किनारे-लंबाई (a, b, c)के साथ एक यूलर ईंट को देखते हुए, त्रिक (bc, ac, ab) भी एक यूलर ईंट बनाता है।[1]: p. 106 
  • अभाज्य यूलर ईंट का ठीक एक किनारा और दो फलक विकर्ण विषम होते हैं।
  • यूलर ईंट के कम से कम दो किनारे 3 से विभाज्य होते हैं।[1]: p. 106 
  • यूलर ईंट के कम से कम दो किनारे 4 से विभाज्य होते हैं।[1]: p. 106 
  • यूलर ईंट का कम से कम एक किनारा 11 से विभाज्य है।[1]: p. 106 

उदाहरण

1719 में पॉल हाल्के द्वारा खोजी गई सबसे छोटी यूलर ईंट के किनारे (a, b, c) = (44, 117, 240) और फलक विकर्ण (d, e, f ) = (125, 244, 267) हैं।[2] किनारे (a, b, c) - फलक विकर्ण (d, e, f) के रूप में दिए गए कुछ अन्य छोटे प्राथमिक समाधान नीचे हैं:

1000 से कम आयामों वाली सभी पांच अभाज्य यूलर ईंटें

:

( 85, 132, 720 ) — ( 157, 725, 732 )
( 140, 480, 693 ) — ( 500, 707, 843 )
( 160, 231, 792 ) — ( 281, 808, 825 )
( 187, 1020, 1584 ) — ( 1037, 1595, 1884 )
( 195, 748, 6336 ) — ( 773, 6339, 6380 )
( 240, 252, 275 ) — ( 348, 365, 373 )
( 429, 880, 2340 ) — ( 979, 2379, 2500 )
( 495, 4888, 8160 ) — ( 4913, 8175, 9512 )
( 528, 5796, 6325 ) — ( 5820, 6347, 8579 )







सूत्र बनाना

यूलर ने समस्या के कम से कम दो प्राचलिक समाधान खोजे, लेकिन दोनों में से कोई भी सभी समाधान नहीं देता।[3]

सौंडरसन के प्राचलिक सूत्र से यूलर ईंटों की अनंतता उत्पन्न की जा सकती है।[4] मान लीजिए (u, v, w) एक पायथागॉरियन त्रिक है (यानी, u2 + v2 = w2) तो[1]: 105  किनारे

दिया गया फलक विकर्ण

कई यूलर ईंटें हैं जो ऊपर की तरह प्राचलीकरण नहीं हैं, उदाहरण के लिए किनारों (a, b, c) = (240, 252, 275) और फलक विकर्ण (d, e, f ) = (348, 365, 373) के साथ यूलर ईंटें।

परिपूर्ण घनाभ

Unsolved problem in mathematics:

Does a perfect cuboid exist?

एक परिपूर्ण घनाभ (जिसे एक पूर्ण यूलर ईंट या परिपूर्ण वर्ग भी कहा जाता है) एक यूलर ईंट है जिसका अंतरिक्ष विकर्ण भी पूर्णांक लंबाई का होता है। दूसरे शब्दों में, यूलर ईंट को परिभाषित करने वाले डायोफैंटाइन समीकरणों की पद्धति में निम्नलिखित समीकरण जोड़ा गया है:

जहाँ g अंतरिक्ष विकर्ण है। As of September 2020, एक परिपूर्ण घनाभ का कोई उदाहरण नहीं मिला था और किसी ने यह सिद्ध नहीं किया है कि कोई अस्तित्व में नहीं है।[5]

किनारों a, b, c और फलक विकर्ण d, e, f के साथ यूलर ईंट

संपूर्ण कंप्यूटर खोजों से पता चलता है कि, यदि एक परिपूर्ण घनाभ मौजूद है,

  • विषम किनारा 2.5 × 1013 से अधिक होना चाहिए13,[5]
  • सबसे छोटा किनारा 5×1011 से बड़ा होना चाहिए।[5] *अंतरिक्ष विकर्ण 9 × 1015 से अधिक होना चाहिए15.[6]

मापांक अंकगणित के आधार पर, गुणों के बारे में कुछ तथ्यों को जाना जाता है, जो एक अभाज्य पूर्ण घनाभ द्वारा संतुष्ट होना चाहिए, यदि कुछ मौजूद है:[7]

  • एक किनारा, दो फलक विकर्ण और अंतरिक्ष विकर्ण विषम होना चाहिए, एक किनारा और शेष फलक विकर्ण 4 से विभाज्य होना चाहिए, और शेष किनारा 16 से विभाज्य होना चाहिए।
  • दो किनारों की लंबाई 3 से विभाज्य होनी चाहिए और उनमें से कम से कम एक किनारे की लंबाई 9 से विभाज्य होनी चाहिए।
  • एक किनारे की लंबाई 5 से विभाज्य होनी चाहिए।
  • एक किनारे की लंबाई 7 से विभाज्य होनी चाहिए।
  • एक किनारे की लंबाई 11 से विभाज्य होनी चाहिए।
  • एक किनारे की लंबाई 19 से विभाज्य होनी चाहिए।
  • एक किनारा या अंतरिक्ष विकर्ण 13 से विभाज्य होना चाहिए।
  • एक किनारा, फलक विकर्ण या अंतरिक्ष विकर्ण 17 से विभाज्य होना चाहिए।
  • एक किनारा, फलक विकर्ण या अंतरिक्ष विकर्ण 29 से विभाज्य होना चाहिए।
  • एक किनारा, फलक विकर्ण या अंतरिक्ष विकर्ण 37 से विभाज्य होना चाहिए।

इसके साथ ही:

यदि एक परिपूर्ण घनाभ मौजूद है और उसके किनारे हैं, - संगत फलक विकर्ण और अंतरिक्ष विकर्ण , फिर

  • भुजाओं की लंबाई वाला त्रिभुज एक हेरोनियन त्रिभुज एक क्षेत्र है, तर्कसंगत कोण द्विभाजक के साथ।[10]
  • भुजाओं की लंबाई के साथ न्यूनकोण त्रिभुज , भुजाओं की लंबाई के साथ अधिककोण त्रिभुज हेरोनियन त्रिभुज हैं, जिनका क्षेत्रफल के बराबर है/

घनाभ अनुमान

तीन घनाभ अनुमान तीन गणितीय प्रस्ताव हैं जो कई पूर्णांक मापदंडों के आधार पर पूर्णांक गुणांक वाले तीन अविभाजित बहुपदों की अलघुकरणीय का दावा करते हैं। अनुमान पूर्ण घनाभ समस्या से संबंधित हैं।[11][12] हालांकि वे पूर्ण घनाभ समस्या के समतुल्य नहीं हैं, यदि ये तीनों अनुमान मान्य हैं, तो कोई भी पूर्ण घनाभ मौजूद नहीं है। वे न तो सिद्ध होते हैं और न ही असिद्ध।

घनाभ अनुमान 1. किन्हीं दो धनात्मक सहअभाज्य पूर्णांक संख्याओं के लिए आठवीं कोटि के बहुपद

 

 

 

 

(1)

पूर्णांकों के वलय पर अलघुकरणीय है /

घनाभ अनुमान 2. किन्हीं दो धनात्मक सहअभाज्य पूर्णांक संख्याओं के लिए दसवीं कोटि के बहुपद

 

 

 

 

(2)

पूर्णांकों के वलय पर अलघुकरणीय

है /


घनाभ अनुमान 3. किन्हीं तीन धनात्मक सहअभाज्य पूर्णांक संख्याओं के लिए , , ऐसे हैं जैसे कि कोई पद नहीं है

 

 

 

 

(3)

बारहवीं कोटि का बहुपद पूरा हो गया है

 

 

 

 

(4)

पूर्णांकों के वलय पर अलघुकरणीय

है /

लगभग-परिपूर्ण घनाभ

लगभग परिपूर्ण घनाभ की 7 में से 6 लम्बाई परिमेय है। इस तरह के घनाभों को तीन प्रकारों में बांटा जा सकता है, जिन्हें निकाय, किनारा और फलक घनाभ कहा जाता है।[13] समिति घनाभ की स्थिति में, समिति (अंतरिक्ष) विकर्ण g अपरिमेय है। किनारे वाले घनाभ के लिए, किनारों a, b, c में से एक अपरिमेय है। फलक घनाभ का एक विकर्ण d, e, f अपरिमेय है।

समिति घनाभ को आमतौर पर लियोनहार्ड यूलर के सम्मान में यूलर घनाभ के रूप में जाना जाता है, जिन्होंने इस प्रकार के घनाभ पर चर्चा की।[14] वह फलक घनाभों के बारे में भी जानते थे, और उन्होंने (104, 153, 672) उदाहरण प्रदान किया।[15] तीन पूर्णांक घनाभ किनारे की लंबाई और एक फलक घनाभ की तीन पूर्णांक विकर्ण लंबाई को हेरोनियन चतुष्फलक के किनारे की लंबाई के रूप में भी व्याख्या की जा सकती है जो कि श्लाफली ऑर्थोस्कीम भी है। असीम रूप से कई फलक वाले घनाभ हैं, और असीम रूप से कई हेरोनियन ऑर्थोस्केम हैं।[16] किनारों, फलक विकर्ण और अंतरिक्ष विकर्ण (a, b, c, d, e, f, g) के रूप में दिए गए प्रत्येक प्रकार के लगभग परिपूर्ण घनाभों के लिए सबसे छोटे समाधान इस प्रकार हैं:

  • समिति घनाभ: (44, 117, 240, 125, 244, 267, 73225)
  • किनारा घनाभ: (520, 576, 618849, 776, 943, 975, 1105)
  • फलक घनाभ: (104, 153, 672, 185, 680, 474993, 697)

As of July 2020, 200,000,000,027 से कम सबसे छोटे पूर्णांक किनारे वाले 167,043 पाए गए घनाभ हैं: 61,042 यूलर (समिति) घनाभ हैं, 16,612 एक सम्मिश्र संख्या किनारे की लंबाई वाले किनारे के घनाभ हैं, 32,286 किनारे के घनाभ थे, और 57,103 फलक घनाभ थे।[17]

As of December 2017, एक विस्तृत खोज ने 1,125,899,906,842,624: 194,652 से कम पूर्णांक अंतरिक्ष विकर्ण के साथ सभी किनारे और फलक घनाभों को गिना, 350,778 फलक घनाभ थे।[6]


पूर्ण समान्तरषटफलक

एक पूर्ण समान्तरषटफलक पूर्णांक-लंबाई वाले किनारों, फलक विकर्णों और निकाय के विकर्णों के साथ एक समान्तरषटफलक है, लेकिन जरूरी नहीं कि सभी समकोण हों; एक आदर्श घनाभ एक पूर्ण समान्तरषटफलक की एक विशेष स्थिति है। 2009 में, रिचर्ड गाइ के एक अनिर्णीत प्रश्न का उत्तर देते हुए,[18] दर्जनों सटीक समान्तरषटफलकों का अस्तित्व दिखाया गया था। इनमें से कुछ पूर्ण समान्तरषटफलकों में दो आयताकार फलक होते हैं। सबसे छोटे पूर्ण समान्तरषटफलक के किनारे 271, 106 और 103 हैं; लघु फलक विकर्ण 101, 266 और 255; लंबे फलक विकर्ण 183, 312 और 323; और निकाय के विकर्ण 374, 300, 278 और 272 हैं।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 1.3 1.4 Wacław Sierpiński, Pythagorean Triangles, Dover Publications, 2003 (orig. ed. 1962).
  2. Visions of Infinity: The Great Mathematical Problems By Ian Stewart, Chapter 17
  3. Weisstein, Eric W. "Euler Brick". MathWorld.
  4. Knill, Oliver (February 24, 2009). "ट्रेजर हंटिंग परफेक्ट यूलर ब्रिक्स" (PDF). Math table. Harvard University.
  5. 5.0 5.1 5.2 Matson, Robert D. "एक पूर्ण घनाभ के लिए कंप्यूटर खोज के परिणाम" (PDF). unsolvedproblems.org. Retrieved February 24, 2020.
  6. 6.0 6.1 Alexander Belogourov, Distributed search for a perfect cuboid, https://www.academia.edu/39920706/Distributed_search_for_a_perfect_cuboid
  7. M. Kraitchik, On certain Rational Cuboids, Scripta Mathematica, volume 11 (1945).
  8. 8.0 8.1 I. Korec, Lower bounds for Perfect Rational Cuboids, Math. Slovaca, 42 (1992), No. 5, p. 565-582.
  9. Ronald van Luijk, On Perfect Cuboids, June 2000
  10. Florian Luca (2000) "Perfect Cuboids and Perfect Square Triangles", Mathematics Magazine, 73:5, p. 400-401
  11. Sharipov R.A. (2012). "बिल्कुल सही घनाभ और अलघुकरणीय बहुपद". Ufa Math Journal. 4 (1): 153–160. arXiv:1108.5348. Bibcode:2011arXiv1108.5348S.
  12. {{cite journal |author=Sharipov R.A. |title=पूर्ण घनाभ समस्या के लिए स्पर्शोन्मुख दृष्टिकोण|journal=Ufa Math Journal|year=2015 |volume=7 |issue=3 |pages=100–113|doi=10.13108/2015-7-3-95 }
  13. Rathbun R. L., Granlund Т., The integer cuboid table with body, edge, and face type of solutions // Math. Comp., 1994, Vol. 62, P. 441-442.
  14. Euler, Leonhard, Vollst¨andige Anleitung zur Algebra, Kayserliche Akademie der Wissenschaften, St. Petersburg, 1771
  15. Euler, Leonhard, Vollst¨andige Anleitung zur Algebra, 2, Part II, 236, English translation: Euler, Elements of Algebra, Springer-Verlag 1984
  16. "Problem 930" (PDF), Solutions, Crux Mathematicorum, 11 (5): 162–166, May 1985
  17. Rathbun, Randall L. (14 Jul 2020). "पूर्णांक घनाभ तालिका". arXiv:1705.05929v4 [math.NT].
  18. Sawyer, Jorge F.; Reiter, Clifford A. (2011). "बिल्कुल सही समांतर चतुर्भुज मौजूद हैं". Mathematics of Computation. 80 (274): 1037–1040. arXiv:0907.0220. doi:10.1090/s0025-5718-2010-02400-7. S2CID 206288198..


संदर्भ

  • Leech, John (1977). "The Rational Cuboid Revisited". American Mathematical Monthly. 84 (7): 518–533. doi:10.2307/2320014. JSTOR 2320014.
  • Shaffer, Sherrill (1987). "Necessary Divisors of Perfect Integer Cuboids". Abstracts of the American Mathematical Society. 8 (6): 440.
  • Guy, Richard K. (2004). Unsolved Problems in Number Theory. Springer-Verlag. pp. 275–283. ISBN 0-387-20860-7.
  • Kraitchik, M. (1945). "On certain rational cuboids". Scripta Mathematica. 11: 317–326.
  • Roberts, Tim (2010). "Some constraints on the existence of a perfect cuboid". Australian Mathematical Society Gazette. 37: 29–31. ISSN 1326-2297.