दोलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Repetitive variation of some measure about a central value}}
{{short description|Repetitive variation of some measure about a central value}}
{{redirect|थरथरानवाला}}[[File:Animated-mass-spring.gif|right|frame|स्प्रिंग-मास सिस्टम         ऑसिलेटरी सिस्टम है]]
{{redirect|थरथरानवाला}}[[File:Animated-mass-spring.gif|right|frame|स्प्रिंग-मास सिस्टम ऑसिलेटरी सिस्टम है]]
दोलन         केंद्रीय मूल्य (अक्सर यांत्रिक संतुलन का         बिंदु) के बारे में या दो या दो से अधिक अलग-अलग राज्यों के बीच कुछ माप के दोहराव या आवधिक कार्य भिन्नता है। दोलन के परिचित उदाहरणों में         झूलता हुआ पेंडुलम और प्रत्यावर्ती धारा शामिल हैं। दोलनों का उपयोग भौतिकी में जटिल अंतःक्रियाओं का अनुमान लगाने के लिए किया जा सकता है, जैसे कि परमाणुओं के बीच।
दोलन केंद्रीय मूल्य (अक्सर यांत्रिक संतुलन का बिंदु) के बारे में या दो या दो से अधिक अलग-अलग राज्यों के बीच कुछ माप के दोहराव या आवधिक कार्य भिन्नता है। दोलन के परिचित उदाहरणों में झूलता हुआ पेंडुलम और प्रत्यावर्ती धारा शामिल हैं। दोलनों का उपयोग भौतिकी में जटिल अंतःक्रियाओं का अनुमान लगाने के लिए किया जा सकता है, जैसे कि परमाणुओं के बीच।


दोलन न केवल यांत्रिक प्रणालियों में बल्कि विज्ञान के लगभग हर क्षेत्र में गतिशील प्रणालियों में भी होते हैं: उदाहरण के लिए मानव हृदय की धड़कन (परिसंचरण के लिए), अर्थशास्त्र में व्यापार चक्र, पारिस्थितिकी में शिकारी-शिकार जनसंख्या चक्र, भूविज्ञान में भूतापीय गीजर, गिटार और अन्य स्ट्रिंग वाद्ययंत्रों में तारों का कंपन, मस्तिष्क में तंत्रिका कोशिकाओं की आवधिक फायरिंग, और खगोल विज्ञान में सेफिड चर सितारों की आवधिक सूजन। यांत्रिक दोलन का वर्णन करने के लिए ''कंपन'' शब्द का सटीक रूप से उपयोग किया जाता है।
दोलन न केवल यांत्रिक प्रणालियों में बल्कि विज्ञान के लगभग हर क्षेत्र में गतिशील प्रणालियों में भी होते हैं: उदाहरण के लिए मानव हृदय की धड़कन (परिसंचरण के लिए), अर्थशास्त्र में व्यापार चक्र, पारिस्थितिकी में शिकारी-शिकार जनसंख्या चक्र, भूविज्ञान में भूतापीय गीजर, गिटार और अन्य स्ट्रिंग वाद्ययंत्रों में तारों का कंपन, मस्तिष्क में तंत्रिका कोशिकाओं की आवधिक फायरिंग, और खगोल विज्ञान में सेफिड चर सितारों की आवधिक सूजन। यांत्रिक दोलन का वर्णन करने के लिए ''कंपन'' शब्द का सटीक रूप से उपयोग किया जाता है।
Line 7: Line 7:
==सरल हार्मोनिक ==
==सरल हार्मोनिक ==
{{Main|सरल आवर्त गति}}
{{Main|सरल आवर्त गति}}
सबसे सरल यांत्रिक दोलन प्रणाली         रेखीय स्प्रिंग (उपकरण) से जुड़ा वजन है जो केवल वजन और तनाव (भौतिकी) के अधीन है। ऐसी प्रणाली को हवा की मेज या बर्फ की सतह पर अनुमानित किया जा सकता है। वसंत के स्थिर होने पर प्रणाली यांत्रिक संतुलन की स्थिति में होती है। यदि निकाय को संतुलन से विस्थापित कर दिया जाता है, तो द्रव्यमान पर         शुद्ध पुनर्स्थापन बल होता है, जो इसे वापस संतुलन में लाने के लिए प्रवृत्त होता है। हालाँकि, द्रव्यमान को वापस संतुलन की स्थिति में ले जाने में, इसने गति प्राप्त कर ली है जो इसे उस स्थिति से आगे ले जाती है, विपरीत अर्थ में         नया पुनर्स्थापना बल स्थापित करती है। यदि         स्थिर बल जैसे गुरुत्वाकर्षण को सिस्टम में जोड़ा जाता है, तो संतुलन का बिंदु स्थानांतरित हो जाता है।         दोलन होने में लगने वाले समय को अक्सर दोलन काल कहा जाता है।
सबसे सरल यांत्रिक दोलन प्रणाली रेखीय स्प्रिंग (उपकरण) से जुड़ा वजन है जो केवल वजन और तनाव (भौतिकी) के अधीन है। ऐसी प्रणाली को हवा की मेज या बर्फ की सतह पर अनुमानित किया जा सकता है। वसंत के स्थिर होने पर प्रणाली यांत्रिक संतुलन की स्थिति में होती है। यदि निकाय को संतुलन से विस्थापित कर दिया जाता है, तो द्रव्यमान पर शुद्ध पुनर्स्थापन बल होता है, जो इसे वापस संतुलन में लाने के लिए प्रवृत्त होता है। हालाँकि, द्रव्यमान को वापस संतुलन की स्थिति में ले जाने में, इसने गति प्राप्त कर ली है जो इसे उस स्थिति से आगे ले जाती है, विपरीत अर्थ में नया पुनर्स्थापना बल स्थापित करती है। यदि स्थिर बल जैसे गुरुत्वाकर्षण को सिस्टम में जोड़ा जाता है, तो संतुलन का बिंदु स्थानांतरित हो जाता है। दोलन होने में लगने वाले समय को अक्सर दोलन काल कहा जाता है।


वे प्रणालियाँ जहाँ किसी पिंड पर पुनर्स्थापना बल उसके विस्थापन के सीधे आनुपातिक होता है, जैसे कि स्प्रिंग-मास सिस्टम की गतिशीलता (यांत्रिकी), गणितीय रूप से हार्मोनिक ऑसिलेटर # सिंपल हार्मोनिक ऑसिलेटर द्वारा वर्णित की जाती है और नियमित अवधि (भौतिकी) गति होती है सरल हार्मोनिक गति के रूप में जाना जाता है। वसंत-द्रव्यमान प्रणाली में, दोलन होते हैं, क्योंकि स्थैतिक संतुलन विस्थापन पर, द्रव्यमान में गतिज ऊर्जा होती है जो अपने पथ के चरम पर वसंत में संग्रहीत संभावित ऊर्जा में परिवर्तित हो जाती है। वसंत-द्रव्यमान प्रणाली दोलन की कुछ सामान्य विशेषताओं को दर्शाती है, अर्थात्         संतुलन का अस्तित्व और         पुनर्स्थापना बल की उपस्थिति जो कि प्रणाली के संतुलन से विचलित होने पर और मजबूत होती जाती है।
वे प्रणालियाँ जहाँ किसी पिंड पर पुनर्स्थापना बल उसके विस्थापन के सीधे आनुपातिक होता है, जैसे कि स्प्रिंग-मास सिस्टम की गतिशीलता (यांत्रिकी), गणितीय रूप से हार्मोनिक ऑसिलेटर # सिंपल हार्मोनिक ऑसिलेटर द्वारा वर्णित की जाती है और नियमित अवधि (भौतिकी) गति होती है सरल हार्मोनिक गति के रूप में जाना जाता है। वसंत-द्रव्यमान प्रणाली में, दोलन होते हैं, क्योंकि स्थैतिक संतुलन विस्थापन पर, द्रव्यमान में गतिज ऊर्जा होती है जो अपने पथ के चरम पर वसंत में संग्रहीत संभावित ऊर्जा में परिवर्तित हो जाती है। वसंत-द्रव्यमान प्रणाली दोलन की कुछ सामान्य विशेषताओं को दर्शाती है, अर्थात् संतुलन का अस्तित्व और पुनर्स्थापना बल की उपस्थिति जो कि प्रणाली के संतुलन से विचलित होने पर और मजबूत होती जाती है।


वसंत-द्रव्यमान प्रणाली के मामले में, हुक का नियम कहता है कि वसंत की पुनर्स्थापना बल है:
वसंत-द्रव्यमान प्रणाली के मामले में, हुक का नियम कहता है कि वसंत की पुनर्स्थापना बल है:
Line 15: Line 15:
<math>F=-kx</math>
<math>F=-kx</math>


न्यूटन के द्वितीय नियम या न्यूटन के द्वितीय नियम का प्रयोग करके अवकल समीकरण व्युत्पन्न किया जा सकता है।
न्यूटन के द्वितीय नियम या न्यूटन के द्वितीय नियम का प्रयोग करके अवकल समीकरण व्युत्पन्न किया जा सकता है।


<math>\ddot{x} = -\frac km x = -\omega^2x</math>,
<math>\ddot{x} = -\frac km x = -\omega^2x</math>,


जहाँ पे <math>\omega = \sqrt \frac km</math>
जहाँ पे <math>\omega = \sqrt \frac km</math>
इस अंतर समीकरण का समाधान         साइनसॉइडल स्थिति फ़ंक्शन उत्पन्न करता है।
इस अंतर समीकरण का समाधान साइनसॉइडल स्थिति फ़ंक्शन उत्पन्न करता है।


<math>x(t) = A \cos (\omega t - \delta)</math>
<math>x(t) = A \cos (\omega t - \delta)</math>
Line 27: Line 27:


== द्वि-आयामी दोलक ==
== द्वि-आयामी दोलक ==
दो या तीन आयामों में, हार्मोनिक ऑसिलेटर         आयाम के समान व्यवहार करते हैं। इसका सबसे सरल उदाहरण         आइसोट्रॉपी थरथरानवाला है, जहां पुनर्स्थापना बल सभी दिशाओं में समान पुनर्स्थापन स्थिरांक के साथ संतुलन से विस्थापन के समानुपाती होता है।
दो या तीन आयामों में, हार्मोनिक ऑसिलेटर आयाम के समान व्यवहार करते हैं। इसका सबसे सरल उदाहरण आइसोट्रॉपी थरथरानवाला है, जहां पुनर्स्थापना बल सभी दिशाओं में समान पुनर्स्थापन स्थिरांक के साथ संतुलन से विस्थापन के समानुपाती होता है।


<math>F = -k\vec{r}</math>
<math>F = -k\vec{r}</math>


यह         समान समाधान उत्पन्न करता है, लेकिन अब हर दिशा के लिए         अलग समीकरण है।
यह समान समाधान उत्पन्न करता है, लेकिन अब हर दिशा के लिए अलग समीकरण है।


<math>x(t) = A_x \cos(\omega t - \delta _x)</math>,
<math>x(t) = A_x \cos(\omega t - \delta _x)</math>,
Line 40: Line 40:


=== अनिसोट्रोपिक ऑसिलेटर्स ===
=== अनिसोट्रोपिक ऑसिलेटर्स ===
अनिसोट्रॉपी ऑसिलेटर्स के साथ, अलग-अलग दिशाओं में बहाल करने वाले बलों के अलग-अलग स्थिरांक होते हैं। समाधान आइसोट्रोपिक ऑसिलेटर्स के समान है, लेकिन प्रत्येक दिशा में         अलग आवृत्ति होती है।         दूसरे के सापेक्ष आवृत्तियों को बदलने से दिलचस्प परिणाम मिल सकते हैं। उदाहरण के लिए, यदि         दिशा में बारंबारता दूसरी दिशा की आवृत्ति से दोगुनी है, तो         आकृति आठ पैटर्न निर्मित होता है। यदि आवृत्तियों का अनुपात अपरिमेय है, तो गति अर्ध-आवधिक फलन है। यह गति प्रत्येक अक्ष पर आवर्ती है, लेकिन r के संबंध में आवर्त नहीं है, और कभी भी दोहराई नहीं जाएगी।<ref name=":0">{{Cite book |last=Taylor |first=John R. |url=https://www.worldcat.org/oclc/55729992 |title=Classical mechanics |date=2005 |isbn=1-891389-22-X |location=Mill Valley, California |oclc=55729992}}</ref>
अनिसोट्रॉपी ऑसिलेटर्स के साथ, अलग-अलग दिशाओं में बहाल करने वाले बलों के अलग-अलग स्थिरांक होते हैं। समाधान आइसोट्रोपिक ऑसिलेटर्स के समान है, लेकिन प्रत्येक दिशा में अलग आवृत्ति होती है। दूसरे के सापेक्ष आवृत्तियों को बदलने से दिलचस्प परिणाम मिल सकते हैं। उदाहरण के लिए, यदि दिशा में बारंबारता दूसरी दिशा की आवृत्ति से दोगुनी है, तो आकृति आठ पैटर्न निर्मित होता है। यदि आवृत्तियों का अनुपात अपरिमेय है, तो गति अर्ध-आवधिक फलन है। यह गति प्रत्येक अक्ष पर आवर्ती है, लेकिन r के संबंध में आवर्त नहीं है, और कभी भी दोहराई नहीं जाएगी।<ref name=":0">{{Cite book |last=Taylor |first=John R. |url=https://www.worldcat.org/oclc/55729992 |title=Classical mechanics |date=2005 |isbn=1-891389-22-X |location=Mill Valley, California |oclc=55729992}}</ref>


== नम दोलन ==
== नम दोलन ==
Line 47: Line 47:
सभी वास्तविक-विश्व थरथरानवाला सिस्टम थर्मोडायनामिक उत्क्रमणीयता हैं। इसका मतलब है कि घर्षण या विद्युत प्रतिरोध जैसी अपव्यय प्रक्रियाएं होती हैं जो पर्यावरण में थरथरानवाला में संग्रहीत कुछ ऊर्जा को लगातार गर्मी में परिवर्तित करती हैं। इसे भिगोना कहा जाता है। इस प्रकार, समय के साथ दोलनों का क्षय होता है जब तक कि सिस्टम में ऊर्जा का कोई शुद्ध स्रोत न हो। इस क्षय प्रक्रिया का सबसे सरल वर्णन हार्मोनिक थरथरानवाला के दोलन क्षय द्वारा सचित्र किया जा सकता है।
सभी वास्तविक-विश्व थरथरानवाला सिस्टम थर्मोडायनामिक उत्क्रमणीयता हैं। इसका मतलब है कि घर्षण या विद्युत प्रतिरोध जैसी अपव्यय प्रक्रियाएं होती हैं जो पर्यावरण में थरथरानवाला में संग्रहीत कुछ ऊर्जा को लगातार गर्मी में परिवर्तित करती हैं। इसे भिगोना कहा जाता है। इस प्रकार, समय के साथ दोलनों का क्षय होता है जब तक कि सिस्टम में ऊर्जा का कोई शुद्ध स्रोत न हो। इस क्षय प्रक्रिया का सबसे सरल वर्णन हार्मोनिक थरथरानवाला के दोलन क्षय द्वारा सचित्र किया जा सकता है।


जब         प्रतिरोधी बल लगाया जाता है, जो स्थिति के पहले व्युत्पन्न पर निर्भर होता है, या इस मामले में वेग पर निर्भर होता है, तो डंप किए गए ऑसीलेटर बनाए जाते हैं। न्यूटन के दूसरे नियम द्वारा निर्मित अवकल समीकरण इस प्रतिरोधक बल में         मनमाना स्थिरांक b के साथ जुड़ता है। यह उदाहरण वेग पर         रैखिक निर्भरता मानता है।
जब प्रतिरोधी बल लगाया जाता है, जो स्थिति के पहले व्युत्पन्न पर निर्भर होता है, या इस मामले में वेग पर निर्भर होता है, तो डंप किए गए ऑसीलेटर बनाए जाते हैं। न्यूटन के दूसरे नियम द्वारा निर्मित अवकल समीकरण इस प्रतिरोधक बल में मनमाना स्थिरांक b के साथ जुड़ता है। यह उदाहरण वेग पर रैखिक निर्भरता मानता है।


<math>m\ddot{x} + b\dot{x} + kx = 0</math>
<math>m\ddot{x} + b\dot{x} + kx = 0</math>
Line 64: Line 64:


== प्रेरित दोलन ==
== प्रेरित दोलन ==
इसके अलावा,         दोलन प्रणाली कुछ बाहरी बल के अधीन हो सकती है, जैसे कि जब         एसी इलेक्ट्रॉनिक सर्किट बाहरी शक्ति स्रोत से जुड़ा होता है। इस मामले में दोलन को संचालित दोलन कहा जाता है।
इसके अलावा, दोलन प्रणाली कुछ बाहरी बल के अधीन हो सकती है, जैसे कि जब एसी इलेक्ट्रॉनिक सर्किट बाहरी शक्ति स्रोत से जुड़ा होता है। इस मामले में दोलन को संचालित दोलन कहा जाता है।


इसका सबसे सरल उदाहरण साइन वेव ड्राइविंग बल के साथ स्प्रिंग-मास सिस्टम है।
इसका सबसे सरल उदाहरण साइन वेव ड्राइविंग बल के साथ स्प्रिंग-मास सिस्टम है।
Line 73: Line 73:
<math>x(t) = A \cos(\omega t - \delta) + A_{tr} \cos(\omega_1 t - \delta_{tr})</math>,
<math>x(t) = A \cos(\omega t - \delta) + A_{tr} \cos(\omega_1 t - \delta_{tr})</math>,


जहाँ पे <math>A = \sqrt{\frac {f_0^2} {(\omega_0^2 - \omega ^2) + 2 \beta \omega}}</math> तथा <math>\delta = \tan^{-1}(\frac {2 \beta \omega} {\omega_0^2 - \omega^2})</math>
जहाँ पे <math>A = \sqrt{\frac {f_0^2} {(\omega_0^2 - \omega ^2) + 2 \beta \omega}}</math> तथा <math>\delta = \tan^{-1}(\frac {2 \beta \omega} {\omega_0^2 - \omega^2})</math>
x(t) का दूसरा पद अवकल समीकरण का क्षणिक हल है। सिस्टम की प्रारंभिक स्थितियों का उपयोग करके क्षणिक समाधान पाया जा सकता है।
x(t) का दूसरा पद अवकल समीकरण का क्षणिक हल है। सिस्टम की प्रारंभिक स्थितियों का उपयोग करके क्षणिक समाधान पाया जा सकता है।


कुछ सिस्टम पर्यावरण से ऊर्जा हस्तांतरण से उत्साहित हो सकते हैं। यह स्थानांतरण आमतौर पर तब होता है जब सिस्टम कुछ द्रव प्रवाह में एम्बेडेड होते हैं। उदाहरण के लिए, वायुगतिकी में एरोएलास्टिक स्पंदन की घटना तब होती है जब         विमान विंग के मनमाने ढंग से छोटे विस्थापन (इसके संतुलन से) के परिणामस्वरूप वायु प्रवाह पर विंग के हमले के कोण में वृद्धि होती है और लिफ्ट के गुणांक में परिणामी वृद्धि होती है,         और अधिक विस्थापन के लिए अग्रणी। पर्याप्त रूप से बड़े विस्थापन पर, पंख की कठोरता बहाल करने वाली शक्ति प्रदान करने के लिए हावी होती है जो         दोलन को सक्षम करती है।
कुछ सिस्टम पर्यावरण से ऊर्जा हस्तांतरण से उत्साहित हो सकते हैं। यह स्थानांतरण आमतौर पर तब होता है जब सिस्टम कुछ द्रव प्रवाह में एम्बेडेड होते हैं। उदाहरण के लिए, वायुगतिकी में एरोएलास्टिक स्पंदन की घटना तब होती है जब विमान विंग के मनमाने ढंग से छोटे विस्थापन (इसके संतुलन से) के परिणामस्वरूप वायु प्रवाह पर विंग के हमले के कोण में वृद्धि होती है और लिफ्ट के गुणांक में परिणामी वृद्धि होती है, और अधिक विस्थापन के लिए अग्रणी। पर्याप्त रूप से बड़े विस्थापन पर, पंख की कठोरता बहाल करने वाली शक्ति प्रदान करने के लिए हावी होती है जो दोलन को सक्षम करती है।


=== अनुनाद ===
=== अनुनाद ===
Line 86: Line 86:


[[File:Huygens synchronization of two clocks (Experiment).jpg|thumbnail|left|100px|दो घड़ियों के हाइजेन्स तुल्यकालन का प्रायोगिक सेटअप]]
[[File:Huygens synchronization of two clocks (Experiment).jpg|thumbnail|left|100px|दो घड़ियों के हाइजेन्स तुल्यकालन का प्रायोगिक सेटअप]]
हार्मोनिक थरथरानवाला और इसके मॉडल की प्रणालियों में स्वतंत्रता (भौतिकी और रसायन विज्ञान) की         ही डिग्री होती है। अधिक जटिल प्रणालियों में स्वतंत्रता की अधिक डिग्री होती है, उदाहरण के लिए, दो द्रव्यमान और तीन स्प्रिंग्स (प्रत्येक द्रव्यमान निश्चित बिंदुओं और         दूसरे से जुड़ा होता है)। ऐसे मामलों में, प्रत्येक चर का व्यवहार दूसरों के व्यवहार को प्रभावित करता है। यह स्वतंत्रता की व्यक्तिगत डिग्री के दोलनों के युग्मन की ओर जाता है। उदाहरण के लिए,         सामान्य दीवार पर लगे दो पेंडुलम घड़ियां (समान आवृत्ति की) सिंक्रनाइज़ हो जाएंगी। यह इंजेक्शन लॉकिंग पहली बार 1665 में क्रिस्टियान ह्यूजेंस द्वारा देखा गया था।<ref>{{cite book|author1=Strogatz, Steven|year=2003|title=Sync: The Emerging Science of Spontaneous Order|publisher=Hyperion Press|pages=106–109|isbn=0-786-86844-9}}</ref> यौगिक दोलनों की स्पष्ट गति आमतौर पर बहुत जटिल प्रतीत होती है लेकिन गति को सामान्य मोड में हल करके         अधिक आर्थिक, कम्प्यूटेशनल रूप से सरल और अवधारणात्मक रूप से गहरा विवरण दिया जाता है।
हार्मोनिक थरथरानवाला और इसके मॉडल की प्रणालियों में स्वतंत्रता (भौतिकी और रसायन विज्ञान) की ही डिग्री होती है। अधिक जटिल प्रणालियों में स्वतंत्रता की अधिक डिग्री होती है, उदाहरण के लिए, दो द्रव्यमान और तीन स्प्रिंग्स (प्रत्येक द्रव्यमान निश्चित बिंदुओं और दूसरे से जुड़ा होता है)। ऐसे मामलों में, प्रत्येक चर का व्यवहार दूसरों के व्यवहार को प्रभावित करता है। यह स्वतंत्रता की व्यक्तिगत डिग्री के दोलनों के युग्मन की ओर जाता है। उदाहरण के लिए, सामान्य दीवार पर लगे दो पेंडुलम घड़ियां (समान आवृत्ति की) सिंक्रनाइज़ हो जाएंगी। यह इंजेक्शन लॉकिंग पहली बार 1665 में क्रिस्टियान ह्यूजेंस द्वारा देखा गया था।<ref>{{cite book|author1=Strogatz, Steven|year=2003|title=Sync: The Emerging Science of Spontaneous Order|publisher=Hyperion Press|pages=106–109|isbn=0-786-86844-9}}</ref> यौगिक दोलनों की स्पष्ट गति आमतौर पर बहुत जटिल प्रतीत होती है लेकिन गति को सामान्य मोड में हल करके अधिक आर्थिक, कम्प्यूटेशनल रूप से सरल और अवधारणात्मक रूप से गहरा विवरण दिया जाता है।


युग्मित थरथरानवाला का सबसे सरल रूप         3 वसंत, 2 द्रव्यमान प्रणाली है, जहां द्रव्यमान और वसंत स्थिरांक समान होते हैं। यह समस्या दोनों द्रव्यमानों के लिए न्यूटन के दूसरे नियम को प्राप्त करने से शुरू होती है।
युग्मित थरथरानवाला का सबसे सरल रूप 3 वसंत, 2 द्रव्यमान प्रणाली है, जहां द्रव्यमान और वसंत स्थिरांक समान होते हैं। यह समस्या दोनों द्रव्यमानों के लिए न्यूटन के दूसरे नियम को प्राप्त करने से शुरू होती है।


<math>m_1 \ddot{x}_1 = -(k_1 + k_2)x_1 + k_2x_2</math>,     <math>m_2\ddot{x}_2 = k_2x_1 - (k_2+k_3)x_2</math>,
<math>m_1 \ddot{x}_1 = -(k_1 + k_2)x_1 + k_2x_2</math>, <math>m_2\ddot{x}_2 = k_2x_1 - (k_2+k_3)x_2</math>,


समीकरणों को तब मैट्रिक्स रूप में सामान्यीकृत किया जाता है।
समीकरणों को तब मैट्रिक्स रूप में सामान्यीकृत किया जाता है।
Line 96: Line 96:
<math>F = M\ddot{x} = kx</math>,
<math>F = M\ddot{x} = kx</math>,


जहाँ पे <math>M=\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}</math>,     <math>x = \begin{bmatrix} x_1  \\ x_2  \end{bmatrix}</math>,   तथा <math>k = \begin{bmatrix} k_1+k_2 & -k_2 \\ -k_2 & k_2+k_3 \end{bmatrix}</math>
जहाँ पे <math>M=\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}</math>, <math>x = \begin{bmatrix} x_1  \\ x_2  \end{bmatrix}</math>, तथा <math>k = \begin{bmatrix} k_1+k_2 & -k_2 \\ -k_2 & k_2+k_3 \end{bmatrix}</math>
k और m के मानों को आव्यूहों में प्रतिस्थापित किया जा सकता है।
k और m के मानों को आव्यूहों में प्रतिस्थापित किया जा सकता है।


<math>m_1=m_2=m </math>,     <math>k_1=k_2=k_3=k</math>,
<math>m_1=m_2=m </math>, <math>k_1=k_2=k_3=k</math>,


<math>M = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix}</math>, <math>k=\begin{bmatrix} 2k & -k \\ -k & 2k \end{bmatrix}</math>
<math>M = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix}</math>, <math>k=\begin{bmatrix} 2k & -k \\ -k & 2k \end{bmatrix}</math>
Line 108: Line 108:


<math>\begin{bmatrix} 2k-m \omega^2 & -k \\ -k & 2k - m \omega^2 \end{bmatrix} = 0</math>
<math>\begin{bmatrix} 2k-m \omega^2 & -k \\ -k & 2k - m \omega^2 \end{bmatrix} = 0</math>
इस मैट्रिक्स का निर्धारक         द्विघात समीकरण देता है।
इस मैट्रिक्स का निर्धारक द्विघात समीकरण देता है।


<math>(3k-m \omega^2)(k-m \omega^2)= 0</math>
<math>(3k-m \omega^2)(k-m \omega^2)= 0</math>


<math>\omega_1 = \sqrt{\frac km}</math>,   <math>\omega_2 = \sqrt{\frac {3k} m}</math>
<math>\omega_1 = \sqrt{\frac km}</math>, <math>\omega_2 = \sqrt{\frac {3k} m}</math>
द्रव्यमान के शुरुआती बिंदु के आधार पर, इस प्रणाली में 2 संभावित आवृत्तियां (या दोनों का संयोजन) होती हैं। यदि द्रव्यमान को         ही दिशा में उनके विस्थापन के साथ शुरू किया जाता है, तो आवृत्ति एकल द्रव्यमान प्रणाली की होती है, क्योंकि मध्य वसंत कभी विस्तारित नहीं होता है। यदि दो द्रव्यमानों को विपरीत दिशाओं में शुरू किया जाता है, तो दूसरी, तेज आवृत्ति प्रणाली की आवृत्ति होती है।<ref name=":0" />
द्रव्यमान के शुरुआती बिंदु के आधार पर, इस प्रणाली में 2 संभावित आवृत्तियां (या दोनों का संयोजन) होती हैं। यदि द्रव्यमान को ही दिशा में उनके विस्थापन के साथ शुरू किया जाता है, तो आवृत्ति एकल द्रव्यमान प्रणाली की होती है, क्योंकि मध्य वसंत कभी विस्तारित नहीं होता है। यदि दो द्रव्यमानों को विपरीत दिशाओं में शुरू किया जाता है, तो दूसरी, तेज आवृत्ति प्रणाली की आवृत्ति होती है।<ref name=":0" />


अधिक विशेष मामले युग्मित थरथरानवाला हैं जहां ऊर्जा दो प्रकार के दोलनों के बीच वैकल्पिक होती है। प्रसिद्ध विल्बरफोर्स पेंडुलम है, जहां दोलन         ऊर्ध्वाधर वसंत के बढ़ाव और उस वसंत के अंत में किसी वस्तु के घूमने के बीच वैकल्पिक होता है।
अधिक विशेष मामले युग्मित थरथरानवाला हैं जहां ऊर्जा दो प्रकार के दोलनों के बीच वैकल्पिक होती है। प्रसिद्ध विल्बरफोर्स पेंडुलम है, जहां दोलन ऊर्ध्वाधर वसंत के बढ़ाव और उस वसंत के अंत में किसी वस्तु के घूमने के बीच वैकल्पिक होता है।


युग्मित थरथरानवाला दो संबंधित, लेकिन अलग-अलग घटनाओं का         सामान्य विवरण है।         मामला यह है कि दोनों दोलन         दूसरे को परस्पर प्रभावित करते हैं, जो आमतौर पर         एकल, प्रवेशित दोलन राज्य की घटना की ओर जाता है, जहां दोनों         समझौता आवृत्ति के साथ दोलन करते हैं।         अन्य मामला यह है कि         बाहरी दोलन आंतरिक दोलन को प्रभावित करता है, लेकिन इससे प्रभावित नहीं होता है। इस मामले में तुल्यकालन के क्षेत्र, जिन्हें अर्नोल्ड जीभ के रूप में जाना जाता है, अत्यधिक जटिल घटनाओं को जन्म दे सकता है, उदाहरण के लिए अराजक गतिशीलता।
युग्मित थरथरानवाला दो संबंधित, लेकिन अलग-अलग घटनाओं का सामान्य विवरण है। मामला यह है कि दोनों दोलन दूसरे को परस्पर प्रभावित करते हैं, जो आमतौर पर एकल, प्रवेशित दोलन राज्य की घटना की ओर जाता है, जहां दोनों समझौता आवृत्ति के साथ दोलन करते हैं। अन्य मामला यह है कि बाहरी दोलन आंतरिक दोलन को प्रभावित करता है, लेकिन इससे प्रभावित नहीं होता है। इस मामले में तुल्यकालन के क्षेत्र, जिन्हें अर्नोल्ड जीभ के रूप में जाना जाता है, अत्यधिक जटिल घटनाओं को जन्म दे सकता है, उदाहरण के लिए अराजक गतिशीलता।


== छोटा दोलन सन्निकटन ==
== छोटा दोलन सन्निकटन ==
भौतिकी में, रूढ़िवादी बलों के         सेट और         संतुलन बिंदु के साथ         प्रणाली को संतुलन के निकट         हार्मोनिक थरथरानवाला के रूप में अनुमानित किया जा सकता है। इसका         उदाहरण लेनार्ड-जोन्स क्षमता है, जहां क्षमता निम्न द्वारा दी गई है:
भौतिकी में, रूढ़िवादी बलों के सेट और संतुलन बिंदु के साथ प्रणाली को संतुलन के निकट हार्मोनिक थरथरानवाला के रूप में अनुमानित किया जा सकता है। इसका उदाहरण लेनार्ड-जोन्स क्षमता है, जहां क्षमता निम्न द्वारा दी गई है:


<math>U(r)=U_0 \left[ \left(\frac{r_0} r \right)^{12} -  \left(\frac{r_0} r \right)^6 \right]</math>
<math>U(r)=U_0 \left[ \left(\frac{r_0} r \right)^{12} -  \left(\frac{r_0} r \right)^6 \right]</math>
Line 136: Line 136:


<math>F= - \gamma_{eff}(r-r_0) = m_{eff} \ddot r</math>
<math>F= - \gamma_{eff}(r-r_0) = m_{eff} \ddot r</math>
इस अंतर समीकरण को         साधारण हार्मोनिक थरथरानवाला के रूप में फिर से लिखा जा सकता है।
इस अंतर समीकरण को साधारण हार्मोनिक थरथरानवाला के रूप में फिर से लिखा जा सकता है।


<math>\ddot r + \frac {\gamma_{eff}} {m_{eff}} (r-r_0) = 0</math>
<math>\ddot r + \frac {\gamma_{eff}} {m_{eff}} (r-r_0) = 0</math>
Line 146: Line 146:
<math>\omega_0 = \sqrt{\frac {d^2U} {dU^2} \vert_{r=r_0}}</math>
<math>\omega_0 = \sqrt{\frac {d^2U} {dU^2} \vert_{r=r_0}}</math>


सिस्टम के संभावित वक्र को देखकर इस सन्निकटन को बेहतर ढंग से समझा जा सकता है। संभावित वक्र को         पहाड़ी के रूप में सोचकर, जिसमें, यदि कोई गेंद को वक्र पर कहीं भी रखता है, तो गेंद संभावित वक्र के ढलान के साथ लुढ़क जाएगी। यह स्थितिज ऊर्जा और बल के बीच संबंध के कारण सत्य है।
सिस्टम के संभावित वक्र को देखकर इस सन्निकटन को बेहतर ढंग से समझा जा सकता है। संभावित वक्र को पहाड़ी के रूप में सोचकर, जिसमें, यदि कोई गेंद को वक्र पर कहीं भी रखता है, तो गेंद संभावित वक्र के ढलान के साथ लुढ़क जाएगी। यह स्थितिज ऊर्जा और बल के बीच संबंध के कारण सत्य है।


<math>\frac {dU} {dt} = - F(r)</math>
<math>\frac {dU} {dt} = - F(r)</math>


इस तरह से क्षमता के बारे में सोचकर, कोई यह देखेगा कि किसी भी स्थानीय न्यूनतम पर         कुआं है जिसमें गेंद आगे-पीछे लुढ़कती (दोलन) करती है। <math>r_{min}</math> तथा <math>r_{max}</math>. यह सन्निकटन केपलर कक्षा के बारे में सोचने के लिए भी उपयोगी है।
इस तरह से क्षमता के बारे में सोचकर, कोई यह देखेगा कि किसी भी स्थानीय न्यूनतम पर कुआं है जिसमें गेंद आगे-पीछे लुढ़कती (दोलन) करती है। <math>r_{min}</math> तथा <math>r_{max}</math>. यह सन्निकटन केपलर कक्षा के बारे में सोचने के लिए भी उपयोगी है।


==सतत सिस्टम - तरंगें==
==सतत सिस्टम - तरंगें==
{{main|लहर}}
{{main|लहर}}
जैसे ही स्वतंत्रता की डिग्री की संख्या मनमाने ढंग से बड़ी हो जाती है,         प्रणाली सातत्य यांत्रिकी तक पहुंचती है; उदाहरणों में         तार या पानी के शरीर की सतह शामिल है। इस तरह की प्रणालियों में (शास्त्रीय सीमा में) सामान्य मोड की         अनंत संख्या होती है और उनके दोलन तरंगों के रूप में होते हैं जो विशेष रूप से प्रचार कर सकते हैं।
जैसे ही स्वतंत्रता की डिग्री की संख्या मनमाने ढंग से बड़ी हो जाती है, प्रणाली सातत्य यांत्रिकी तक पहुंचती है; उदाहरणों में तार या पानी के शरीर की सतह शामिल है। इस तरह की प्रणालियों में (शास्त्रीय सीमा में) सामान्य मोड की अनंत संख्या होती है और उनके दोलन तरंगों के रूप में होते हैं जो विशेष रूप से प्रचार कर सकते हैं।


==गणित ==
==गणित ==
{{main|दोलन (गणित)}}
{{main|दोलन (गणित)}}
[[File:LimSup.svg|right|thumb|300px|एक अनुक्रम का दोलन (नीले रंग में दिखाया गया है) अनुक्रम की सीमा श्रेष्ठ और सीमा अवर के बीच का अंतर है।]]
[[File:LimSup.svg|right|thumb|300px|एक अनुक्रम का दोलन (नीले रंग में दिखाया गया है) अनुक्रम की सीमा श्रेष्ठ और सीमा अवर के बीच का अंतर है।]]
दोलन का गणित उस राशि के परिमाणीकरण से संबंधित है जो         अनुक्रम या कार्य चरम सीमाओं के बीच स्थानांतरित होता है। कई संबंधित धारणाएँ हैं: वास्तविक संख्याओं के अनुक्रम का दोलन,         बिंदु पर         वास्तविक-मूल्यवान फ़ंक्शन (गणित) का दोलन, और         अंतराल (गणित) (या खुले सेट) पर         फ़ंक्शन का दोलन।
दोलन का गणित उस राशि के परिमाणीकरण से संबंधित है जो अनुक्रम या कार्य चरम सीमाओं के बीच स्थानांतरित होता है। कई संबंधित धारणाएँ हैं: वास्तविक संख्याओं के अनुक्रम का दोलन, बिंदु पर वास्तविक-मूल्यवान फ़ंक्शन (गणित) का दोलन, और अंतराल (गणित) (या खुले सेट) पर फ़ंक्शन का दोलन।


== उदाहरण ==
== उदाहरण ==

Revision as of 00:54, 1 April 2023

स्प्रिंग-मास सिस्टम ऑसिलेटरी सिस्टम है

दोलन केंद्रीय मूल्य (अक्सर यांत्रिक संतुलन का बिंदु) के बारे में या दो या दो से अधिक अलग-अलग राज्यों के बीच कुछ माप के दोहराव या आवधिक कार्य भिन्नता है। दोलन के परिचित उदाहरणों में झूलता हुआ पेंडुलम और प्रत्यावर्ती धारा शामिल हैं। दोलनों का उपयोग भौतिकी में जटिल अंतःक्रियाओं का अनुमान लगाने के लिए किया जा सकता है, जैसे कि परमाणुओं के बीच।

दोलन न केवल यांत्रिक प्रणालियों में बल्कि विज्ञान के लगभग हर क्षेत्र में गतिशील प्रणालियों में भी होते हैं: उदाहरण के लिए मानव हृदय की धड़कन (परिसंचरण के लिए), अर्थशास्त्र में व्यापार चक्र, पारिस्थितिकी में शिकारी-शिकार जनसंख्या चक्र, भूविज्ञान में भूतापीय गीजर, गिटार और अन्य स्ट्रिंग वाद्ययंत्रों में तारों का कंपन, मस्तिष्क में तंत्रिका कोशिकाओं की आवधिक फायरिंग, और खगोल विज्ञान में सेफिड चर सितारों की आवधिक सूजन। यांत्रिक दोलन का वर्णन करने के लिए कंपन शब्द का सटीक रूप से उपयोग किया जाता है।

सरल हार्मोनिक

सबसे सरल यांत्रिक दोलन प्रणाली रेखीय स्प्रिंग (उपकरण) से जुड़ा वजन है जो केवल वजन और तनाव (भौतिकी) के अधीन है। ऐसी प्रणाली को हवा की मेज या बर्फ की सतह पर अनुमानित किया जा सकता है। वसंत के स्थिर होने पर प्रणाली यांत्रिक संतुलन की स्थिति में होती है। यदि निकाय को संतुलन से विस्थापित कर दिया जाता है, तो द्रव्यमान पर शुद्ध पुनर्स्थापन बल होता है, जो इसे वापस संतुलन में लाने के लिए प्रवृत्त होता है। हालाँकि, द्रव्यमान को वापस संतुलन की स्थिति में ले जाने में, इसने गति प्राप्त कर ली है जो इसे उस स्थिति से आगे ले जाती है, विपरीत अर्थ में नया पुनर्स्थापना बल स्थापित करती है। यदि स्थिर बल जैसे गुरुत्वाकर्षण को सिस्टम में जोड़ा जाता है, तो संतुलन का बिंदु स्थानांतरित हो जाता है। दोलन होने में लगने वाले समय को अक्सर दोलन काल कहा जाता है।

वे प्रणालियाँ जहाँ किसी पिंड पर पुनर्स्थापना बल उसके विस्थापन के सीधे आनुपातिक होता है, जैसे कि स्प्रिंग-मास सिस्टम की गतिशीलता (यांत्रिकी), गणितीय रूप से हार्मोनिक ऑसिलेटर # सिंपल हार्मोनिक ऑसिलेटर द्वारा वर्णित की जाती है और नियमित अवधि (भौतिकी) गति होती है सरल हार्मोनिक गति के रूप में जाना जाता है। वसंत-द्रव्यमान प्रणाली में, दोलन होते हैं, क्योंकि स्थैतिक संतुलन विस्थापन पर, द्रव्यमान में गतिज ऊर्जा होती है जो अपने पथ के चरम पर वसंत में संग्रहीत संभावित ऊर्जा में परिवर्तित हो जाती है। वसंत-द्रव्यमान प्रणाली दोलन की कुछ सामान्य विशेषताओं को दर्शाती है, अर्थात् संतुलन का अस्तित्व और पुनर्स्थापना बल की उपस्थिति जो कि प्रणाली के संतुलन से विचलित होने पर और मजबूत होती जाती है।

वसंत-द्रव्यमान प्रणाली के मामले में, हुक का नियम कहता है कि वसंत की पुनर्स्थापना बल है:

न्यूटन के द्वितीय नियम या न्यूटन के द्वितीय नियम का प्रयोग करके अवकल समीकरण व्युत्पन्न किया जा सकता है।

,

जहाँ पे इस अंतर समीकरण का समाधान साइनसॉइडल स्थिति फ़ंक्शन उत्पन्न करता है।

जहां दोलन की आवृत्ति है, ए आयाम है, और फ़ंक्शन का चरण बदलाव है। ये सिस्टम की प्रारंभिक स्थितियों से निर्धारित होते हैं। क्योंकि कोसाइन 1 और -1 के बीच असीम रूप से दोलन करता है, हमारा स्प्रिंग-मास सिस्टम बिना घर्षण के हमेशा के लिए सकारात्मक और नकारात्मक आयाम के बीच दोलन करेगा।

द्वि-आयामी दोलक

दो या तीन आयामों में, हार्मोनिक ऑसिलेटर आयाम के समान व्यवहार करते हैं। इसका सबसे सरल उदाहरण आइसोट्रॉपी थरथरानवाला है, जहां पुनर्स्थापना बल सभी दिशाओं में समान पुनर्स्थापन स्थिरांक के साथ संतुलन से विस्थापन के समानुपाती होता है।

यह समान समाधान उत्पन्न करता है, लेकिन अब हर दिशा के लिए अलग समीकरण है।

,

, 

[...]

अनिसोट्रोपिक ऑसिलेटर्स

अनिसोट्रॉपी ऑसिलेटर्स के साथ, अलग-अलग दिशाओं में बहाल करने वाले बलों के अलग-अलग स्थिरांक होते हैं। समाधान आइसोट्रोपिक ऑसिलेटर्स के समान है, लेकिन प्रत्येक दिशा में अलग आवृत्ति होती है। दूसरे के सापेक्ष आवृत्तियों को बदलने से दिलचस्प परिणाम मिल सकते हैं। उदाहरण के लिए, यदि दिशा में बारंबारता दूसरी दिशा की आवृत्ति से दोगुनी है, तो आकृति आठ पैटर्न निर्मित होता है। यदि आवृत्तियों का अनुपात अपरिमेय है, तो गति अर्ध-आवधिक फलन है। यह गति प्रत्येक अक्ष पर आवर्ती है, लेकिन r के संबंध में आवर्त नहीं है, और कभी भी दोहराई नहीं जाएगी।[1]

नम दोलन

सभी वास्तविक-विश्व थरथरानवाला सिस्टम थर्मोडायनामिक उत्क्रमणीयता हैं। इसका मतलब है कि घर्षण या विद्युत प्रतिरोध जैसी अपव्यय प्रक्रियाएं होती हैं जो पर्यावरण में थरथरानवाला में संग्रहीत कुछ ऊर्जा को लगातार गर्मी में परिवर्तित करती हैं। इसे भिगोना कहा जाता है। इस प्रकार, समय के साथ दोलनों का क्षय होता है जब तक कि सिस्टम में ऊर्जा का कोई शुद्ध स्रोत न हो। इस क्षय प्रक्रिया का सबसे सरल वर्णन हार्मोनिक थरथरानवाला के दोलन क्षय द्वारा सचित्र किया जा सकता है।

जब प्रतिरोधी बल लगाया जाता है, जो स्थिति के पहले व्युत्पन्न पर निर्भर होता है, या इस मामले में वेग पर निर्भर होता है, तो डंप किए गए ऑसीलेटर बनाए जाते हैं। न्यूटन के दूसरे नियम द्वारा निर्मित अवकल समीकरण इस प्रतिरोधक बल में मनमाना स्थिरांक b के साथ जुड़ता है। यह उदाहरण वेग पर रैखिक निर्भरता मानता है।

इस समीकरण को पहले की तरह फिर से लिखा जा सकता है।

,

जहाँ पे यह सामान्य समाधान उत्पन्न करता है:

,

जहाँ पे

कोष्ठक के बाहर घातांकीय पद घातीय क्षय है और β अवमंदन गुणांक है। नम दोलकों की 3 श्रेणियां हैं: अंडर-डंप, जहां β <0; अधिक नमी, जहां β >0; और गंभीर रूप से भीग गया, जहां β =0.

प्रेरित दोलन

इसके अलावा, दोलन प्रणाली कुछ बाहरी बल के अधीन हो सकती है, जैसे कि जब एसी इलेक्ट्रॉनिक सर्किट बाहरी शक्ति स्रोत से जुड़ा होता है। इस मामले में दोलन को संचालित दोलन कहा जाता है।

इसका सबसे सरल उदाहरण साइन वेव ड्राइविंग बल के साथ स्प्रिंग-मास सिस्टम है।

, जहाँ पे यह समाधान देता है:

,

जहाँ पे तथा x(t) का दूसरा पद अवकल समीकरण का क्षणिक हल है। सिस्टम की प्रारंभिक स्थितियों का उपयोग करके क्षणिक समाधान पाया जा सकता है।

कुछ सिस्टम पर्यावरण से ऊर्जा हस्तांतरण से उत्साहित हो सकते हैं। यह स्थानांतरण आमतौर पर तब होता है जब सिस्टम कुछ द्रव प्रवाह में एम्बेडेड होते हैं। उदाहरण के लिए, वायुगतिकी में एरोएलास्टिक स्पंदन की घटना तब होती है जब विमान विंग के मनमाने ढंग से छोटे विस्थापन (इसके संतुलन से) के परिणामस्वरूप वायु प्रवाह पर विंग के हमले के कोण में वृद्धि होती है और लिफ्ट के गुणांक में परिणामी वृद्धि होती है, और अधिक विस्थापन के लिए अग्रणी। पर्याप्त रूप से बड़े विस्थापन पर, पंख की कठोरता बहाल करने वाली शक्ति प्रदान करने के लिए हावी होती है जो दोलन को सक्षम करती है।

अनुनाद

एक नम चालित दोलक में अनुनाद तब होता है जब =0, यानी, जब ड्राइविंग आवृत्ति सिस्टम की प्राकृतिक आवृत्ति के बराबर होती है। जब ऐसा होता है, तो आयाम का हर छोटा हो जाता है, जो दोलनों के आयाम को अधिकतम करता है।

युग्मित दोलन

एक डोरी पर नियत समान अवधि वाले दो लोलक युग्मित थरथरानवाला की जोड़ी के रूप में कार्य करते हैं। दोलन दोनों के बीच बारी-बारी से होता है।
दो घड़ियों के हाइजेन्स तुल्यकालन का प्रायोगिक सेटअप

हार्मोनिक थरथरानवाला और इसके मॉडल की प्रणालियों में स्वतंत्रता (भौतिकी और रसायन विज्ञान) की ही डिग्री होती है। अधिक जटिल प्रणालियों में स्वतंत्रता की अधिक डिग्री होती है, उदाहरण के लिए, दो द्रव्यमान और तीन स्प्रिंग्स (प्रत्येक द्रव्यमान निश्चित बिंदुओं और दूसरे से जुड़ा होता है)। ऐसे मामलों में, प्रत्येक चर का व्यवहार दूसरों के व्यवहार को प्रभावित करता है। यह स्वतंत्रता की व्यक्तिगत डिग्री के दोलनों के युग्मन की ओर जाता है। उदाहरण के लिए, सामान्य दीवार पर लगे दो पेंडुलम घड़ियां (समान आवृत्ति की) सिंक्रनाइज़ हो जाएंगी। यह इंजेक्शन लॉकिंग पहली बार 1665 में क्रिस्टियान ह्यूजेंस द्वारा देखा गया था।[2] यौगिक दोलनों की स्पष्ट गति आमतौर पर बहुत जटिल प्रतीत होती है लेकिन गति को सामान्य मोड में हल करके अधिक आर्थिक, कम्प्यूटेशनल रूप से सरल और अवधारणात्मक रूप से गहरा विवरण दिया जाता है।

युग्मित थरथरानवाला का सबसे सरल रूप 3 वसंत, 2 द्रव्यमान प्रणाली है, जहां द्रव्यमान और वसंत स्थिरांक समान होते हैं। यह समस्या दोनों द्रव्यमानों के लिए न्यूटन के दूसरे नियम को प्राप्त करने से शुरू होती है।

, ,

समीकरणों को तब मैट्रिक्स रूप में सामान्यीकृत किया जाता है।

,

जहाँ पे , , तथा k और m के मानों को आव्यूहों में प्रतिस्थापित किया जा सकता है।

, ,

,

इन मैट्रिक्स को अब सामान्य समाधान में प्लग किया जा सकता है।

इस मैट्रिक्स का निर्धारक द्विघात समीकरण देता है।

, द्रव्यमान के शुरुआती बिंदु के आधार पर, इस प्रणाली में 2 संभावित आवृत्तियां (या दोनों का संयोजन) होती हैं। यदि द्रव्यमान को ही दिशा में उनके विस्थापन के साथ शुरू किया जाता है, तो आवृत्ति एकल द्रव्यमान प्रणाली की होती है, क्योंकि मध्य वसंत कभी विस्तारित नहीं होता है। यदि दो द्रव्यमानों को विपरीत दिशाओं में शुरू किया जाता है, तो दूसरी, तेज आवृत्ति प्रणाली की आवृत्ति होती है।[1]

अधिक विशेष मामले युग्मित थरथरानवाला हैं जहां ऊर्जा दो प्रकार के दोलनों के बीच वैकल्पिक होती है। प्रसिद्ध विल्बरफोर्स पेंडुलम है, जहां दोलन ऊर्ध्वाधर वसंत के बढ़ाव और उस वसंत के अंत में किसी वस्तु के घूमने के बीच वैकल्पिक होता है।

युग्मित थरथरानवाला दो संबंधित, लेकिन अलग-अलग घटनाओं का सामान्य विवरण है। मामला यह है कि दोनों दोलन दूसरे को परस्पर प्रभावित करते हैं, जो आमतौर पर एकल, प्रवेशित दोलन राज्य की घटना की ओर जाता है, जहां दोनों समझौता आवृत्ति के साथ दोलन करते हैं। अन्य मामला यह है कि बाहरी दोलन आंतरिक दोलन को प्रभावित करता है, लेकिन इससे प्रभावित नहीं होता है। इस मामले में तुल्यकालन के क्षेत्र, जिन्हें अर्नोल्ड जीभ के रूप में जाना जाता है, अत्यधिक जटिल घटनाओं को जन्म दे सकता है, उदाहरण के लिए अराजक गतिशीलता।

छोटा दोलन सन्निकटन

भौतिकी में, रूढ़िवादी बलों के सेट और संतुलन बिंदु के साथ प्रणाली को संतुलन के निकट हार्मोनिक थरथरानवाला के रूप में अनुमानित किया जा सकता है। इसका उदाहरण लेनार्ड-जोन्स क्षमता है, जहां क्षमता निम्न द्वारा दी गई है:

तब फ़ंक्शन के संतुलन बिंदु पाए जाते हैं।

दूसरा व्युत्पन्न तब पाया जाता है, और प्रभावी संभावित स्थिरांक हुआ करता था।

प्रणाली संतुलन बिंदु के पास दोलनों से गुजरेगी। इन दोलनों को बनाने वाला बल ऊपर के प्रभावी संभावित स्थिरांक से प्राप्त होता है।

इस अंतर समीकरण को साधारण हार्मोनिक थरथरानवाला के रूप में फिर से लिखा जा सकता है।

इस प्रकार, छोटे दोलनों की आवृत्ति है:

या, सामान्य रूप में[3]

सिस्टम के संभावित वक्र को देखकर इस सन्निकटन को बेहतर ढंग से समझा जा सकता है। संभावित वक्र को पहाड़ी के रूप में सोचकर, जिसमें, यदि कोई गेंद को वक्र पर कहीं भी रखता है, तो गेंद संभावित वक्र के ढलान के साथ लुढ़क जाएगी। यह स्थितिज ऊर्जा और बल के बीच संबंध के कारण सत्य है।

इस तरह से क्षमता के बारे में सोचकर, कोई यह देखेगा कि किसी भी स्थानीय न्यूनतम पर कुआं है जिसमें गेंद आगे-पीछे लुढ़कती (दोलन) करती है। तथा . यह सन्निकटन केपलर कक्षा के बारे में सोचने के लिए भी उपयोगी है।

सतत सिस्टम - तरंगें

जैसे ही स्वतंत्रता की डिग्री की संख्या मनमाने ढंग से बड़ी हो जाती है, प्रणाली सातत्य यांत्रिकी तक पहुंचती है; उदाहरणों में तार या पानी के शरीर की सतह शामिल है। इस तरह की प्रणालियों में (शास्त्रीय सीमा में) सामान्य मोड की अनंत संख्या होती है और उनके दोलन तरंगों के रूप में होते हैं जो विशेष रूप से प्रचार कर सकते हैं।

गणित

एक अनुक्रम का दोलन (नीले रंग में दिखाया गया है) अनुक्रम की सीमा श्रेष्ठ और सीमा अवर के बीच का अंतर है।

दोलन का गणित उस राशि के परिमाणीकरण से संबंधित है जो अनुक्रम या कार्य चरम सीमाओं के बीच स्थानांतरित होता है। कई संबंधित धारणाएँ हैं: वास्तविक संख्याओं के अनुक्रम का दोलन, बिंदु पर वास्तविक-मूल्यवान फ़ंक्शन (गणित) का दोलन, और अंतराल (गणित) (या खुले सेट) पर फ़ंक्शन का दोलन।

उदाहरण

यांत्रिक

  • डबल पेंडुलम
  • फौकॉल्ट पेंडुलम
  • हेल्महोल्ट्ज़ प्रतिध्वनि
  • सूर्य में दोलन (हेलिओसिस्मोलॉजी), तारे (क्षुद्रग्रह विज्ञान) और न्यूट्रॉन-स्टार दोलन।
  • क्वांटम हार्मोनिक थरथरानवाला
  • स्विंग (सीट)
  • तार उपकरण
  • मरोड़ कंपन
  • ट्यूनिंग कांटा
  • कंपन स्ट्रिंग
  • विलबरफोर्स पेंडुलम
  • लीवर एस्केप


विद्युत

  • प्रत्यावर्ती धारा
  • आर्मस्ट्रांग थरथरानवाला|आर्मस्ट्रांग (या टिकलर या मीस्नर) थरथरानवाला
  • अस्थिर
  • अवरुद्ध थरथरानवाला
  • बटलर थरथरानवाला
  • ताली थरथरानवाला
  • कोल्पिट्स थरथरानवाला
  • विलंब-रेखा थरथरानवाला
  • इलेक्ट्रॉनिक थरथरानवाला
  • विस्तारित बातचीत थरथरानवाला
  • हार्टले थरथरानवाला
  • थरथरानवाला
  • चरण-शिफ्ट थरथरानवाला
  • पियर्स थरथरानवाला
  • विश्राम थरथरानवाला
  • आरएलसी सर्किट
  • रॉयर थरथरानवाला
  • वास्कस थरथरानवाला
  • वीन ब्रिज थरथरानवाला

इलेक्ट्रो-मैकेनिकल

  • क्रिस्टल थरथरानवाला

ऑप्टिकल

  • लेजर (आदेश 10 . की आवृत्ति के साथ विद्युत चुम्बकीय क्षेत्र का दोलन15 हर्ट्ज)
  • ऑसिलेटर टोडा या सेल्फ-पल्सेशन (आवृत्ति 10 . पर लेजर की आउटपुट पावर का स्पंदन)4 हर्ट्ज - 106 हर्ट्ज क्षणिक शासन में)
  • क्वांटम थरथरानवाला एक ऑप्टिकल स्थानीय थरथरानवाला, साथ ही क्वांटम ऑप्टिक्स में एक सामान्य मॉडल का उल्लेख कर सकता है।

जैविक

  • सर्कैडियन रिदम
  • सर्कैडियन थरथरानवाला
  • लोटका-वोल्टेरा समीकरण
  • तंत्रिका दोलन
  • ऑसिलेटिंग जीन
  • विभाजन घड़ी

मानव दोलन

  • तंत्रिका दोलन
  • इंसुलिन रिलीज दोलन
  • यौवन#अंतःस्रावी_परिप्रेक्ष्य
  • पायलट-प्रेरित दोलन
  • आवाज उत्पादन

आर्थिक और सामाजिक

  • व्यापारिक चक्र
  • पीढ़ी का अंतर
  • माल्थुसियन अर्थशास्त्र
  • समाचार चक्र

जलवायु और भूभौतिकी

  • अटलांटिक बहु दशकीय दोलन
  • चांडलर डगमगाने
  • जलवायु दोलन
  • अल नीनो-दक्षिणी दोलन
  • प्रशांत दशकीय दोलन
  • अर्ध-द्विवार्षिक दोलन

खगोल भौतिकी

  • न्यूट्रॉन-स्टार दोलन
  • चक्रीय मॉडल

क्वांटम यांत्रिक

  • तटस्थ कण दोलन, उदा. न्यूट्रिनो दोलन
  • क्वांटम हार्मोनिक थरथरानवाला

रासायनिक

  • बेलौसोव-ज़ाबोटिंस्की प्रतिक्रिया
  • बुध धड़कता दिल
  • ब्रिग्स-रौशर प्रतिक्रिया
  • ब्रे-लिभाफ्स्की प्रतिक्रिया

कंप्यूटिंग

  • थरथरानवाला (सेलुलर_ऑटोमेटन)

यह भी देखें

  • एंटीरेसोनेंस
  • बीट (ध्वनिकी)
  • बिबो स्थिरता
  • क्रिटिकल स्पीड
  • साइकिल (संगीत)
  • गतिशील प्रणाली
  • भूकम्प वास्तुविद्या
  • प्रतिपुष्टि
  • समान दूरी वाले डेटा में आवधिकता की गणना के लिए फूरियर रूपांतरण
  • आवृत्ति
  • छिपी हुई हलचल
  • असमान दूरी वाले डेटा में आवधिकता की गणना के लिए कम से कम वर्णक्रमीय विश्लेषण
  • थरथरानवाला चरण शोर
  • आवधिक कार्य
  • चरण शोर
  • क्वासिपरियोडिसिटी
  • पारस्परिक गति
  • गुंजयमान यंत्र
  • ताल
  • मौसमी
  • आत्म-उत्तेजना
  • संकेतक उत्पादक
  • निचोड़ना
  • अजीब आकर्षण
  • संरचनात्मक स्थिरता
  • ट्यून्ड मास डैम्पर
  • कंपन
  • वाइब्रेटर (यांत्रिक)

संदर्भ

  1. 1.0 1.1 Taylor, John R. (2005). Classical mechanics. Mill Valley, California. ISBN 1-891389-22-X. OCLC 55729992.{{cite book}}: CS1 maint: location missing publisher (link)
  2. Strogatz, Steven (2003). Sync: The Emerging Science of Spontaneous Order. Hyperion Press. pp. 106–109. ISBN 0-786-86844-9.
  3. "23.7: Small Oscillations". Physics LibreTexts (in English). 2020-07-01. Retrieved 2022-04-21.

बाहरी संबंध