जूल विस्तार: Difference between revisions
No edit summary |
No edit summary |
||
| Line 3: | Line 3: | ||
[[File:Joule expansion quasi-static but irreversible.svg|thumb|180px|यह मुक्त विस्तार अपरिवर्तनीय है लेकिन प्रत्येक कक्ष के लिए अर्ध-स्थैतिक हो सकता है: अर्ध-[[थर्मोडायनामिक संतुलन]] प्रत्येक भाग के लिए बनाए रखा जाता है लेकिन पूरे सिस्टम के लिए नहीं]]'''जूल विस्तार''' (जिसे मुक्त विस्तार भी कहा जाता है) [[ऊष्मप्रवैगिकी]] में अपरिवर्तनीय प्रक्रिया (ऊष्मप्रवैगिकी) है। जिसमें तापीय रूप से पृथक कंटेनर (एक छोटे विभाजन के माध्यम से) के एक ओर गैस की मात्रा रखी जाती है। जिसमें कंटेनर के दूसरी ओर खाली किया जाता है। कंटेनर के दो भागों के बीच विभाजन खोला जाता है और गैस पूरे कंटेनर को भर देती है। | [[File:Joule expansion quasi-static but irreversible.svg|thumb|180px|यह मुक्त विस्तार अपरिवर्तनीय है लेकिन प्रत्येक कक्ष के लिए अर्ध-स्थैतिक हो सकता है: अर्ध-[[थर्मोडायनामिक संतुलन]] प्रत्येक भाग के लिए बनाए रखा जाता है लेकिन पूरे सिस्टम के लिए नहीं]]'''जूल विस्तार''' (जिसे मुक्त विस्तार भी कहा जाता है) [[ऊष्मप्रवैगिकी]] में अपरिवर्तनीय प्रक्रिया (ऊष्मप्रवैगिकी) है। जिसमें तापीय रूप से पृथक कंटेनर (एक छोटे विभाजन के माध्यम से) के एक ओर गैस की मात्रा रखी जाती है। जिसमें कंटेनर के दूसरी ओर खाली किया जाता है। कंटेनर के दो भागों के बीच विभाजन खोला जाता है और गैस पूरे कंटेनर को भर देती है। | ||
जूल विस्तार [[आदर्श गैस]] से जुड़े एक | जूल विस्तार [[आदर्श गैस]] से जुड़े एक प्रयोग के रूप में माना जाता है। मौलिक ऊष्मप्रवैगिकी में यह उपयोगी अभ्यास है। यह थर्मोडायनामिक मात्रा में परिवर्तन की गणना के लिए सुविधाजनक उदाहरण प्रदान करता है। जिसमें ब्रह्मांड (एन्ट्रॉपी उत्पादन) की एन्ट्रॉपी में परिणामी वृद्धि सम्मिलित है। जो इस स्वाभाविक रूप से अपरिवर्तनीय प्रक्रिया से उत्पन्न होती है। वास्तविक जूल विस्तार प्रयोग में आवश्यक रूप से वास्तविक गैस सम्मिलित होती है। इस प्रकार की प्रक्रिया में तापमान परिवर्तन अंतर-आणविक बल का माप प्रदान करता है। | ||
इस प्रकार के विस्तार का नाम [[जेम्स प्रेस्कॉट जौल]] के नाम पर रखा गया है, जिन्होंने 1845 में गर्मी के यांत्रिक समकक्ष के लिए अपने अध्ययन में इस विस्तार का इस्तेमाल किया था, लेकिन यह विस्तार जौल से बहुत पहले जाना जाता था। [[जॉन लेस्ली (भौतिक विज्ञानी)]] द्वारा, 19वीं शताब्दी की शुरुआत में, और 1807 में [[जोसेफ लुइस गे-लुसाक]] |<ref>D.S.L. Cardwell, From Watt to Clausius, Heinemann, London (1957)</ref><ref>M.J. Klein, Principles of the theory of heat, D. Reidel Pub.Cy., Dordrecht (1986)</ref> | इस प्रकार के विस्तार का नाम [[जेम्स प्रेस्कॉट जौल]] के नाम पर रखा गया है, जिन्होंने 1845 में गर्मी के यांत्रिक समकक्ष के लिए अपने अध्ययन में इस विस्तार का इस्तेमाल किया था, लेकिन यह विस्तार जौल से बहुत पहले जाना जाता था। [[जॉन लेस्ली (भौतिक विज्ञानी)]] द्वारा, 19वीं शताब्दी की शुरुआत में, और 1807 में [[जोसेफ लुइस गे-लुसाक]] |<ref>D.S.L. Cardwell, From Watt to Clausius, Heinemann, London (1957)</ref><ref>M.J. Klein, Principles of the theory of heat, D. Reidel Pub.Cy., Dordrecht (1986)</ref> | ||
| Line 11: | Line 11: | ||
प्रक्रिया कुछ दबाव में गैस से शुरू होती है, <math>P_{\mathrm{i}}</math>, तापमान पर <math>T_{\mathrm{i}}</math>, [[थर्मल संपर्क]] कंटेनर के एक आधे हिस्से तक ही सीमित है (इस आलेख की शुरुआत में आरेखण के शीर्ष भाग को देखें)। गैस प्रारंभिक आयतन घेरती है <math>V_{\mathrm{i}}</math>, यांत्रिक रूप से कंटेनर के दूसरे भाग से अलग हो जाता है, जिसमें एक आयतन होता है <math>V_{\mathrm{0}}</math>, और लगभग शून्य दबाव में है। कंटेनर के दो भागों के बीच नल (ठोस रेखा) को अचानक खोल दिया जाता है, और गैस पूरे कंटेनर को भरने के लिए फैल जाती है, जिसका कुल आयतन होता है <math>V_{\mathrm{f}} = V_{\mathrm{i}} + V_{\mathrm{0}}</math> (ड्राइंग का निचला भाग देखें)। बाईं ओर डिब्बे में डाला गया थर्मामीटर (ड्राइंग में नहीं दिखाया गया है) विस्तार से पहले और बाद में गैस के [[थर्मोडायनामिक तापमान]] को मापता है। | प्रक्रिया कुछ दबाव में गैस से शुरू होती है, <math>P_{\mathrm{i}}</math>, तापमान पर <math>T_{\mathrm{i}}</math>, [[थर्मल संपर्क]] कंटेनर के एक आधे हिस्से तक ही सीमित है (इस आलेख की शुरुआत में आरेखण के शीर्ष भाग को देखें)। गैस प्रारंभिक आयतन घेरती है <math>V_{\mathrm{i}}</math>, यांत्रिक रूप से कंटेनर के दूसरे भाग से अलग हो जाता है, जिसमें एक आयतन होता है <math>V_{\mathrm{0}}</math>, और लगभग शून्य दबाव में है। कंटेनर के दो भागों के बीच नल (ठोस रेखा) को अचानक खोल दिया जाता है, और गैस पूरे कंटेनर को भरने के लिए फैल जाती है, जिसका कुल आयतन होता है <math>V_{\mathrm{f}} = V_{\mathrm{i}} + V_{\mathrm{0}}</math> (ड्राइंग का निचला भाग देखें)। बाईं ओर डिब्बे में डाला गया थर्मामीटर (ड्राइंग में नहीं दिखाया गया है) विस्तार से पहले और बाद में गैस के [[थर्मोडायनामिक तापमान]] को मापता है। | ||
इस प्रयोग में थर्मोडायनामिक प्रणाली में दोनों कक्ष होते हैं; यानी, प्रयोग के अंत में गैस द्वारा कब्जा कर लिया गया पूरा क्षेत्र। क्योंकि यह प्रणाली ऊष्मीय रूप से पृथक है, यह अपने परिवेश के साथ ऊष्मा का आदान-प्रदान नहीं कर सकती है। इसके अलावा, चूंकि सिस्टम की कुल मात्रा स्थिर रखी जाती है, सिस्टम अपने परिवेश पर काम नहीं कर सकता।<ref>Note that the fact that the gas expands in a vacuum and thus against zero pressure is irrelevant. The work done by the system would also be zero if the right hand side of the chamber were not evacuated, but is instead filled with a gas at a lower pressure. While the expanding gas would then do work against the gas in the right-hand side of the container, the whole system doesn't do any work against the environment.</ref> नतीजतन, [[आंतरिक ऊर्जा]] में परिवर्तन, <math>\Delta U</math>, शून्य है। आंतरिक ऊर्जा में आंतरिक गतिज ऊर्जा (अणुओं की गति के कारण) और आंतरिक संभावित ऊर्जा (इंटरमॉलिक्युलर बलों के कारण) होती है। जब आणविक गति यादृच्छिक होती है, तो तापमान आंतरिक गतिज ऊर्जा का माप होता है। इस मामले में, आंतरिक गतिज ऊर्जा को ऊष्मा कहा जाता है। यदि कक्ष संतुलन तक नहीं पहुंचे हैं, तो प्रवाह की कुछ गतिज ऊर्जा होगी, जो एक थर्मामीटर द्वारा पता लगाने योग्य नहीं है (और इसलिए गर्मी का घटक नहीं है)। इस प्रकार, तापमान में परिवर्तन गतिज ऊर्जा में परिवर्तन का संकेत देता है, और इनमें से कुछ परिवर्तन तब तक ऊष्मा के रूप में प्रकट नहीं होंगे जब तक कि तापीय संतुलन पुन: स्थापित नहीं हो जाता। जब ऊष्मा को प्रवाह की गतिज ऊर्जा में स्थानांतरित किया जाता है, तो इससे तापमान में कमी आती है।<ref>V.A. Kirillin, et al, Engineering Thermodynamics,(1981) Mir Publishers, Chapter 7.7 p.265</ref> व्यवहार में, सरल दो-कक्ष मुक्त विस्तार प्रयोग में अक्सर एक 'छिद्रपूर्ण प्लग' | इस प्रयोग में थर्मोडायनामिक प्रणाली में दोनों कक्ष होते हैं; यानी, प्रयोग के अंत में गैस द्वारा कब्जा कर लिया गया पूरा क्षेत्र। क्योंकि यह प्रणाली ऊष्मीय रूप से पृथक है, यह अपने परिवेश के साथ ऊष्मा का आदान-प्रदान नहीं कर सकती है। इसके अलावा, चूंकि सिस्टम की कुल मात्रा स्थिर रखी जाती है, सिस्टम अपने परिवेश पर काम नहीं कर सकता।<ref>Note that the fact that the gas expands in a vacuum and thus against zero pressure is irrelevant. The work done by the system would also be zero if the right hand side of the chamber were not evacuated, but is instead filled with a gas at a lower pressure. While the expanding gas would then do work against the gas in the right-hand side of the container, the whole system doesn't do any work against the environment.</ref> नतीजतन, [[आंतरिक ऊर्जा]] में परिवर्तन, <math>\Delta U</math>, शून्य है। आंतरिक ऊर्जा में आंतरिक गतिज ऊर्जा (अणुओं की गति के कारण) और आंतरिक संभावित ऊर्जा (इंटरमॉलिक्युलर बलों के कारण) होती है। जब आणविक गति यादृच्छिक होती है, तो तापमान आंतरिक गतिज ऊर्जा का माप होता है। इस मामले में, आंतरिक गतिज ऊर्जा को ऊष्मा कहा जाता है। यदि कक्ष संतुलन तक नहीं पहुंचे हैं, तो प्रवाह की कुछ गतिज ऊर्जा होगी, जो एक थर्मामीटर द्वारा पता लगाने योग्य नहीं है (और इसलिए गर्मी का घटक नहीं है)। इस प्रकार, तापमान में परिवर्तन गतिज ऊर्जा में परिवर्तन का संकेत देता है, और इनमें से कुछ परिवर्तन तब तक ऊष्मा के रूप में प्रकट नहीं होंगे जब तक कि तापीय संतुलन पुन: स्थापित नहीं हो जाता। जब ऊष्मा को प्रवाह की गतिज ऊर्जा में स्थानांतरित किया जाता है, तो इससे तापमान में कमी आती है।<ref>V.A. Kirillin, et al, Engineering Thermodynamics,(1981) Mir Publishers, Chapter 7.7 p.265</ref> व्यवहार में, सरल दो-कक्ष मुक्त विस्तार प्रयोग में अक्सर एक 'छिद्रपूर्ण प्लग' सम्मिलित होता है जिसके माध्यम से विस्तारित हवा को निम्न दबाव कक्ष तक पहुंचने के लिए प्रवाहित होना चाहिए। इस प्लग का उद्देश्य दिशात्मक प्रवाह को बाधित करना है, जिससे थर्मल संतुलन की पुनर्स्थापना तेज हो जाती है। | ||
चूंकि कुल आंतरिक ऊर्जा नहीं बदलती है, प्राप्त कक्ष में प्रवाह का ठहराव प्रवाह की गतिज ऊर्जा को यादृच्छिक गति (गर्मी) में परिवर्तित करता है ताकि तापमान अपने अनुमानित मूल्य पर चढ़ जाए। | चूंकि कुल आंतरिक ऊर्जा नहीं बदलती है, प्राप्त कक्ष में प्रवाह का ठहराव प्रवाह की गतिज ऊर्जा को यादृच्छिक गति (गर्मी) में परिवर्तित करता है ताकि तापमान अपने अनुमानित मूल्य पर चढ़ जाए। | ||
यदि प्रारंभिक हवा का तापमान इतना कम है कि गैर-आदर्श गैस गुण संघनन का कारण बनते हैं, तो कुछ आंतरिक ऊर्जा तरल उत्पादों में अव्यक्त गर्मी (संभावित ऊर्जा में एक ऑफसेटिंग परिवर्तन) में परिवर्तित हो जाती है। इस प्रकार, कम तापमान पर जूल विस्तार प्रक्रिया अंतराआणविक बलों के बारे में जानकारी प्रदान करती है। | यदि प्रारंभिक हवा का तापमान इतना कम है कि गैर-आदर्श गैस गुण संघनन का कारण बनते हैं, तो कुछ आंतरिक ऊर्जा तरल उत्पादों में अव्यक्त गर्मी (संभावित ऊर्जा में एक ऑफसेटिंग परिवर्तन) में परिवर्तित हो जाती है। इस प्रकार, कम तापमान पर जूल विस्तार प्रक्रिया अंतराआणविक बलों के बारे में जानकारी प्रदान करती है। | ||
| Line 32: | Line 32: | ||
इंटरमॉलिक्युलर बल कम दूरी पर प्रतिकारक और लंबी दूरी पर आकर्षक होते हैं (उदाहरण के लिए, [[लेनार्ड-जोन्स क्षमता]] देखें)। चूंकि आणविक व्यास की तुलना में गैस के अणुओं के बीच की दूरी बड़ी होती है, इसलिए गैस की ऊर्जा आमतौर पर मुख्य रूप से क्षमता के आकर्षक हिस्से से प्रभावित होती है। नतीजतन, एक गैस का विस्तार आमतौर पर इंटरमॉलिक्युलर बलों से जुड़ी संभावित ऊर्जा को बढ़ाता है। कुछ पाठ्यपुस्तकों का कहना है कि गैसों के लिए हमेशा यही स्थिति होनी चाहिए और जूल विस्तार हमेशा शीतलन उत्पन्न करता है।<ref>Pippard, A. B. (1957). ''Elements of Classical Thermodynamics'', p. 73. Cambridge University Press, Cambridge, U.K.</ref><ref>Tabor, D. (1991). ''Gases, liquids and solids'', p. 148. Cambridge University Press, Cambridge, U.K. {{ISBN|0 521 40667 6}}.</ref> जब अणु एक साथ पास होते हैं, तथापि, प्रतिकारक अन्योन्य क्रियाएं अधिक महत्वपूर्ण होती हैं और इस प्रकार जूल विस्तार के दौरान तापमान में वृद्धि संभव है।<ref>Keenan, J. H. (1970). ''Thermodynamics'', p. 414. M.I.T. Press, Cambridge, Massachusetts.</ref> | इंटरमॉलिक्युलर बल कम दूरी पर प्रतिकारक और लंबी दूरी पर आकर्षक होते हैं (उदाहरण के लिए, [[लेनार्ड-जोन्स क्षमता]] देखें)। चूंकि आणविक व्यास की तुलना में गैस के अणुओं के बीच की दूरी बड़ी होती है, इसलिए गैस की ऊर्जा आमतौर पर मुख्य रूप से क्षमता के आकर्षक हिस्से से प्रभावित होती है। नतीजतन, एक गैस का विस्तार आमतौर पर इंटरमॉलिक्युलर बलों से जुड़ी संभावित ऊर्जा को बढ़ाता है। कुछ पाठ्यपुस्तकों का कहना है कि गैसों के लिए हमेशा यही स्थिति होनी चाहिए और जूल विस्तार हमेशा शीतलन उत्पन्न करता है।<ref>Pippard, A. B. (1957). ''Elements of Classical Thermodynamics'', p. 73. Cambridge University Press, Cambridge, U.K.</ref><ref>Tabor, D. (1991). ''Gases, liquids and solids'', p. 148. Cambridge University Press, Cambridge, U.K. {{ISBN|0 521 40667 6}}.</ref> जब अणु एक साथ पास होते हैं, तथापि, प्रतिकारक अन्योन्य क्रियाएं अधिक महत्वपूर्ण होती हैं और इस प्रकार जूल विस्तार के दौरान तापमान में वृद्धि संभव है।<ref>Keenan, J. H. (1970). ''Thermodynamics'', p. 414. M.I.T. Press, Cambridge, Massachusetts.</ref> | ||
सैद्धांतिक रूप से यह भविष्यवाणी की गई है कि, पर्याप्त उच्च तापमान पर, जूल विस्तार के दौरान सभी गैसें गर्म होंगी<ref name=":0" />इसका कारण यह है कि किसी भी क्षण बहुत कम संख्या में अणु टकराते हैं; उन कुछ अणुओं के लिए, प्रतिकर्षण बल प्रबल होंगे और स्थितिज ऊर्जा सकारात्मक होगी। जैसे-जैसे तापमान बढ़ता है, टक्करों की आवृत्ति और टक्करों में | सैद्धांतिक रूप से यह भविष्यवाणी की गई है कि, पर्याप्त उच्च तापमान पर, जूल विस्तार के दौरान सभी गैसें गर्म होंगी<ref name=":0" />इसका कारण यह है कि किसी भी क्षण बहुत कम संख्या में अणु टकराते हैं; उन कुछ अणुओं के लिए, प्रतिकर्षण बल प्रबल होंगे और स्थितिज ऊर्जा सकारात्मक होगी। जैसे-जैसे तापमान बढ़ता है, टक्करों की आवृत्ति और टक्करों में सम्मिलित ऊर्जा दोनों में वृद्धि होती है, इसलिए टकरावों से जुड़ी सकारात्मक स्थितिज ऊर्जा बहुत तेजी से बढ़ती है। यदि तापमान काफी अधिक है, तो यह कुल संभावित ऊर्जा को सकारात्मक बना सकता है, इसके बावजूद कि बड़ी संख्या में अणु कमजोर आकर्षक अंतःक्रियाओं का अनुभव कर रहे हैं। जब संभावित ऊर्जा सकारात्मक होती है, तो निरंतर ऊर्जा विस्तार संभावित ऊर्जा को कम करता है और गतिज ऊर्जा को बढ़ाता है, जिसके परिणामस्वरूप तापमान में वृद्धि होती है। यह व्यवहार केवल हाइड्रोजन और हीलियम के लिए देखा गया है; जिनकी बहुत कमजोर आकर्षक अंतःक्रियाएँ होती हैं। अन्य गैसों के लिए यह जूल उलटा तापमान बहुत अधिक प्रतीत होता है।<ref name=":1" /> | ||
| Line 48: | Line 48: | ||
जैसा कि यह समीकरण थर्मोडायनामिक राज्य चर में परिवर्तन से संबंधित है, यह किसी भी अर्धस्थैतिक परिवर्तन के लिए मान्य है, भले ही यह अपरिवर्तनीय या प्रतिवर्ती हो। उपरोक्त परिभाषित पथ के लिए हमारे पास वह है {{math|1=d''U'' = 0}} और इस तरह {{math|1=''T'' d''S'' = ''P'' d''V''}}, और इसलिए जूल विस्तार के लिए एंट्रोपी में वृद्धि है | जैसा कि यह समीकरण थर्मोडायनामिक राज्य चर में परिवर्तन से संबंधित है, यह किसी भी अर्धस्थैतिक परिवर्तन के लिए मान्य है, भले ही यह अपरिवर्तनीय या प्रतिवर्ती हो। उपरोक्त परिभाषित पथ के लिए हमारे पास वह है {{math|1=d''U'' = 0}} और इस तरह {{math|1=''T'' d''S'' = ''P'' d''V''}}, और इसलिए जूल विस्तार के लिए एंट्रोपी में वृद्धि है | ||
<math display="block">\Delta S=\int_i^f\mathrm{d}S=\int_{V_0}^{2V_0} \frac{P\,\mathrm{d}V}{T}=\int_{V_0}^{2V_0} \frac{n R\,\mathrm{d}V}{V}=n R\ln 2.</math> | <math display="block">\Delta S=\int_i^f\mathrm{d}S=\int_{V_0}^{2V_0} \frac{P\,\mathrm{d}V}{T}=\int_{V_0}^{2V_0} \frac{n R\,\mathrm{d}V}{V}=n R\ln 2.</math> | ||
एंट्रॉपी परिवर्तन की गणना करने के तीसरे तरीके में एक मार्ग | एंट्रॉपी परिवर्तन की गणना करने के तीसरे तरीके में एक मार्ग सम्मिलित होता है जिसमें हीटिंग के बाद उलटा [[एडियाबेटिक विस्तार]] होता है। हम पहले सिस्टम को एक प्रतिवर्ती एडियाबेटिक विस्तार से गुजरने देते हैं जिसमें आयतन दोगुना हो जाता है। विस्तार के दौरान, सिस्टम कार्य करता है और गैस का तापमान नीचे चला जाता है, इसलिए हमें जूल विस्तार के मामले में सिस्टम को उसी अंतिम स्थिति में लाने के लिए किए गए कार्य के बराबर गर्मी की आपूर्ति करनी होगी। | ||
प्रतिवर्ती एडियाबेटिक विस्तार के दौरान, हमारे पास है {{math|1=d''S'' = 0}}. एन्ट्रापी के लिए शास्त्रीय अभिव्यक्ति से यह प्राप्त किया जा सकता है कि निरंतर एन्ट्रापी पर आयतन के दोगुने होने के बाद का तापमान इस प्रकार दिया जाता है: | प्रतिवर्ती एडियाबेटिक विस्तार के दौरान, हमारे पास है {{math|1=d''S'' = 0}}. एन्ट्रापी के लिए शास्त्रीय अभिव्यक्ति से यह प्राप्त किया जा सकता है कि निरंतर एन्ट्रापी पर आयतन के दोगुने होने के बाद का तापमान इस प्रकार दिया जाता है: | ||
| Line 54: | Line 54: | ||
मोनोआटोमिक आदर्श गैस के लिए। गैस को प्रारंभिक ताप तक गर्म करना {{math|''T''<sub>i</sub>}} एंट्रॉपी को राशि से बढ़ाता है | मोनोआटोमिक आदर्श गैस के लिए। गैस को प्रारंभिक ताप तक गर्म करना {{math|''T''<sub>i</sub>}} एंट्रॉपी को राशि से बढ़ाता है | ||
<math display="block">\Delta S = n \int_{T}^{T_i} C_\mathrm{V} \frac{\mathrm{d}T'}{T'} = nR \ln 2.</math> | <math display="block">\Delta S = n \int_{T}^{T_i} C_\mathrm{V} \frac{\mathrm{d}T'}{T'} = nR \ln 2.</math> | ||
हम पूछ सकते हैं कि कार्य क्या होगा, यदि एक बार जूल विस्तार हो जाने के बाद, गैस को संपीड़ित करके वापस बाईं ओर रखा जाता है। सबसे अच्छी विधि (अर्थात् वह विधि जिसमें कम से कम कार्य | हम पूछ सकते हैं कि कार्य क्या होगा, यदि एक बार जूल विस्तार हो जाने के बाद, गैस को संपीड़ित करके वापस बाईं ओर रखा जाता है। सबसे अच्छी विधि (अर्थात् वह विधि जिसमें कम से कम कार्य सम्मिलित है) उत्क्रमणीय समतापीय संपीडन की है, जिसमें कार्य करना होगा {{mvar|W}} द्वारा दिए गए | ||
<math display="block">W = -\int_{2V_0}^{V_0} P\,\mathrm{d}V = - \int_{2V_0}^{V_0} \frac{nRT}{V} \mathrm{d}V = nRT\ln 2 = T \Delta S_\text{gas}.</math> | <math display="block">W = -\int_{2V_0}^{V_0} P\,\mathrm{d}V = - \int_{2V_0}^{V_0} \frac{nRT}{V} \mathrm{d}V = nRT\ln 2 = T \Delta S_\text{gas}.</math> | ||
जूल विस्तार के दौरान परिवेश नहीं बदलता है, इसलिए परिवेश की एन्ट्रापी स्थिर होती है। तो तथाकथित ब्रह्मांड का एन्ट्रापी परिवर्तन गैस के एन्ट्रापी परिवर्तन के बराबर है जो है {{math|''nR'' ln 2}}. | जूल विस्तार के दौरान परिवेश नहीं बदलता है, इसलिए परिवेश की एन्ट्रापी स्थिर होती है। तो तथाकथित ब्रह्मांड का एन्ट्रापी परिवर्तन गैस के एन्ट्रापी परिवर्तन के बराबर है जो है {{math|''nR'' ln 2}}. | ||
Revision as of 12:24, 18 March 2023
जूल विस्तार (जिसे मुक्त विस्तार भी कहा जाता है) ऊष्मप्रवैगिकी में अपरिवर्तनीय प्रक्रिया (ऊष्मप्रवैगिकी) है। जिसमें तापीय रूप से पृथक कंटेनर (एक छोटे विभाजन के माध्यम से) के एक ओर गैस की मात्रा रखी जाती है। जिसमें कंटेनर के दूसरी ओर खाली किया जाता है। कंटेनर के दो भागों के बीच विभाजन खोला जाता है और गैस पूरे कंटेनर को भर देती है।
जूल विस्तार आदर्श गैस से जुड़े एक प्रयोग के रूप में माना जाता है। मौलिक ऊष्मप्रवैगिकी में यह उपयोगी अभ्यास है। यह थर्मोडायनामिक मात्रा में परिवर्तन की गणना के लिए सुविधाजनक उदाहरण प्रदान करता है। जिसमें ब्रह्मांड (एन्ट्रॉपी उत्पादन) की एन्ट्रॉपी में परिणामी वृद्धि सम्मिलित है। जो इस स्वाभाविक रूप से अपरिवर्तनीय प्रक्रिया से उत्पन्न होती है। वास्तविक जूल विस्तार प्रयोग में आवश्यक रूप से वास्तविक गैस सम्मिलित होती है। इस प्रकार की प्रक्रिया में तापमान परिवर्तन अंतर-आणविक बल का माप प्रदान करता है।
इस प्रकार के विस्तार का नाम जेम्स प्रेस्कॉट जौल के नाम पर रखा गया है, जिन्होंने 1845 में गर्मी के यांत्रिक समकक्ष के लिए अपने अध्ययन में इस विस्तार का इस्तेमाल किया था, लेकिन यह विस्तार जौल से बहुत पहले जाना जाता था। जॉन लेस्ली (भौतिक विज्ञानी) द्वारा, 19वीं शताब्दी की शुरुआत में, और 1807 में जोसेफ लुइस गे-लुसाक |[1][2] जूल विस्तार को जूल-थॉमसन विस्तार या थ्रॉटलिंग प्रक्रिया के साथ भ्रमित नहीं होना चाहिए जो एक वाल्व या झरझरा प्लग के माध्यम से उच्च दबाव वाले क्षेत्र से कम दबाव वाले क्षेत्र से गैस के स्थिर प्रवाह को संदर्भित करता है।
विवरण
प्रक्रिया कुछ दबाव में गैस से शुरू होती है, , तापमान पर , थर्मल संपर्क कंटेनर के एक आधे हिस्से तक ही सीमित है (इस आलेख की शुरुआत में आरेखण के शीर्ष भाग को देखें)। गैस प्रारंभिक आयतन घेरती है , यांत्रिक रूप से कंटेनर के दूसरे भाग से अलग हो जाता है, जिसमें एक आयतन होता है , और लगभग शून्य दबाव में है। कंटेनर के दो भागों के बीच नल (ठोस रेखा) को अचानक खोल दिया जाता है, और गैस पूरे कंटेनर को भरने के लिए फैल जाती है, जिसका कुल आयतन होता है (ड्राइंग का निचला भाग देखें)। बाईं ओर डिब्बे में डाला गया थर्मामीटर (ड्राइंग में नहीं दिखाया गया है) विस्तार से पहले और बाद में गैस के थर्मोडायनामिक तापमान को मापता है।
इस प्रयोग में थर्मोडायनामिक प्रणाली में दोनों कक्ष होते हैं; यानी, प्रयोग के अंत में गैस द्वारा कब्जा कर लिया गया पूरा क्षेत्र। क्योंकि यह प्रणाली ऊष्मीय रूप से पृथक है, यह अपने परिवेश के साथ ऊष्मा का आदान-प्रदान नहीं कर सकती है। इसके अलावा, चूंकि सिस्टम की कुल मात्रा स्थिर रखी जाती है, सिस्टम अपने परिवेश पर काम नहीं कर सकता।[3] नतीजतन, आंतरिक ऊर्जा में परिवर्तन, , शून्य है। आंतरिक ऊर्जा में आंतरिक गतिज ऊर्जा (अणुओं की गति के कारण) और आंतरिक संभावित ऊर्जा (इंटरमॉलिक्युलर बलों के कारण) होती है। जब आणविक गति यादृच्छिक होती है, तो तापमान आंतरिक गतिज ऊर्जा का माप होता है। इस मामले में, आंतरिक गतिज ऊर्जा को ऊष्मा कहा जाता है। यदि कक्ष संतुलन तक नहीं पहुंचे हैं, तो प्रवाह की कुछ गतिज ऊर्जा होगी, जो एक थर्मामीटर द्वारा पता लगाने योग्य नहीं है (और इसलिए गर्मी का घटक नहीं है)। इस प्रकार, तापमान में परिवर्तन गतिज ऊर्जा में परिवर्तन का संकेत देता है, और इनमें से कुछ परिवर्तन तब तक ऊष्मा के रूप में प्रकट नहीं होंगे जब तक कि तापीय संतुलन पुन: स्थापित नहीं हो जाता। जब ऊष्मा को प्रवाह की गतिज ऊर्जा में स्थानांतरित किया जाता है, तो इससे तापमान में कमी आती है।[4] व्यवहार में, सरल दो-कक्ष मुक्त विस्तार प्रयोग में अक्सर एक 'छिद्रपूर्ण प्लग' सम्मिलित होता है जिसके माध्यम से विस्तारित हवा को निम्न दबाव कक्ष तक पहुंचने के लिए प्रवाहित होना चाहिए। इस प्लग का उद्देश्य दिशात्मक प्रवाह को बाधित करना है, जिससे थर्मल संतुलन की पुनर्स्थापना तेज हो जाती है। चूंकि कुल आंतरिक ऊर्जा नहीं बदलती है, प्राप्त कक्ष में प्रवाह का ठहराव प्रवाह की गतिज ऊर्जा को यादृच्छिक गति (गर्मी) में परिवर्तित करता है ताकि तापमान अपने अनुमानित मूल्य पर चढ़ जाए। यदि प्रारंभिक हवा का तापमान इतना कम है कि गैर-आदर्श गैस गुण संघनन का कारण बनते हैं, तो कुछ आंतरिक ऊर्जा तरल उत्पादों में अव्यक्त गर्मी (संभावित ऊर्जा में एक ऑफसेटिंग परिवर्तन) में परिवर्तित हो जाती है। इस प्रकार, कम तापमान पर जूल विस्तार प्रक्रिया अंतराआणविक बलों के बारे में जानकारी प्रदान करती है।
आदर्श गैसें
यदि गैस आदर्श है, दोनों प्रारंभिक (, , ) और अंतिम (, , ) शर्तें आदर्श गैस कानून का पालन करती हैं, ताकि शुरुआत में
तथ्य यह है कि तापमान में परिवर्तन नहीं होता है, इस प्रक्रिया के लिए ब्रह्मांड की एन्ट्रापी में परिवर्तन की गणना करना आसान हो जाता है।
वास्तविक गैसें
आदर्श गैसों के विपरीत, जूल विस्तार के दौरान वास्तविक गैस का तापमान बदल जाएगा। उनके उलटा तापमान से नीचे के तापमान पर जूल विस्तार के दौरान गैसें ठंडी होंगी, जबकि उच्च तापमान पर वे गर्म होंगी।[5][6] गैस का उलटा तापमान आमतौर पर कमरे के तापमान से बहुत अधिक होता है; लगभग 40 K के व्युत्क्रम तापमान के साथ हीलियम और लगभग 200 K के व्युत्क्रम तापमान के साथ हाइड्रोजन इसके अपवाद हैं। चूंकि जूल विस्तार के दौरान गैस की आंतरिक ऊर्जा स्थिर होती है, आंतरिक गतिज ऊर्जा के रूपांतरण के कारण शीतलन होना चाहिए आंतरिक संभावित ऊर्जा, इसके विपरीत वार्मिंग के मामले में।
इंटरमॉलिक्युलर बल कम दूरी पर प्रतिकारक और लंबी दूरी पर आकर्षक होते हैं (उदाहरण के लिए, लेनार्ड-जोन्स क्षमता देखें)। चूंकि आणविक व्यास की तुलना में गैस के अणुओं के बीच की दूरी बड़ी होती है, इसलिए गैस की ऊर्जा आमतौर पर मुख्य रूप से क्षमता के आकर्षक हिस्से से प्रभावित होती है। नतीजतन, एक गैस का विस्तार आमतौर पर इंटरमॉलिक्युलर बलों से जुड़ी संभावित ऊर्जा को बढ़ाता है। कुछ पाठ्यपुस्तकों का कहना है कि गैसों के लिए हमेशा यही स्थिति होनी चाहिए और जूल विस्तार हमेशा शीतलन उत्पन्न करता है।[7][8] जब अणु एक साथ पास होते हैं, तथापि, प्रतिकारक अन्योन्य क्रियाएं अधिक महत्वपूर्ण होती हैं और इस प्रकार जूल विस्तार के दौरान तापमान में वृद्धि संभव है।[9] सैद्धांतिक रूप से यह भविष्यवाणी की गई है कि, पर्याप्त उच्च तापमान पर, जूल विस्तार के दौरान सभी गैसें गर्म होंगी[5]इसका कारण यह है कि किसी भी क्षण बहुत कम संख्या में अणु टकराते हैं; उन कुछ अणुओं के लिए, प्रतिकर्षण बल प्रबल होंगे और स्थितिज ऊर्जा सकारात्मक होगी। जैसे-जैसे तापमान बढ़ता है, टक्करों की आवृत्ति और टक्करों में सम्मिलित ऊर्जा दोनों में वृद्धि होती है, इसलिए टकरावों से जुड़ी सकारात्मक स्थितिज ऊर्जा बहुत तेजी से बढ़ती है। यदि तापमान काफी अधिक है, तो यह कुल संभावित ऊर्जा को सकारात्मक बना सकता है, इसके बावजूद कि बड़ी संख्या में अणु कमजोर आकर्षक अंतःक्रियाओं का अनुभव कर रहे हैं। जब संभावित ऊर्जा सकारात्मक होती है, तो निरंतर ऊर्जा विस्तार संभावित ऊर्जा को कम करता है और गतिज ऊर्जा को बढ़ाता है, जिसके परिणामस्वरूप तापमान में वृद्धि होती है। यह व्यवहार केवल हाइड्रोजन और हीलियम के लिए देखा गया है; जिनकी बहुत कमजोर आकर्षक अंतःक्रियाएँ होती हैं। अन्य गैसों के लिए यह जूल उलटा तापमान बहुत अधिक प्रतीत होता है।[6]
एंट्रॉपी उत्पादन
एंट्रॉपी राज्य का एक कार्य है, और इसलिए एंट्रॉपी परिवर्तन की गणना सीधे अंतिम और प्रारंभिक संतुलन राज्यों के ज्ञान से की जा सकती है। एक आदर्श गैस के लिए, एन्ट्रापी में परिवर्तन[10] इज़ोटेर्मल प्रक्रिया के समान है जहाँ सभी ऊष्मा कार्य में परिवर्तित हो जाती है:
एन्ट्रापी परिवर्तन का मूल्यांकन करने का दूसरा तरीका प्रारंभिक अवस्था से अंतिम अवस्था तक का मार्ग चुनना है जहाँ सभी मध्यवर्ती अवस्थाएँ संतुलन में हों। इस तरह के मार्ग को केवल उस सीमा में महसूस किया जा सकता है जहां परिवर्तन असीम रूप से धीरे-धीरे होते हैं। ऐसे मार्गों को अर्धस्थैतिक मार्ग भी कहा जाता है। कुछ पुस्तकों में यह मांग की जाती है कि अर्धस्थैतिक मार्ग उत्क्रमणीय होना चाहिए, यहां हम इस अतिरिक्त शर्त को नहीं जोड़ते हैं। प्रारंभिक अवस्था से अंतिम अवस्था तक शुद्ध एन्ट्रापी परिवर्तन क्वासिस्टेटिक मार्ग की विशेष पसंद से स्वतंत्र है, क्योंकि एन्ट्रापी राज्य का एक कार्य है।
यहां बताया गया है कि हम कैसे कैसिस्टैटिक रूट को प्रभावित कर सकते हैं। गैस को एक स्वतंत्र विस्तार से गुजरने देने के बजाय जिसमें आयतन दोगुना हो जाता है, एक मुक्त विस्तार की अनुमति दी जाती है जिसमें आयतन बहुत कम मात्रा में फैलता है δV. थर्मल संतुलन तक पहुंचने के बाद, हम गैस को एक और मुक्त विस्तार से गुजरने देते हैं δV और थर्मल संतुलन तक पहुंचने तक प्रतीक्षा करें। हम इसे तब तक दोहराते हैं जब तक वॉल्यूम दोगुना नहीं हो जाता। सीमा में δV से शून्य तक, यह एक अपरिवर्तनीय होने के बावजूद एक आदर्श अर्ध-स्थैतिक प्रक्रिया बन जाती है। अब, मौलिक उष्मागतिक संबंध के अनुसार, हमारे पास है:
प्रतिवर्ती एडियाबेटिक विस्तार के दौरान, हमारे पास है dS = 0. एन्ट्रापी के लिए शास्त्रीय अभिव्यक्ति से यह प्राप्त किया जा सकता है कि निरंतर एन्ट्रापी पर आयतन के दोगुने होने के बाद का तापमान इस प्रकार दिया जाता है:
वास्तविक-गैस प्रभाव
जूल ने कमरे के तापमान पर हवा के साथ अपना प्रयोग किया जिसे लगभग 22 बार के दबाव से बढ़ाया गया था। वायु, इन परिस्थितियों में, लगभग एक आदर्श गैस है, लेकिन पूरी तरह से नहीं। नतीजतन वास्तविक तापमान परिवर्तन बिल्कुल शून्य नहीं होगा। हवा के थर्मोडायनामिक गुणों के हमारे वर्तमान ज्ञान के साथ [12] हम गणना कर सकते हैं कि रुद्धोष्म परिस्थितियों में आयतन दोगुना होने पर हवा का तापमान लगभग 3 डिग्री सेल्सियस गिर जाना चाहिए। हालांकि, हवा की कम ताप क्षमता और मजबूत तांबे के कंटेनरों की उच्च ताप क्षमता और कैलोरीमीटर के पानी के कारण, मनाया गया तापमान ड्रॉप बहुत छोटा है, इसलिए जौल ने पाया कि उसकी माप सटीकता के भीतर तापमान परिवर्तन शून्य था।
संदर्भ
The majority of good undergraduate textbooks deal with this expansion in great depth; see e.g. Concepts in Thermal Physics, Blundell & Blundell, OUP ISBN 0-19-856770-7
- ↑ D.S.L. Cardwell, From Watt to Clausius, Heinemann, London (1957)
- ↑ M.J. Klein, Principles of the theory of heat, D. Reidel Pub.Cy., Dordrecht (1986)
- ↑ Note that the fact that the gas expands in a vacuum and thus against zero pressure is irrelevant. The work done by the system would also be zero if the right hand side of the chamber were not evacuated, but is instead filled with a gas at a lower pressure. While the expanding gas would then do work against the gas in the right-hand side of the container, the whole system doesn't do any work against the environment.
- ↑ V.A. Kirillin, et al, Engineering Thermodynamics,(1981) Mir Publishers, Chapter 7.7 p.265
- ↑ 5.0 5.1 Goussard, J.-O.; Roulet, B. (1993). "वास्तविक गैसों के लिए मुफ्त विस्तार". Am. J. Phys. 61 (9): 845–848. Bibcode:1993AmJPh..61..845G. doi:10.1119/1.17417.
- ↑ 6.0 6.1 Albarrán-Zavala, E.; Espinoza-Elizarraraz, B.A.; Angulo-Brown, F. (2009). "कुछ सरल वास्तविक गैसों के लिए जूल उलटा तापमान". The Open Thermodynamics Journal. 3: 17–22. doi:10.2174/1874396x00903010017.
- ↑ Pippard, A. B. (1957). Elements of Classical Thermodynamics, p. 73. Cambridge University Press, Cambridge, U.K.
- ↑ Tabor, D. (1991). Gases, liquids and solids, p. 148. Cambridge University Press, Cambridge, U.K. ISBN 0 521 40667 6.
- ↑ Keenan, J. H. (1970). Thermodynamics, p. 414. M.I.T. Press, Cambridge, Massachusetts.
- ↑ Tipler, P., and Mosca, G. Physics for Scientists and Engineers (with modern physics), 6th edition, 2008. pages 602 and 647.
- ↑ K. Huang, Introduction to Statistical Physics, Taylor and Francis, London, 2001
- ↑ Refprop, software package developed by National Institute of Standards and Technology (NIST)