रोमन सतह: Difference between revisions
No edit summary |
No edit summary |
||
| Line 2: | Line 2: | ||
{{research paper|date=March 2018}} | {{research paper|date=March 2018}} | ||
{{more footnotes|date=March 2018}} | {{more footnotes|date=March 2018}} | ||
[[Image:Steiner's Roman Surface.gif|thumb|रोमन सतह का एक एनीमेशन]]गणित में, [[रोम]]न सतह या स्टेनर सतह असाधारण रूप से उच्च स्तर की [[समरूपता]] के साथ त्रि-आयामी अंतरिक्ष में वास्तविक प्रक्षेपी तल का एक स्व-प्रतिच्छेदन मानचित्र (गणित) है। यह [[वास्तविक प्रक्षेपी विमान]] का [[विसर्जन (गणित)]] नहीं है; यद्दपि, एक वक्र के छह विलक्षण बिंदुओं को हटाने से उत्पन्न होने वाला आंकड़ा एक है। इसका नाम इसलिए पड़ा क्योंकि इसकी खोज [[जैकब स्टेनर]] ने की थी जब वह 1844 में रोम में थे।<ref name="Coffman">{{cite web|last1=Coffman|first1=Adam|title=स्टाइनर रोमन सतहों|url=http://old.nationalcurvebank.org/romansurfaces/romansurfaces.htm |website=National Curve Bank|publisher=Indiana University - Purdue University Fort Wayne}}</ref> | [[Image:Steiner's Roman Surface.gif|thumb|रोमन सतह का एक एनीमेशन]]गणित में, [[रोम]]न सतह या स्टेनर सतह असाधारण रूप से उच्च स्तर की [[समरूपता]] के साथ त्रि-आयामी अंतरिक्ष में वास्तविक प्रक्षेपी तल का एक स्व-प्रतिच्छेदन मानचित्र (गणित) है। यह [[वास्तविक प्रक्षेपी विमान]] का [[विसर्जन (गणित)]] नहीं है; यद्दपि, एक वक्र के छह विलक्षण बिंदुओं को हटाने से उत्पन्न होने वाला आंकड़ा एक है। इसका नाम इसलिए पड़ा क्योंकि इसकी खोज [[जैकब स्टेनर]] ने की थी जब वह 1844 में रोम में थे। <ref name="Coffman">{{cite web|last1=Coffman|first1=Adam|title=स्टाइनर रोमन सतहों|url=http://old.nationalcurvebank.org/romansurfaces/romansurfaces.htm |website=National Curve Bank|publisher=Indiana University - Purdue University Fort Wayne}}</ref> | ||
सबसे सरल निर्माण मानचित्र के नीचे उत्पत्ति पर केंद्रित क्षेत्र की छवि के रूप में है <math>f(x,y,z)=(yz,xz,xy).</math> यह का एक निहित सूत्र देता है | सबसे सरल निर्माण मानचित्र के नीचे उत्पत्ति पर केंद्रित क्षेत्र की छवि के रूप में है <math>f(x,y,z)=(yz,xz,xy).</math> यह का एक निहित सूत्र देता है | ||
<!-- | <!-- | ||
| Line 11: | Line 11: | ||
:<math>y=r^{2} \sin \theta \cos \varphi \sin \varphi</math> | :<math>y=r^{2} \sin \theta \cos \varphi \sin \varphi</math> | ||
:<math>z=r^{2} \cos \theta \sin \theta \cos^{2} \varphi </math> | :<math>z=r^{2} \cos \theta \sin \theta \cos^{2} \varphi </math> | ||
मूल एक त्रिपक्षीय बिंदु है, और प्रत्येक {{mvar|xy}}-, {{mvar|yz}}-, और {{mvar|xz}}-विमान वहां की सतह के स्पर्शरेखा होते हैं। स्व-प्रतिच्छेदन के अन्य स्थान दोहरे बिंदु हैं,जो प्रत्येक समन्वय अक्ष के साथ खंडों को परिभाषित करते हैं जो छह चुटकी बिंदुओं में समाप्त होते हैं। पूरी सतह में [[चतुर्पाश्वीय]] [[समरूपता समूह]] है। यह स्टेनर सतह का एक विशेष प्रकार (जिसे टाइप 1 कहा जाता है) है, जो कि [[वेरोनीज़ सतह]] का 3-आयामी [[रैखिक प्रक्षेपण]] है। | मूल एक त्रिपक्षीय बिंदु है, और प्रत्येक {{mvar|xy}}-, {{mvar|yz}}-, और {{mvar|xz}}-विमान वहां की सतह के स्पर्शरेखा होते हैं। स्व-प्रतिच्छेदन के अन्य स्थान दोहरे बिंदु हैं,जो प्रत्येक समन्वय अक्ष के साथ खंडों को परिभाषित करते हैं जो छह चुटकी बिंदुओं में समाप्त होते हैं। पूरी सतह में [[चतुर्पाश्वीय]] [[समरूपता समूह]] है। यह स्टेनर सतह का एक विशेष प्रकार (जिसे टाइप 1 कहा जाता है) है, जो कि [[वेरोनीज़ सतह]] का 3-आयामी [[रैखिक प्रक्षेपण]] है। | ||
==अंतर्निहित सूत्र की व्युत्पत्ति== | ==अंतर्निहित सूत्र की व्युत्पत्ति== | ||
सरलता के लिए हम केवल स्थिति r = 1 पर विचार करते हैं। बिंदु (x, y, z) द्वारा परिभाषित गोले को इस प्रकार दिया गया है कि | सरलता के लिए हम केवल स्थिति r = 1 पर विचार करते हैं। बिंदु (x, y, z) द्वारा परिभाषित गोले को इस प्रकार दिया गया है कि | ||
:<math>x^2 + y^2 + z^2 = 1,\,</math> | :<math>x^2 + y^2 + z^2 = 1,\,</math> | ||
हम इन बिंदुओं पर परिवर्तन '''''T''''' द्वारा परिभाषित लागू करते हैं <math> T(x, y, z) = (y z, z x, x y) = (U,V,W),\, </math> कहना। | हम इन बिंदुओं पर परिवर्तन '''''T''''' द्वारा परिभाषित लागू करते हैं <math> T(x, y, z) = (y z, z x, x y) = (U,V,W),\, </math> कहना। | ||
लेकिन फिर हमारे पास है | लेकिन फिर हमारे पास है | ||
| Line 25: | Line 25: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
इसलिए <math>U^2 V^2 + V^2 W^2 + W^2 U^2 - U V W = 0\,</math> जैसी इच्छा थी। | इसलिए <math>U^2 V^2 + V^2 W^2 + W^2 U^2 - U V W = 0\,</math> जैसी इच्छा थी। | ||
इसके विपरीत, मान लीजिए कि हमें (''U'', ''V'', ''W'') संतोषजनक दिया गया है | इसके विपरीत, मान लीजिए कि हमें (''U'', ''V'', ''W'') संतोषजनक दिया गया है | ||
| Line 37: | Line 37: | ||
जिसके लिए <math>U = x y, V = y z, W = z x,\,</math> | जिसके लिए <math>U = x y, V = y z, W = z x,\,</math> | ||
एक अपवाद के साथ: प्रकरण में 3.बी। नीचे, हम दिखाते हैं कि यह प्रमाणित नहीं किया जा सकता है। | एक अपवाद के साथ: प्रकरण में 3.बी। नीचे, हम दिखाते हैं कि यह प्रमाणित नहीं किया जा सकता है। | ||
1. ऐसे प्रकरण में जहां ''U'', ''V'', ''W'' में से कोई भी 0 नहीं है, हम रख सकते हैं | 1. ऐसे प्रकरण में जहां ''U'', ''V'', ''W'' में से कोई भी 0 नहीं है, हम रख सकते हैं | ||
:<math>x = \sqrt{\frac{WU}{V}},\ y = \sqrt{\frac{UV}{W}},\ z = \sqrt{\frac{VW}{U}}.\,</math> | :<math>x = \sqrt{\frac{WU}{V}},\ y = \sqrt{\frac{UV}{W}},\ z = \sqrt{\frac{VW}{U}}.\,</math> | ||
(ध्यान दें कि (*) इस बात की गारंटी देता है कि या तो U, V, W के तीनों सकारात्मक हैं, या फिर ठीक दो ऋणात्मक हैं। इसलिए ये वर्गमूल धनात्मक संख्याओं के हैं।) | (ध्यान दें कि (*) इस बात की गारंटी देता है कि या तो U, V, W के तीनों सकारात्मक हैं, या फिर ठीक दो ऋणात्मक हैं। इसलिए ये वर्गमूल धनात्मक संख्याओं के हैं। ) | ||
यह पुष्टि करने के लिए (*) का उपयोग करना सरल है कि (**) x, y, z के लिए इस तरह से परिभाषित है। | यह पुष्टि करने के लिए (*) का उपयोग करना सरल है कि (**) x, y, z के लिए इस तरह से परिभाषित है। | ||
2. मान लीजिए कि W 0 है। (*) से इसका तात्पर्य है <math>U^2 V^2 = 0\,</math> | 2. मान लीजिए कि W 0 है। (*) से इसका तात्पर्य है <math>U^2 V^2 = 0\,</math> | ||
और इसलिए U, V में से कम से कम एक को भी 0 होना चाहिए। इससे पता चलता है कि क्या U, V, W में से किसी एक का 0 होना असंभव है। | और इसलिए U, V में से कम से कम एक को भी 0 होना चाहिए। इससे पता चलता है कि क्या U, V, W में से किसी एक का 0 होना असंभव है। | ||
3. मान लीजिए कि U, V, W में से ठीक दो 0 हैं। व्यापकता को खोए बिना हम मान लेते हैं | 3. मान लीजिए कि U, V, W में से ठीक दो 0 हैं। व्यापकता को खोए बिना हम मान लेते हैं | ||
(***)<math> U \neq 0, V = W = 0.\,</math> | (***)<math> U \neq 0, V = W = 0.\,</math> | ||
| Line 55: | Line 55: | ||
यह इस प्रकार है कि <math>z = 0,\,</math> | यह इस प्रकार है कि <math>z = 0,\,</math> | ||
(तब से <math>z \neq 0,\,</math> इसका आशय है <math>x = y = 0,\,</math> और इसलिए <math>U = 0,\,</math> विरोधाभासी (***)।) | (तब से <math>z \neq 0,\,</math> इसका आशय है <math>x = y = 0,\,</math> और इसलिए <math>U = 0,\,</math> विरोधाभासी (***)। ) | ||
'''a.''' एक उप-प्रकरण में जहां | '''a.''' एक उप-प्रकरण में जहां | ||
| Line 63: | Line 63: | ||
और <math>y^2 = \frac{1 - \sqrt{1 - 4 U^2}}{2},</math> | और <math>y^2 = \frac{1 - \sqrt{1 - 4 U^2}}{2},</math> | ||
यह सुनिश्चित करता है कि (*) धारण करता है। इसे सत्यापित करना सरल है <math>x^2 y^2 = U^2,\,</math> | यह सुनिश्चित करता है कि (*) धारण करता है। इसे सत्यापित करना सरल है <math>x^2 y^2 = U^2,\,</math> | ||
और इसलिए x और y के चिह्नों को उचित रूप से चुनना गारंटी देगा <math> x y = U.\,</math> | और इसलिए x और y के चिह्नों को उचित रूप से चुनना गारंटी देगा <math> x y = U.\,</math> | ||
| Line 69: | Line 69: | ||
चूंकि भी <math>y z = 0 = V\text{ and }z x = 0 = W,\,</math> | चूंकि भी <math>y z = 0 = V\text{ and }z x = 0 = W,\,</math> | ||
इससे पता चलता है कि यह उपप्रकरण वांछित बातचीत की ओर ले जाता है। | इससे पता चलता है कि यह उपप्रकरण वांछित बातचीत की ओर ले जाता है। | ||
'''b.''' केस 3 के इस शेष उपप्रकरण में, हमारे पास है <math>|U| > \frac{1}{2}.</math> | '''b.''' केस 3 के इस शेष उपप्रकरण में, हमारे पास है <math>|U| > \frac{1}{2}.</math> | ||
| Line 81: | Line 81: | ||
कोई (''x'', ''y'', ''z'') संतोषजनक नहीं है <math> U = xy,\ V = yz,\ W =zx.</math> | कोई (''x'', ''y'', ''z'') संतोषजनक नहीं है <math> U = xy,\ V = yz,\ W =zx.</math> | ||
इसलिए समीकरण (*) के समाधान (''U,'' 0, 0) के साथ | इसलिए समीकरण (*) के समाधान (''U,'' 0, 0) के साथ <math>|U| > \frac12</math> | ||
और इसी तरह, (0, ''V'', 0) के साथ | और इसी तरह, (0, ''V'', 0) के साथ <math>|V| > \frac12</math> | ||
और (0, 0, ''W'') के साथ <math>|W| > \frac12</math> | और (0, 0, ''W'') के साथ <math>|W| > \frac12</math> | ||
(जिनमें से प्रत्येक दो टुकड़ों में एक समन्वय अक्ष का एक गैर-सुगठित भाग है) रोमन सतह पर किसी भी बिंदु के अनुरूप नहीं है। | (जिनमें से प्रत्येक दो टुकड़ों में एक समन्वय अक्ष का एक गैर-सुगठित भाग है) रोमन सतह पर किसी भी बिंदु के अनुरूप नहीं है। | ||
4. यदि (''U'', ''V'', ''W'') बिंदु (0, 0, 0) है, तो यदि ''x'', ''y'' में से कोई दो, '' z '' शून्य हैं और तीसरे का पूर्ण मान 1 है, स्पष्ट रूप से <math>(xy, yz, zx) = (0, 0, 0) = (U, V, W)\,</math> जैसी इच्छा थी। | 4. यदि (''U'', ''V'', ''W'') बिंदु (0, 0, 0) है, तो यदि ''x'', ''y'' में से कोई दो, ''z'' शून्य हैं और तीसरे का पूर्ण मान 1 है, स्पष्ट रूप से <math>(xy, yz, zx) = (0, 0, 0) = (U, V, W)\,</math> जैसी इच्छा थी। | ||
इसमें सभी संभावित प्रकरणों को सम्मिलित किया गया है। | इसमें सभी संभावित प्रकरणों को सम्मिलित किया गया है। | ||
==पैरामीट्रिक समीकरणों की व्युत्पत्ति== | ==पैरामीट्रिक समीकरणों की व्युत्पत्ति== | ||
मान लीजिए एक गोले की त्रिज्या r, देशांतर φ और अक्षांश θ है। फिर इसके पैरामीट्रिक समीकरण हैं | मान लीजिए एक गोले की त्रिज्या r, देशांतर φ और अक्षांश θ है। फिर इसके पैरामीट्रिक समीकरण हैं | ||
:<math> x = r \, \cos \theta \, \cos \phi, </math> | :<math> x = r \, \cos \theta \, \cos \phi, </math> | ||
:<math> y = r \, \cos \theta \, \sin \phi, </math> | :<math> y = r \, \cos \theta \, \sin \phi, </math> | ||
| Line 102: | Line 102: | ||
:<math> y' = z x = r^2 \, \cos \theta \, \sin \theta \, \cos \phi, </math> | :<math> y' = z x = r^2 \, \cos \theta \, \sin \theta \, \cos \phi, </math> | ||
:<math> z' = x y = r^2 \, \cos^2 \theta \, \cos \phi \, \sin \phi, </math> | :<math> z' = x y = r^2 \, \cos^2 \theta \, \cos \phi \, \sin \phi, </math> | ||
जो रोमन सतह पर बिंदु हैं। मान लीजिए φ का परिसर 0 से 2π तक है, और θ का परिसर 0 से π/2 तक है। | जो रोमन सतह पर बिंदु हैं। मान लीजिए φ का परिसर 0 से 2π तक है, और θ का परिसर 0 से π/2 तक है। | ||
== वास्तविक प्रक्षेपी तल से संबंध == | == वास्तविक प्रक्षेपी तल से संबंध == | ||
क्षेत्र, रूपांतरित होने से पहले, वास्तविक प्रक्षेप्य सतह, RP | क्षेत्र, रूपांतरित होने से पहले, वास्तविक प्रक्षेप्य सतह, RP के लिए होमियोमोर्फिज्म नहिं है। लेकिन मूल बिंदु पर केंद्रित क्षेत्र में यह संपत्ति है,कि यदि बिंदु (x, y, z) क्षेत्र से संबंधित है,तो प्रतिलोमी संबंधी बिंदु (-x, -y, -z) और ये दो बिंदु अलग है: वे गोले के केंद्र के विपरीत दिशा में लेटें। | ||
रूपांतरण ''T'' इन दोनों प्रतिलोमी संबंधी बिंदुओं को एक ही बिंदु में परिवर्तित करता है, | रूपांतरण ''T'' इन दोनों प्रतिलोमी संबंधी बिंदुओं को एक ही बिंदु में परिवर्तित करता है, | ||
:<math> T : (x, y, z) \rightarrow (y z, z x, x y), </math> | :<math> T : (x, y, z) \rightarrow (y z, z x, x y), </math> | ||
:<math> T : (-x, -y, -z) \rightarrow ((-y) (-z), (-z) (-x), (-x) (-y)) = (y z, z x, x y). </math> | :<math> T : (-x, -y, -z) \rightarrow ((-y) (-z), (-z) (-x), (-x) (-y)) = (y z, z x, x y). </math> | ||
चूँकि यह S<sup>2</sup> के सभी बिंदुओं के लिए सत्य है, तो यह स्पष्ट है कि रोमन सतह एक गोलाकार सापेक्ष प्रतिलोम की एक सतत छवि है। क्योंकि प्रतिलोम के कुछ अलग जोड़े सभी रोमन सतह में समान बिंदुओं पर ले जाए जाते हैं, यह RP<sup>2</sup> के लिए होमियोमॉर्फिक नहीं है<sup>2</sup>, लेकिन इसके बजाय वास्तविक प्रक्षेपीय सतह RP<sup>2</sup> का भागफल है = S<sup>2</sup> | चूँकि यह S<sup>2</sup> के सभी बिंदुओं के लिए सत्य है, तो यह स्पष्ट है कि रोमन सतह एक गोलाकार सापेक्ष प्रतिलोम की एक सतत छवि है। क्योंकि प्रतिलोम के कुछ अलग जोड़े सभी रोमन सतह में समान बिंदुओं पर ले जाए जाते हैं, यह RP<sup>2</sup> के लिए होमियोमॉर्फिक नहीं है<sup>2</sup>, लेकिन इसके बजाय वास्तविक प्रक्षेपीय सतह RP<sup>2</sup> का भागफल है = S<sup>2</sup> / (x~-x) इसके अलावा,नक्शा T (ऊपर) S<sup>2</sup> से भागफल के लिए विशेष संपत्ति है कि यह स्थानीय रूप से प्रतिलोम-संबंधी बिंदुओं के छह जोड़े से दूर अंतःक्षेपक है। या RP<sup>2</sup> से परिणामी नक्शा इसे RP<sup>2</sup> का विसर्जन बनाता है-- माइनस छह पॉइंट-- 3 स्पेस में। | ||
(यह पहले कहा गया था कि रोमन सतह RP<sup>2</sup> के लिए होमोमोर्फिक है, लेकिन यह गलती से हुआ था। बाद में यह कहा गया कि रोमन सतह | (यह पहले कहा गया था कि रोमन सतह RP<sup>2</sup> के लिए होमोमोर्फिक है, लेकिन यह गलती से हुआ था। बाद में यह कहा गया कि रोमन सतह RP<sup>2</sup> का विसर्जन है R<sup>3</sup> में, लेकिन वह भी त्रुटि में था। ) {{Citation needed|date=August 2021}} | ||
== रोमन सतह की संरचना == | == रोमन सतह की संरचना == | ||
रोमन सतह में चार बल्बनुमा पालियां होती हैं, प्रत्येक एक चतुर्पाश्वीय के एक अलग कोने पर होता है। | रोमन सतह में चार बल्बनुमा पालियां होती हैं, प्रत्येक एक चतुर्पाश्वीय के एक अलग कोने पर होता है। | ||
एक रोमन सतह का निर्माण तीन [[ठोस अनुवृत्त]] को एक साथ जोड़कर और फिर आवश्यक रूप से किनारों को चिकना करके किया जा सकता है जिससे कि यह एक वांछित आकार (जैसे मानकीकरण) में फिट हो सके। | एक रोमन सतह का निर्माण तीन [[ठोस अनुवृत्त]] को एक साथ जोड़कर और फिर आवश्यक रूप से किनारों को चिकना करके किया जा सकता है जिससे कि यह एक वांछित आकार (जैसे मानकीकरण) में फिट हो सके। | ||
ये तीन अतिशयोक्तिपूर्ण [[ठोस अनुवृत्त]] होने दें: | ये तीन अतिशयोक्तिपूर्ण [[ठोस अनुवृत्त]] होने दें: | ||
| Line 123: | Line 123: | ||
** ''y'' = ''zx'', | ** ''y'' = ''zx'', | ||
** ''z'' = ''xy''. | ** ''z'' = ''xy''. | ||
ये तीन अतिशयोक्तिपूर्ण [[ठोस अनुवृत्त]] एक चतुर्पाश्वीय के छह किनारों के साथ बाहरी रूप से और तीन अक्षों के साथ आंतरिक रूप से प्रतिच्छेद करते हैं। आंतरिक चौराहे दोहरे बिंदुओं के स्थान हैं। दोहरे बिंदुओं के तीन बिंदुपथ: x = 0, y = 0, और z = 0, [[उत्पत्ति (गणित)]] पर एक तिहरे बिंदु पर प्रतिच्छेद करते हैं। | ये तीन अतिशयोक्तिपूर्ण [[ठोस अनुवृत्त]] एक चतुर्पाश्वीय के छह किनारों के साथ बाहरी रूप से और तीन अक्षों के साथ आंतरिक रूप से प्रतिच्छेद करते हैं। आंतरिक चौराहे दोहरे बिंदुओं के स्थान हैं। दोहरे बिंदुओं के तीन बिंदुपथ: x = 0, y = 0, और z = 0, [[उत्पत्ति (गणित)]] पर एक तिहरे बिंदु पर प्रतिच्छेद करते हैं। | ||
उदाहरण के लिए, दिया गया x = yz और y = zx, दूसरा परवलयज x = y/z के बराबर है। तब | उदाहरण के लिए, दिया गया x = yz और y = zx, दूसरा परवलयज x = y/z के बराबर है। तब | ||
:<math> y z = {y \over z} </math> | :<math> y z = {y \over z} </math> | ||
और या तो y = 0 या z<sup>2</sup> = 1 ताकि z = ±1. उनके दो बाहरी चौराहे हैं | और या तो y = 0 या z<sup>2</sup> = 1 ताकि z = ±1. उनके दो बाहरी चौराहे हैं | ||
| Line 136: | Line 136: | ||
* y = -z, x = -1. | * y = -z, x = -1. | ||
आइए देखते हैं टुकड़ों को एक साथ रखा जा रहा है। परवलयजों y = xz और x = yz को मिलाइए। परिणाम चित्र 1 में दिखाया गया है। | आइए देखते हैं टुकड़ों को एक साथ रखा जा रहा है। परवलयजों y = xz और x = yz को मिलाइए। परिणाम चित्र 1 में दिखाया गया है। | ||
[[Image:JointPairOfHyperbolicParaboloids.PNG|thumb|आकृति 1।]][[ठोस अनुवृत्त]] y = x z को नीले और नारंगी रंग में दिखाया गया है। परवलयज x = y z को सियान और बैंगनी रंग में दिखाया गया है। छवि में परवलयज z = 0 अक्ष के साथ प्रतिच्छेद करते हुए दिखाई देते हैं। यदि परवलयज विस्तारित होते हैं, तो उन्हें रेखाओं के साथ प्रतिच्छेद करते हुए भी देखा जाना चाहिए | [[Image:JointPairOfHyperbolicParaboloids.PNG|thumb|आकृति 1। ]][[ठोस अनुवृत्त]] y = x z को नीले और नारंगी रंग में दिखाया गया है। परवलयज x = y z को सियान और बैंगनी रंग में दिखाया गया है। छवि में परवलयज z = 0 अक्ष के साथ प्रतिच्छेद करते हुए दिखाई देते हैं। यदि परवलयज विस्तारित होते हैं, तो उन्हें रेखाओं के साथ प्रतिच्छेद करते हुए भी देखा जाना चाहिए | ||
* z = 1, y = x | * z = 1, y = x | ||
* z = -1, y = -x. | * z = -1, y = -x. | ||
एक साथ दो परवलयज एक साथ [[आर्किड]] की एक जोड़ी की तरह दिखते हैं। | एक साथ दो परवलयज एक साथ [[आर्किड]] की एक जोड़ी की तरह दिखते हैं। | ||
अब उनके माध्यम से तीसरा अतिपरवलयिक परवलयज, z = xy, चलाएँ। परिणाम चित्र 2 में दिखाया गया है। | अब उनके माध्यम से तीसरा अतिपरवलयिक परवलयज, z = xy, चलाएँ। परिणाम चित्र 2 में दिखाया गया है। | ||
[[Image:ThreeJointHyperbolicParaboloidsTopView.PNG|thumb|चित्र 2।]]चित्र 2 में पश्चिम-दक्षिण-पश्चिम और पूर्व-उत्तर-पूर्व दिशाओं में एक जोड़ी द्वार हैं। ये आरंभिक पालीयां हैं और इन्हें बंद करने की आवश्यकता है। जब मुख बंद हो जाते हैं, तो परिणाम चित्र 3 में दिखाई गई रोमन सतह है। | [[Image:ThreeJointHyperbolicParaboloidsTopView.PNG|thumb|चित्र 2। ]]चित्र 2 में पश्चिम-दक्षिण-पश्चिम और पूर्व-उत्तर-पूर्व दिशाओं में एक जोड़ी द्वार हैं। ये आरंभिक पालीयां हैं और इन्हें बंद करने की आवश्यकता है। जब मुख बंद हो जाते हैं, तो परिणाम चित्र 3 में दिखाई गई रोमन सतह है। | ||
[[Image:RomanSurfaceTopView.PNG|thumb|चित्रा 3. रोमन सतह।]]चित्र 3 के पश्चिम और पूर्व दिशाओं में पालियों की एक जोड़ी देखी जा सकती है। पालियों की एक और जोड़ी तीसरे (z = xy) परवलय के नीचे छिपी हुई है और उत्तर और दक्षिण दिशाओं में स्थित है। | [[Image:RomanSurfaceTopView.PNG|thumb|चित्रा 3. रोमन सतह। ]]चित्र 3 के पश्चिम और पूर्व दिशाओं में पालियों की एक जोड़ी देखी जा सकती है। पालियों की एक और जोड़ी तीसरे (z = xy) परवलय के नीचे छिपी हुई है और उत्तर और दक्षिण दिशाओं में स्थित है। | ||
यदि तीन अन्तर्विभाजक अतिपरवलयिक परवलयज इतनी दूर खींचे जाते हैं कि वे चतुष्फलक के किनारों के साथ प्रतिच्छेद करते हैं, तो परिणाम चित्र 4 में दिखाया गया है। | यदि तीन अन्तर्विभाजक अतिपरवलयिक परवलयज इतनी दूर खींचे जाते हैं कि वे चतुष्फलक के किनारों के साथ प्रतिच्छेद करते हैं, तो परिणाम चित्र 4 में दिखाया गया है। | ||
[[Image:RomanTetrahedron.PNG|thumb|चित्रा 4।]]लोबों में से एक को चित्र 4 में सामने-सिर पर-दिखाया गया है। पालीयों को चतुर्पाश्वीय के चार कोनों में से एक के रूप में देखा जा सकता है। | [[Image:RomanTetrahedron.PNG|thumb|चित्रा 4। ]]लोबों में से एक को चित्र 4 में सामने-सिर पर-दिखाया गया है। पालीयों को चतुर्पाश्वीय के चार कोनों में से एक के रूप में देखा जा सकता है। | ||
यदि चित्र 4 में निरंतर सतह के नुकीले किनारे गोलाकार हैं—चिकना कर दिए गए हैं—तो परिणाम चित्र 5 में रोमन सतह है। | यदि चित्र 4 में निरंतर सतह के नुकीले किनारे गोलाकार हैं—चिकना कर दिए गए हैं—तो परिणाम चित्र 5 में रोमन सतह है। | ||
[[Image:RomanSurfaceFrontalView.PNG|चित्रा 5. रोमन सतह।]]चित्र 5 में रोमन सतह के पालियों में से एक को सामने से देखा गया है, और इसका प्रकाश बल्ब - गुब्बारे जैसा - आकार स्पष्ट है। | [[Image:RomanSurfaceFrontalView.PNG|चित्रा 5. रोमन सतह।]]चित्र 5 में रोमन सतह के पालियों में से एक को सामने से देखा गया है, और इसका प्रकाश बल्ब - गुब्बारे जैसा - आकार स्पष्ट है। | ||
यदि चित्र 5 में सतह को 180 डिग्री के आसपास घुमाया जाता है और फिर उल्टा कर दिया जाता है, तो परिणाम चित्र 6 में दिखाया गया है। | यदि चित्र 5 में सतह को 180 डिग्री के आसपास घुमाया जाता है और फिर उल्टा कर दिया जाता है, तो परिणाम चित्र 6 में दिखाया गया है। | ||
[[Image:RomanSurfaceSidewaysView.PNG|thumb|चित्रा 6. रोमन सतह।]]चित्र 6 में तीन पालियों को बग़ल में देखा गया है। पालियों की प्रत्येक जोड़ी के बीच एक समन्वय अक्ष के अनुरूप दोहरे बिंदुओं का स्थान होता है। तीन लोकी मूल बिंदु पर एक तिहरे बिंदु पर प्रतिच्छेद करते हैं। चौथा लोब छिपा हुआ है और सीधे दर्शक के विपरीत दिशा में इंगित करता है। इस लेख के शीर्ष पर दिखाई गई रोमन सतह में भी तिरछे दृश्य में तीन पालियाँ हैं। | [[Image:RomanSurfaceSidewaysView.PNG|thumb|चित्रा 6. रोमन सतह। ]]चित्र 6 में तीन पालियों को बग़ल में देखा गया है। पालियों की प्रत्येक जोड़ी के बीच एक समन्वय अक्ष के अनुरूप दोहरे बिंदुओं का स्थान होता है। तीन लोकी मूल बिंदु पर एक तिहरे बिंदु पर प्रतिच्छेद करते हैं। चौथा लोब छिपा हुआ है और सीधे दर्शक के विपरीत दिशा में इंगित करता है। इस लेख के शीर्ष पर दिखाई गई रोमन सतह में भी तिरछे दृश्य में तीन पालियाँ हैं। | ||
== एकतरफापन == | == एकतरफापन == | ||
रोमन सतह गैर-उन्मुख है, यानी एकतरफा है। यह बिल्कुल स्पष्ट नहीं है। इसे देखने के लिए, चित्र 3 को फिर से देखें। | रोमन सतह गैर-उन्मुख है, यानी एकतरफा है। यह बिल्कुल स्पष्ट नहीं है। इसे देखने के लिए, चित्र 3 को फिर से देखें। | ||
[[Image:RomanSurfaceTopView.PNG|thumb]]तीसरे अति[[पर]]वलयिक परवलयज, z = xy के शीर्ष पर एक चींटी की कल्पना करें। इस चींटी को उत्तर की ओर चलने दो। जैसे-जैसे यह चलता है, यह अन्य दो परवलयों से होकर गुजरेगा, जैसे कोई भूत दीवार से गुजरता है। ये अन्य परवलय केवल विसर्जन की स्व-प्रतिच्छेदी प्रकृति के कारण बाधाओं की तरह प्रतीत होते हैं। चींटी को सभी दोहरे और तिहरे बिंदुओं को अन्देखा करने दें और सीधे उनके बीच से गुज़रें। तो चींटी उत्तर की ओर बढ़ती है और बोलने के लिए दुनिया के किनारे से गिर जाती है। अब यह खुद को उत्तरी पालीयों पर पाता है, जो चित्र 3 के तीसरे परवलय के नीचे छिपा हुआ है। चींटी रोमन सतह के बाहर उल्टा खड़ी है। | [[Image:RomanSurfaceTopView.PNG|thumb]]तीसरे अति[[पर]]वलयिक परवलयज, z = xy के शीर्ष पर एक चींटी की कल्पना करें। इस चींटी को उत्तर की ओर चलने दो। जैसे-जैसे यह चलता है, यह अन्य दो परवलयों से होकर गुजरेगा, जैसे कोई भूत दीवार से गुजरता है। ये अन्य परवलय केवल विसर्जन की स्व-प्रतिच्छेदी प्रकृति के कारण बाधाओं की तरह प्रतीत होते हैं। चींटी को सभी दोहरे और तिहरे बिंदुओं को अन्देखा करने दें और सीधे उनके बीच से गुज़रें। तो चींटी उत्तर की ओर बढ़ती है और बोलने के लिए दुनिया के किनारे से गिर जाती है। अब यह खुद को उत्तरी पालीयों पर पाता है, जो चित्र 3 के तीसरे परवलय के नीचे छिपा हुआ है। चींटी रोमन सतह के बाहर उल्टा खड़ी है। | ||
चींटी को नैऋत्य दिशा की ओर चलने दें। यह एक ढलान (उल्टा-नीचे) पर तब तक चढ़ेगा जब तक कि यह खुद को पश्चिमी पालि के अंदर नहीं पाता। अब चींटी को दक्षिण-पूर्वी दिशा में पश्चिमी पालियों के अंदर z = 0 अक्ष की ओर, हमेशा x-y तल के ऊपर चलने दें। जैसे ही यह z = 0 अक्ष से गुजरता है, चींटी पूर्वी पालियों के बाहर की ओर होगी, दाहिनी ओर खड़ी होगी। | चींटी को नैऋत्य दिशा की ओर चलने दें। यह एक ढलान (उल्टा-नीचे) पर तब तक चढ़ेगा जब तक कि यह खुद को पश्चिमी पालि के अंदर नहीं पाता। अब चींटी को दक्षिण-पूर्वी दिशा में पश्चिमी पालियों के अंदर z = 0 अक्ष की ओर, हमेशा x-y तल के ऊपर चलने दें। जैसे ही यह z = 0 अक्ष से गुजरता है, चींटी पूर्वी पालियों के बाहर की ओर होगी, दाहिनी ओर खड़ी होगी। | ||
फिर इसे उत्तर की ओर, पहाड़ी के ऊपर, फिर उत्तर-पश्चिम की ओर बढ़ने दें ताकि यह x = 0 अक्ष की ओर खिसकने लगे। जैसे ही चींटी इस अक्ष को पार करती है, वह अपने आप को उत्तरी पालि के अंदर, दाहिनी ओर ऊपर की ओर खड़ी पाएगी। अब चींटी को उत्तर दिशा की ओर चलने दें। यह दीवार पर चढ़ेगा, फिर उत्तरी पालि की छत के साथ चढ़ेगा। चींटी तीसरे [[अतिशयोक्तिपूर्ण परवलयज]] पर वापस आ गई है, लेकिन इस बार इसके नीचे और उल्टा खड़ा है। (क्लीन बोतल से तुलना करें।) | फिर इसे उत्तर की ओर, पहाड़ी के ऊपर, फिर उत्तर-पश्चिम की ओर बढ़ने दें ताकि यह x = 0 अक्ष की ओर खिसकने लगे। जैसे ही चींटी इस अक्ष को पार करती है, वह अपने आप को उत्तरी पालि के अंदर, दाहिनी ओर ऊपर की ओर खड़ी पाएगी। अब चींटी को उत्तर दिशा की ओर चलने दें। यह दीवार पर चढ़ेगा, फिर उत्तरी पालि की छत के साथ चढ़ेगा। चींटी तीसरे [[अतिशयोक्तिपूर्ण परवलयज]] पर वापस आ गई है, लेकिन इस बार इसके नीचे और उल्टा खड़ा है। (क्लीन बोतल से तुलना करें। ) | ||
== दोहरे, तिहरे, और पिंचिंग बिंदु == | == दोहरे, तिहरे, और पिंचिंग बिंदु == | ||
रोमन सतह में चार पालियाँ होती हैं। प्रत्येक | रोमन सतह में चार पालियाँ होती हैं। प्रत्येक पालियों की सीमाएं दोहरे बिंदुओं की तीन पंक्तियों का एक समूह हैं। पालियों की प्रत्येक जोड़ी के बीच दोहरे बिंदुओं की एक रेखा होती है। सतह में दोहरे बिंदुओं की कुल तीन रेखाएँ होती हैं, जो निर्देशांक अक्षों पर स्थित होती हैं (पहले दिए गए मानकीकरण में)। दोहरे बिंदुओं की तीन रेखाएँ एक तिहरे बिंदु पर प्रतिच्छेद करती हैं जो मूल पर स्थित है। त्रिक बिंदु दोहरे बिंदुओं की रेखाओं को अर्ध-रेखाओं की एक जोड़ी में काटता है, और प्रत्येक अर्ध-रेखा पालियों की एक जोड़ी के बीच स्थित होती है। पिछले बयानों से आशा की जा सकती है कि अंतरिक्ष के प्रत्येक अष्टक में एक आठ पालियां हो सकती हैं, जिसे समन्वय विमानों द्वारा विभाजित किया गया है। लेकिन पालियां बारी-बारी से अष्टक पर कब्जा कर लेती हैं: चार अष्टक खाली होते हैं और चार पलियों के कब्जे में होते हैं। | ||
यदि रोमन सतह को | यदि रोमन सतह को चतुर्पाश्वीय के अंदर कम से कम संभावित आयतन के साथ अंकित किया जाता है, तो कोई यह पाएगा कि चतुर्पाश्वीय का प्रत्येक किनारा एक बिंदु पर रोमन सतह पर स्पर्शरेखा है, और इन छह बिंदुओं में से प्रत्येक एक व्हिटनी [[गणितीय विलक्षणता]] है। ये विलक्षणताएं, या पिंचिंग बिंदु, सभी दोहरे बिंदुओं की तीन पंक्तियों के किनारों पर स्थित हैं, और उन्हें इस संपत्ति द्वारा परिभाषित किया गया है: कि विलक्षणता पर किसी भी सतह पर कोई समतल [[स्पर्शरेखा स्थान]] नहीं है। | ||
== यह भी देखें == | == यह भी देखें == | ||
*लड़के की सतह - क्रॉस-कैप्स के बिना | *लड़के की सतह - क्रॉस-कैप्स के बिना प्रक्षेपीय सतह का एक [[एम्बेडिंग]] | ||
*[[Tetrahemihexahedron]] - रोमन सतह के समान एक बहुफलक। | *[[Tetrahemihexahedron|टेट्राहेमीहेक्साइड्रोन]] - रोमन सतह के समान एक बहुफलक। | ||
==संदर्भ== | ==संदर्भ== | ||
| Line 179: | Line 179: | ||
=== सामान्य संदर्भ === | === सामान्य संदर्भ === | ||
*एक। कॉफमैन, ए. श्वार्ट्ज, और सी. स्टैंटन: द अलजेब्रा एंड ज्योमेट्री ऑफ स्टेनर एंड अदर क्वाड्रैटिकली पैरामीट्रिजेबल सरफेस। कंप्यूटर एडेड जियोमेट्रिक डिज़ाइन में (3) 13 (अप्रैल 1996), पी। 257-286 | *एक। कॉफमैन, ए. श्वार्ट्ज, और सी. स्टैंटन: द अलजेब्रा एंड ज्योमेट्री ऑफ स्टेनर एंड अदर क्वाड्रैटिकली पैरामीट्रिजेबल सरफेस। कंप्यूटर एडेड जियोमेट्रिक डिज़ाइन में (3) 13 (अप्रैल 1996), पी। 257-286 | ||
*बर्ट जुट्लर, रागी पिएन: जियोमेट्रिक मॉडलिंग और बीजगणितीय ज्यामिति। स्प्रिंगर 2008, {{ISBN|978-3-540-72184-0}}, पी। 30 ({{Google books|1wNGq87gWykC|restricted online copy|page=30}}) | *बर्ट जुट्लर, रागी पिएन: जियोमेट्रिक मॉडलिंग और बीजगणितीय ज्यामिति। स्प्रिंगर 2008, {{ISBN|978-3-540-72184-0}}, पी। 30 ({{Google books|1wNGq87gWykC|restricted online copy|page=30}}) | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
Revision as of 11:18, 3 March 2023
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (March 2018) (Learn how and when to remove this template message) |
गणित में, रोमन सतह या स्टेनर सतह असाधारण रूप से उच्च स्तर की समरूपता के साथ त्रि-आयामी अंतरिक्ष में वास्तविक प्रक्षेपी तल का एक स्व-प्रतिच्छेदन मानचित्र (गणित) है। यह वास्तविक प्रक्षेपी विमान का विसर्जन (गणित) नहीं है; यद्दपि, एक वक्र के छह विलक्षण बिंदुओं को हटाने से उत्पन्न होने वाला आंकड़ा एक है। इसका नाम इसलिए पड़ा क्योंकि इसकी खोज जैकब स्टेनर ने की थी जब वह 1844 में रोम में थे। [1]
सबसे सरल निर्माण मानचित्र के नीचे उत्पत्ति पर केंद्रित क्षेत्र की छवि के रूप में है यह का एक निहित सूत्र देता है
साथ ही, देशांतर के संदर्भ में गोले का मानकीकरण लेना (θ) और अक्षांश (φ), रोमन सतह के लिए निम्नानुसार प्राचलिक समीकरण देता है:
मूल एक त्रिपक्षीय बिंदु है, और प्रत्येक xy-, yz-, और xz-विमान वहां की सतह के स्पर्शरेखा होते हैं। स्व-प्रतिच्छेदन के अन्य स्थान दोहरे बिंदु हैं,जो प्रत्येक समन्वय अक्ष के साथ खंडों को परिभाषित करते हैं जो छह चुटकी बिंदुओं में समाप्त होते हैं। पूरी सतह में चतुर्पाश्वीय समरूपता समूह है। यह स्टेनर सतह का एक विशेष प्रकार (जिसे टाइप 1 कहा जाता है) है, जो कि वेरोनीज़ सतह का 3-आयामी रैखिक प्रक्षेपण है।
अंतर्निहित सूत्र की व्युत्पत्ति
सरलता के लिए हम केवल स्थिति r = 1 पर विचार करते हैं। बिंदु (x, y, z) द्वारा परिभाषित गोले को इस प्रकार दिया गया है कि
हम इन बिंदुओं पर परिवर्तन T द्वारा परिभाषित लागू करते हैं कहना।
लेकिन फिर हमारे पास है
इसलिए जैसी इच्छा थी।
इसके विपरीत, मान लीजिए कि हमें (U, V, W) संतोषजनक दिया गया है
(*)
हम साबित करते हैं कि उपस्थित (x,y,z) ऐसा है कि
(**)
जिसके लिए
एक अपवाद के साथ: प्रकरण में 3.बी। नीचे, हम दिखाते हैं कि यह प्रमाणित नहीं किया जा सकता है।
1. ऐसे प्रकरण में जहां U, V, W में से कोई भी 0 नहीं है, हम रख सकते हैं
(ध्यान दें कि (*) इस बात की गारंटी देता है कि या तो U, V, W के तीनों सकारात्मक हैं, या फिर ठीक दो ऋणात्मक हैं। इसलिए ये वर्गमूल धनात्मक संख्याओं के हैं। )
यह पुष्टि करने के लिए (*) का उपयोग करना सरल है कि (**) x, y, z के लिए इस तरह से परिभाषित है।
2. मान लीजिए कि W 0 है। (*) से इसका तात्पर्य है
और इसलिए U, V में से कम से कम एक को भी 0 होना चाहिए। इससे पता चलता है कि क्या U, V, W में से किसी एक का 0 होना असंभव है।
3. मान लीजिए कि U, V, W में से ठीक दो 0 हैं। व्यापकता को खोए बिना हम मान लेते हैं
(***)
यह इस प्रकार है कि
(तब से इसका आशय है और इसलिए विरोधाभासी (***)। )
a. एक उप-प्रकरण में जहां
अगर हम x और y द्वारा निर्धारित करते हैं
और
यह सुनिश्चित करता है कि (*) धारण करता है। इसे सत्यापित करना सरल है
और इसलिए x और y के चिह्नों को उचित रूप से चुनना गारंटी देगा
चूंकि भी
इससे पता चलता है कि यह उपप्रकरण वांछित बातचीत की ओर ले जाता है।
b. केस 3 के इस शेष उपप्रकरण में, हमारे पास है
तब से
इसे सुनिश्चित करना सरल है
और इस प्रकार इस प्रकरण में, जहां
कोई (x, y, z) संतोषजनक नहीं है
इसलिए समीकरण (*) के समाधान (U, 0, 0) के साथ
और इसी तरह, (0, V, 0) के साथ
और (0, 0, W) के साथ
(जिनमें से प्रत्येक दो टुकड़ों में एक समन्वय अक्ष का एक गैर-सुगठित भाग है) रोमन सतह पर किसी भी बिंदु के अनुरूप नहीं है।
4. यदि (U, V, W) बिंदु (0, 0, 0) है, तो यदि x, y में से कोई दो, z शून्य हैं और तीसरे का पूर्ण मान 1 है, स्पष्ट रूप से जैसी इच्छा थी।
इसमें सभी संभावित प्रकरणों को सम्मिलित किया गया है।
पैरामीट्रिक समीकरणों की व्युत्पत्ति
मान लीजिए एक गोले की त्रिज्या r, देशांतर φ और अक्षांश θ है। फिर इसके पैरामीट्रिक समीकरण हैं
फिर, इस गोले के सभी बिंदुओं पर परिवर्तन T लागू करने से प्राप्त होता है
जो रोमन सतह पर बिंदु हैं। मान लीजिए φ का परिसर 0 से 2π तक है, और θ का परिसर 0 से π/2 तक है।
वास्तविक प्रक्षेपी तल से संबंध
क्षेत्र, रूपांतरित होने से पहले, वास्तविक प्रक्षेप्य सतह, RP के लिए होमियोमोर्फिज्म नहिं है। लेकिन मूल बिंदु पर केंद्रित क्षेत्र में यह संपत्ति है,कि यदि बिंदु (x, y, z) क्षेत्र से संबंधित है,तो प्रतिलोमी संबंधी बिंदु (-x, -y, -z) और ये दो बिंदु अलग है: वे गोले के केंद्र के विपरीत दिशा में लेटें।
रूपांतरण T इन दोनों प्रतिलोमी संबंधी बिंदुओं को एक ही बिंदु में परिवर्तित करता है,
चूँकि यह S2 के सभी बिंदुओं के लिए सत्य है, तो यह स्पष्ट है कि रोमन सतह एक गोलाकार सापेक्ष प्रतिलोम की एक सतत छवि है। क्योंकि प्रतिलोम के कुछ अलग जोड़े सभी रोमन सतह में समान बिंदुओं पर ले जाए जाते हैं, यह RP2 के लिए होमियोमॉर्फिक नहीं है2, लेकिन इसके बजाय वास्तविक प्रक्षेपीय सतह RP2 का भागफल है = S2 / (x~-x) इसके अलावा,नक्शा T (ऊपर) S2 से भागफल के लिए विशेष संपत्ति है कि यह स्थानीय रूप से प्रतिलोम-संबंधी बिंदुओं के छह जोड़े से दूर अंतःक्षेपक है। या RP2 से परिणामी नक्शा इसे RP2 का विसर्जन बनाता है-- माइनस छह पॉइंट-- 3 स्पेस में।
(यह पहले कहा गया था कि रोमन सतह RP2 के लिए होमोमोर्फिक है, लेकिन यह गलती से हुआ था। बाद में यह कहा गया कि रोमन सतह RP2 का विसर्जन है R3 में, लेकिन वह भी त्रुटि में था। )[citation needed]
रोमन सतह की संरचना
रोमन सतह में चार बल्बनुमा पालियां होती हैं, प्रत्येक एक चतुर्पाश्वीय के एक अलग कोने पर होता है।
एक रोमन सतह का निर्माण तीन ठोस अनुवृत्त को एक साथ जोड़कर और फिर आवश्यक रूप से किनारों को चिकना करके किया जा सकता है जिससे कि यह एक वांछित आकार (जैसे मानकीकरण) में फिट हो सके।
ये तीन अतिशयोक्तिपूर्ण ठोस अनुवृत्त होने दें:
- x = yz,
- y = zx,
- z = xy.
ये तीन अतिशयोक्तिपूर्ण ठोस अनुवृत्त एक चतुर्पाश्वीय के छह किनारों के साथ बाहरी रूप से और तीन अक्षों के साथ आंतरिक रूप से प्रतिच्छेद करते हैं। आंतरिक चौराहे दोहरे बिंदुओं के स्थान हैं। दोहरे बिंदुओं के तीन बिंदुपथ: x = 0, y = 0, और z = 0, उत्पत्ति (गणित) पर एक तिहरे बिंदु पर प्रतिच्छेद करते हैं।
उदाहरण के लिए, दिया गया x = yz और y = zx, दूसरा परवलयज x = y/z के बराबर है। तब
और या तो y = 0 या z2 = 1 ताकि z = ±1. उनके दो बाहरी चौराहे हैं
- x = y, z = 1.
- x = -y, z = -1.
इसी तरह, अन्य बाहरी चौराहे हैं
- x = z, y = 1
- x = -z, y = -1;
- y = z, x = 1
- y = -z, x = -1.
आइए देखते हैं टुकड़ों को एक साथ रखा जा रहा है। परवलयजों y = xz और x = yz को मिलाइए। परिणाम चित्र 1 में दिखाया गया है।
ठोस अनुवृत्त y = x z को नीले और नारंगी रंग में दिखाया गया है। परवलयज x = y z को सियान और बैंगनी रंग में दिखाया गया है। छवि में परवलयज z = 0 अक्ष के साथ प्रतिच्छेद करते हुए दिखाई देते हैं। यदि परवलयज विस्तारित होते हैं, तो उन्हें रेखाओं के साथ प्रतिच्छेद करते हुए भी देखा जाना चाहिए
- z = 1, y = x
- z = -1, y = -x.
एक साथ दो परवलयज एक साथ आर्किड की एक जोड़ी की तरह दिखते हैं।
अब उनके माध्यम से तीसरा अतिपरवलयिक परवलयज, z = xy, चलाएँ। परिणाम चित्र 2 में दिखाया गया है।
चित्र 2 में पश्चिम-दक्षिण-पश्चिम और पूर्व-उत्तर-पूर्व दिशाओं में एक जोड़ी द्वार हैं। ये आरंभिक पालीयां हैं और इन्हें बंद करने की आवश्यकता है। जब मुख बंद हो जाते हैं, तो परिणाम चित्र 3 में दिखाई गई रोमन सतह है।
चित्र 3 के पश्चिम और पूर्व दिशाओं में पालियों की एक जोड़ी देखी जा सकती है। पालियों की एक और जोड़ी तीसरे (z = xy) परवलय के नीचे छिपी हुई है और उत्तर और दक्षिण दिशाओं में स्थित है।
यदि तीन अन्तर्विभाजक अतिपरवलयिक परवलयज इतनी दूर खींचे जाते हैं कि वे चतुष्फलक के किनारों के साथ प्रतिच्छेद करते हैं, तो परिणाम चित्र 4 में दिखाया गया है।
लोबों में से एक को चित्र 4 में सामने-सिर पर-दिखाया गया है। पालीयों को चतुर्पाश्वीय के चार कोनों में से एक के रूप में देखा जा सकता है।
यदि चित्र 4 में निरंतर सतह के नुकीले किनारे गोलाकार हैं—चिकना कर दिए गए हैं—तो परिणाम चित्र 5 में रोमन सतह है। चित्रा 5. रोमन सतह।चित्र 5 में रोमन सतह के पालियों में से एक को सामने से देखा गया है, और इसका प्रकाश बल्ब - गुब्बारे जैसा - आकार स्पष्ट है।
यदि चित्र 5 में सतह को 180 डिग्री के आसपास घुमाया जाता है और फिर उल्टा कर दिया जाता है, तो परिणाम चित्र 6 में दिखाया गया है।
चित्र 6 में तीन पालियों को बग़ल में देखा गया है। पालियों की प्रत्येक जोड़ी के बीच एक समन्वय अक्ष के अनुरूप दोहरे बिंदुओं का स्थान होता है। तीन लोकी मूल बिंदु पर एक तिहरे बिंदु पर प्रतिच्छेद करते हैं। चौथा लोब छिपा हुआ है और सीधे दर्शक के विपरीत दिशा में इंगित करता है। इस लेख के शीर्ष पर दिखाई गई रोमन सतह में भी तिरछे दृश्य में तीन पालियाँ हैं।
एकतरफापन
रोमन सतह गैर-उन्मुख है, यानी एकतरफा है। यह बिल्कुल स्पष्ट नहीं है। इसे देखने के लिए, चित्र 3 को फिर से देखें।
तीसरे अतिपरवलयिक परवलयज, z = xy के शीर्ष पर एक चींटी की कल्पना करें। इस चींटी को उत्तर की ओर चलने दो। जैसे-जैसे यह चलता है, यह अन्य दो परवलयों से होकर गुजरेगा, जैसे कोई भूत दीवार से गुजरता है। ये अन्य परवलय केवल विसर्जन की स्व-प्रतिच्छेदी प्रकृति के कारण बाधाओं की तरह प्रतीत होते हैं। चींटी को सभी दोहरे और तिहरे बिंदुओं को अन्देखा करने दें और सीधे उनके बीच से गुज़रें। तो चींटी उत्तर की ओर बढ़ती है और बोलने के लिए दुनिया के किनारे से गिर जाती है। अब यह खुद को उत्तरी पालीयों पर पाता है, जो चित्र 3 के तीसरे परवलय के नीचे छिपा हुआ है। चींटी रोमन सतह के बाहर उल्टा खड़ी है।
चींटी को नैऋत्य दिशा की ओर चलने दें। यह एक ढलान (उल्टा-नीचे) पर तब तक चढ़ेगा जब तक कि यह खुद को पश्चिमी पालि के अंदर नहीं पाता। अब चींटी को दक्षिण-पूर्वी दिशा में पश्चिमी पालियों के अंदर z = 0 अक्ष की ओर, हमेशा x-y तल के ऊपर चलने दें। जैसे ही यह z = 0 अक्ष से गुजरता है, चींटी पूर्वी पालियों के बाहर की ओर होगी, दाहिनी ओर खड़ी होगी।
फिर इसे उत्तर की ओर, पहाड़ी के ऊपर, फिर उत्तर-पश्चिम की ओर बढ़ने दें ताकि यह x = 0 अक्ष की ओर खिसकने लगे। जैसे ही चींटी इस अक्ष को पार करती है, वह अपने आप को उत्तरी पालि के अंदर, दाहिनी ओर ऊपर की ओर खड़ी पाएगी। अब चींटी को उत्तर दिशा की ओर चलने दें। यह दीवार पर चढ़ेगा, फिर उत्तरी पालि की छत के साथ चढ़ेगा। चींटी तीसरे अतिशयोक्तिपूर्ण परवलयज पर वापस आ गई है, लेकिन इस बार इसके नीचे और उल्टा खड़ा है। (क्लीन बोतल से तुलना करें। )
दोहरे, तिहरे, और पिंचिंग बिंदु
रोमन सतह में चार पालियाँ होती हैं। प्रत्येक पालियों की सीमाएं दोहरे बिंदुओं की तीन पंक्तियों का एक समूह हैं। पालियों की प्रत्येक जोड़ी के बीच दोहरे बिंदुओं की एक रेखा होती है। सतह में दोहरे बिंदुओं की कुल तीन रेखाएँ होती हैं, जो निर्देशांक अक्षों पर स्थित होती हैं (पहले दिए गए मानकीकरण में)। दोहरे बिंदुओं की तीन रेखाएँ एक तिहरे बिंदु पर प्रतिच्छेद करती हैं जो मूल पर स्थित है। त्रिक बिंदु दोहरे बिंदुओं की रेखाओं को अर्ध-रेखाओं की एक जोड़ी में काटता है, और प्रत्येक अर्ध-रेखा पालियों की एक जोड़ी के बीच स्थित होती है। पिछले बयानों से आशा की जा सकती है कि अंतरिक्ष के प्रत्येक अष्टक में एक आठ पालियां हो सकती हैं, जिसे समन्वय विमानों द्वारा विभाजित किया गया है। लेकिन पालियां बारी-बारी से अष्टक पर कब्जा कर लेती हैं: चार अष्टक खाली होते हैं और चार पलियों के कब्जे में होते हैं।
यदि रोमन सतह को चतुर्पाश्वीय के अंदर कम से कम संभावित आयतन के साथ अंकित किया जाता है, तो कोई यह पाएगा कि चतुर्पाश्वीय का प्रत्येक किनारा एक बिंदु पर रोमन सतह पर स्पर्शरेखा है, और इन छह बिंदुओं में से प्रत्येक एक व्हिटनी गणितीय विलक्षणता है। ये विलक्षणताएं, या पिंचिंग बिंदु, सभी दोहरे बिंदुओं की तीन पंक्तियों के किनारों पर स्थित हैं, और उन्हें इस संपत्ति द्वारा परिभाषित किया गया है: कि विलक्षणता पर किसी भी सतह पर कोई समतल स्पर्शरेखा स्थान नहीं है।
यह भी देखें
- लड़के की सतह - क्रॉस-कैप्स के बिना प्रक्षेपीय सतह का एक एम्बेडिंग
- टेट्राहेमीहेक्साइड्रोन - रोमन सतह के समान एक बहुफलक।
संदर्भ
- ↑ Coffman, Adam. "स्टाइनर रोमन सतहों". National Curve Bank. Indiana University - Purdue University Fort Wayne.
सामान्य संदर्भ
- एक। कॉफमैन, ए. श्वार्ट्ज, और सी. स्टैंटन: द अलजेब्रा एंड ज्योमेट्री ऑफ स्टेनर एंड अदर क्वाड्रैटिकली पैरामीट्रिजेबल सरफेस। कंप्यूटर एडेड जियोमेट्रिक डिज़ाइन में (3) 13 (अप्रैल 1996), पी। 257-286
- बर्ट जुट्लर, रागी पिएन: जियोमेट्रिक मॉडलिंग और बीजगणितीय ज्यामिति। स्प्रिंगर 2008, ISBN 978-3-540-72184-0, पी। 30 (restricted online copy, p. 30, at Google Books)
बाहरी संबंध
- A. Coffman, "Steiner Surfaces"
- Weisstein, Eric W. "Roman Surface". MathWorld.
- Roman Surfaces at the National Curve Bank (website of the California State University)
- Ashay Dharwadker, Heptahedron and Roman Surface, Electronic Geometry Models, 2004.