थर्मोअकॉस्टिक हीट इंजन: Difference between revisions

From Vigyanwiki
Line 24: Line 24:
एक तापध्वनिक उपकरण इस तथ्य का लाभ उठाता है कि एक रुद्धोष्म प्रक्रम के ध्वनि तरंग पार्सल में एक गैस संकुचित और विस्तारित होती है, और दबाव और तापमान एक साथ बदलते हैं। जब दबाव अधिकतम या न्यूनतम तक पहुंचता है, तो तापमान भी होता है। इसमें मूल रूप से [[उष्मा का आदान प्रदान करने वाला]], एक [[गुंजयमान यंत्र]] और एक ढेर (स्थायी तरंग उपकरण पर) या [[पुनर्योजी हीट एक्सचेंजर]] (यात्रा तरंग उपकरण पर) होता है। इंजन के प्रकार के आधार पर ध्वनि तरंगों को उत्पन्न करने के लिए [[स्पीकर ड्राइवर]] या [[ध्वनि-विस्तारक यंत्र]] का उपयोग किया जा सकता है।
एक तापध्वनिक उपकरण इस तथ्य का लाभ उठाता है कि एक रुद्धोष्म प्रक्रम के ध्वनि तरंग पार्सल में एक गैस संकुचित और विस्तारित होती है, और दबाव और तापमान एक साथ बदलते हैं। जब दबाव अधिकतम या न्यूनतम तक पहुंचता है, तो तापमान भी होता है। इसमें मूल रूप से [[उष्मा का आदान प्रदान करने वाला]], एक [[गुंजयमान यंत्र]] और एक ढेर (स्थायी तरंग उपकरण पर) या [[पुनर्योजी हीट एक्सचेंजर]] (यात्रा तरंग उपकरण पर) होता है। इंजन के प्रकार के आधार पर ध्वनि तरंगों को उत्पन्न करने के लिए [[स्पीकर ड्राइवर]] या [[ध्वनि-विस्तारक यंत्र]] का उपयोग किया जा सकता है।


दोनों सिरों पर बंद ट्यूब में, निश्चित आवृत्तियों पर विपरीत दिशाओं में यात्रा करने वाली दो तरंगों के बीच हस्तक्षेप हो सकता है। हस्तक्षेप अनुनाद का कारण बनता है और एक स्थायी तरंग बनाता है। ढेर में छोटे समानांतर चैनल होते हैं। जब ढेर को एक स्थायी तरंग वाले अनुनादक में एक निश्चित स्थान में रखा जाता है, तो ढेर में एक तापमान अंतर विकसित होता है। ढेर के प्रत्येक तरफ ताप विनिमयक लगाकर, ऊष्मा को स्थानांतरित किया जा सकता है। विपरीत भी संभव है: ढेर के पार तापमान अंतर एक ध्वनि तरंग उत्पन्न करता है। पहला उदाहरण एक ऊष्मा प्रवाह है, जबकि दूसरा एक प्रमुख प्रेरक है।
दोनों सिरों पर बंद ट्यूब में, निश्चित आवृत्तियों पर विपरीत दिशाओं में यात्रा करने वाली दो तरंगों के बीच हस्तक्षेप हो सकता है। हस्तक्षेप अनुनाद का कारण बनता है और एक स्थायी तरंग बनाता है। ढेर में छोटे समानांतर चैनल होते हैं। जब ढेर को एक स्थायी तरंग वाले अनुनादक में एक निश्चित स्थान में रखा जाता है, तो ढेर में एक तापमान अंतर विकसित होता है। ढेर के प्रत्येक तरफ ताप विनिमयक लगाकर, ऊष्मा को स्थानांतरित किया जा सकता है। विपरीत भी संभव है: ढेर के पार तापमान अंतर एक ध्वनि तरंग उत्पन्न करता है। पहला उदाहरण एक ऊष्मा पम्प है, जबकि दूसरा एक प्रमुख प्रेरक है।


=== ऊष्मा पंप ===
=== ऊष्मा पंप ===

Revision as of 17:06, 17 January 2023

तापध्वनिक हॉट-एयर इंजन का एक योजनाबद्ध प्रतिनिधित्व। हीट एक्सचेंजर का गर्म पक्ष गर्म ताप भंडार से जुड़ा होता है - और ठंडा भाग ठंडे ताप भंडार से जुड़ा होता है। इलेक्ट्रो-ध्वनिक ट्रांसड्यूसर, उदा। लाउडस्पीकर नहीं दिखाया गया है।

THERMOACOUSTICS इंजन (कभी-कभी "टीए इंजन" कहलाते हैं) तापध्वनिक उपकरण होते हैं जो ऊष्मा को एक स्थान से दूसरे स्थान पर पंप करने के लिए उच्च-आयाम वाली ध्वनि तरंगों का उपयोग करते हैं (इसके लिए काम की आवश्यकता होती है, जो ध्वनि-विस्तारक द्वारा प्रदान की जाती है) या ऊष्मा के अंतर का उपयोग काम करने के लिए करते हैं। ध्वनि तरंगों का रूप (इन तरंगों को तब विद्युत धारा में उसी तरह परिवर्तित किया जा सकता है जैसे एक माइक्रोफ़ोन करता है)।

इन उपकरणों को खड़ी लहर या हिलाना का उपयोग करने के लिए बनाया जा सकता है।

वाष्प-संपीड़न प्रशीतन की तुलना में, तापध्वनिक प्रशीतन में कोई शीतलक नहीं होता है और कुछ चलने वाले हिस्से (केवल ध्वनि-विस्तारक) होते हैं, इसलिए गतिशील सीलिंग या स्नेहन की आवश्यकता नहीं होती है।[1]


इतिहास

ध्वनि उत्पन्न करने के लिए ऊष्मा की क्षमता सदियों पहले ग्लासब्लोअर्स द्वारा नोट की गई थी।[2] 1850 के दशक में, प्रयोगों से पता चला कि एक तापमान अंतर इस घटना के लिए जिम्मेदार था, और ध्वनिक मात्रा और तीव्रता ट्यूब की लंबाई और बल्ब के आकार के साथ भिन्न होती है।

पीटर रिच ने प्रदर्शित किया कि ट्यूब के एक चौथाई हिस्से में एक गर्म तार स्क्रीन जोड़ने से ध्वनि बहुत बढ़ जाती है, और ट्यूब में हवा को सबसे अधिक दबाव के बिंदु पर ऊर्जा की आपूर्ति होती है। आगे के प्रयोगों से पता चला कि हवा को न्यूनतम दबाव के बिंदु पर ठंडा करने से भी इसी तरह का समान प्रवर्धन प्रभाव उत्पन्न होता है। प्राकृतिक संवहन का उपयोग करके एक अमीर ट्यूब ऊष्मा को ध्वनिक ऊर्जा में परिवर्तित करती है।

लगभग 1887 में, जॉन स्ट्रट, तीसरे बैरन रेले ने ध्वनि के साथ ऊष्मा को पंप करने की संभावना पर चर्चा की।

1969 में, रॉट ने इस विषय को फिर से खोल दिया। तरल पदार्थों के लिए नेवियर-स्टोक्स समीकरणों का उपयोग करते हुए, उन्होंने ताप ध्वनिकी के लिए विशिष्ट समीकरणों को व्युत्पन्न किया। गणना के लिए एक बुनियादी मात्रात्मक समझ और संख्यात्मक मॉडल बनाने के लिए रैखिक तापध्वनिक मॉडल विकसित किए गए थे।

स्विफ्ट ने इन समीकरणों के साथ जारी रखा, तापध्वनिक उपकरणों में ध्वनिक शक्ति के लिए अभिव्यक्ति प्राप्त की।[3] 1992 में स्पेस शटल डिस्कवरी पर एक समान तापध्वनिक प्रशीतन उपकरण का उपयोग किया गया था।[2]

यूटा विश्वविद्यालय में ऑरेस्ट सिमको ने 2005 में तापध्वनिक दाबविद्युत ऊर्जा रूपांतरण (TAPEC) नामक एक शोध परियोजना शुरू की।[4] आला अनुप्रयोग जैसे छोटे से मध्यम स्तर के क्रायोजेनिक अनुप्रयोग। स्कोर लिमिटेड को मार्च 2007 में खाना पकाने के चूल्हे पर शोध करने के लिए £2M से सम्मानित किया गया था जो विकासशील देशों में उपयोग के लिए बिजली और शीतलन भी प्रदान करता है।[5][6]गहरे अंतरिक्ष अन्वेषण मिशनों के लिए एयरबस द्वारा एक रेडियोआइसोटोप-हीटेड तापध्वनिक प्रणाली को प्रस्तावित और प्रारूप किया गया था। मौजूदा थर्मोकपल-आधारित प्रणाली, या उन्नत स्टर्लिंग रेडियोआइसोटोप जनरेटर प्रारूप में उपयोग किए जाने वाले प्रस्तावित स्टर्लिंग इंजन जैसी अन्य जनरेटर प्रणालियों की तुलना में इस प्रणाली के मामूली सैद्धांतिक लाभ हैं।[7] ध्वनि ऊर्जा ने एक (टीएचईएसी) प्रणाली विकसित की है जो ऊष्मा, अधिकतर अपशिष्ट ऊष्मा या सौर ताप को बिना किसी अन्य ऊर्जा स्रोत के कूलिंग में परिवर्तित कर सकती है। उपकरण आर्गन गैस का उपयोग करता है। उपकरण अपशिष्ट ऊष्मा द्वारा बनाई गई ध्वनि को बढ़ाता है, परिणामी दबाव को वापस दूसरे ताप अंतर में परिवर्तित करता है, और शीतलन प्रभाव उत्पन्न करने के लिए स्टर्लिंग चक्र का उपयोग करता है।।[2]

ऑपरेशन

एक तापध्वनिक उपकरण इस तथ्य का लाभ उठाता है कि एक रुद्धोष्म प्रक्रम के ध्वनि तरंग पार्सल में एक गैस संकुचित और विस्तारित होती है, और दबाव और तापमान एक साथ बदलते हैं। जब दबाव अधिकतम या न्यूनतम तक पहुंचता है, तो तापमान भी होता है। इसमें मूल रूप से उष्मा का आदान प्रदान करने वाला, एक गुंजयमान यंत्र और एक ढेर (स्थायी तरंग उपकरण पर) या पुनर्योजी हीट एक्सचेंजर (यात्रा तरंग उपकरण पर) होता है। इंजन के प्रकार के आधार पर ध्वनि तरंगों को उत्पन्न करने के लिए स्पीकर ड्राइवर या ध्वनि-विस्तारक यंत्र का उपयोग किया जा सकता है।

दोनों सिरों पर बंद ट्यूब में, निश्चित आवृत्तियों पर विपरीत दिशाओं में यात्रा करने वाली दो तरंगों के बीच हस्तक्षेप हो सकता है। हस्तक्षेप अनुनाद का कारण बनता है और एक स्थायी तरंग बनाता है। ढेर में छोटे समानांतर चैनल होते हैं। जब ढेर को एक स्थायी तरंग वाले अनुनादक में एक निश्चित स्थान में रखा जाता है, तो ढेर में एक तापमान अंतर विकसित होता है। ढेर के प्रत्येक तरफ ताप विनिमयक लगाकर, ऊष्मा को स्थानांतरित किया जा सकता है। विपरीत भी संभव है: ढेर के पार तापमान अंतर एक ध्वनि तरंग उत्पन्न करता है। पहला उदाहरण एक ऊष्मा पम्प है, जबकि दूसरा एक प्रमुख प्रेरक है।

ऊष्मा पंप

ठंड से गर्म जलाशय में ऊष्मा बनाने या स्थानांतरित करने के लिए काम की आवश्यकता होती है। ध्वनिक शक्ति यह काम प्रदान करती है। ढेर एक दबाव ड्रॉप बनाता है। आने वाली और परावर्तित ध्वनिक तरंगों के बीच हस्तक्षेप अब अपूर्ण है। आयाम में अंतर के कारण खड़ी तरंग यात्रा करती है, जिससे तरंग ध्वनिक शक्ति प्राप्त होती है।

खड़ी लहर उपकरण में ढेर के साथ ऊष्मा पंपिंग ब्रेटन चक्र का अनुसरण करती है।

रेफ़्रिजरेटर के लिए वामावर्त ब्रेटन चक्र में चार प्रक्रियाएँ होती हैं जो ढेर की दो प्लेटों के बीच गैस के पार्सल को प्रभावित करती हैं।

  1. गैस का रुद्धोष्म संपीड़न। जब गैस के एक पार्सल को उसकी सबसे दाहिनी स्थिति से उसके सबसे बाईं ओर विस्थापित किया जाता है, तो पार्सल रूद्धोष्म रूप से संकुचित हो जाता है, जिससे उसका तापमान बढ़ जाता है। सबसे बाईं ओर स्थित पार्सल में अब वार्म प्लेट की तुलना में अधिक तापमान होता है।
  2. आइसोबैरिक हीट ट्रांसफर। पार्सल का उच्च तापमान गैस को ठंडा करने, निरंतर दबाव पर प्लेट में ऊष्मा स्थानांतरित करने का कारण बनता है।
  3. गैस का रुद्धोष्म प्रसार। गैस को सबसे बाईं स्थिति से वापस सबसे दाईं ओर विस्थापित किया जाता है। रूद्धोष्म विस्तार के कारण गैस ठंडी प्लेट की तुलना में कम तापमान तक ठंडी हो जाती है।
  4. आइसोबैरिक ऊष्मा हस्तांतरण। पार्सल के कम तापमान के कारण ठंडी प्लेट से गैस में निरंतर दबाव में ऊष्मा स्थानांतरित हो जाती है, जिससे पार्सल का तापमान अपने मूल मूल्य पर लौट आता है।

यात्रा तरंग उपकरणों को स्टर्लिंग चक्र का उपयोग करके वर्णित किया जा सकता है।

तापमान ढाल

इंजन और ऊष्मा पंप दोनों सामान्यतः ढेर और ताप विनिमयक का उपयोग करते हैं। प्राइम मूवर और ऊष्मा पंप के बीच की सीमा तापमान प्रवणता संचालक द्वारा दी जाती है, जो कि महत्वपूर्ण तापमान प्रवणता द्वारा विभाजित औसत तापमान प्रवणता है।

औसत तापमान प्रवणता ढेर की लंबाई से विभाजित ढेर भर में तापमान अंतर है।

महत्वपूर्ण तापमान प्रवणता एक मान है जो उपकरण की विशेषताओं जैसे आवृत्ति, क्रॉस-अनुभागीय क्षेत्र और गैस गुणों पर निर्भर करता है।

यदि तापमान प्रवणता संचालिका एक से अधिक है, तो माध्य तापमान प्रवणता क्रांतिक तापमान प्रवणता से बड़ा होता है और स्टैक एक प्रमुख प्रेरक के रूप में कार्य करता है। यदि तापमान प्रवणता संचालक एक से कम है, तो औसत तापमान प्रवणता महत्वपूर्ण प्रवणता से छोटा होता है और ढेर ऊष्मा पंप के रूप में कार्य करता है।

सैद्धांतिक दक्षता

ऊष्मप्रवैगिकी में उच्चतम प्राप्त करने योग्य दक्षता कार्नोट दक्षता है। तापध्वनिक इंजन की दक्षता की तुलना तापमान प्रवणता संचालक का उपयोग करके कार्नाट दक्षता से की जा सकती है।

तापध्वनिक इंजन की दक्षता द्वारा दी जाती है।

तापध्वनिक हीट पंप के प्रदर्शन का गुणांक द्वारा दिया जाता है।


व्यावहारिक दक्षता

सबसे कुशल तापध्वनिक उपकरणों की क्षमता कार्नो इंजन गर्म करें के वास्तविक ताप इंजन की क्षमता की सीमा का 40% या समग्र रूप से लगभग 20% से 30% (हीट इंजन के तापमान पर निर्भर करता है) तक पहुंचती है।[8] तापध्वनिक उपकरणों के साथ उच्च गर्म अंत तापमान संभव हो सकता है क्योंकि उनके पास कोई हिलने वाला हिस्सा नहीं होते हैं, इस प्रकार कार्नाट दक्षता को उच्च होने की अनुमति देता है। यह कार्नोट के प्रतिशत के रूप में पारंपरिक ताप इंजनों की तुलना में उनकी कम दक्षता को आंशिक रूप से प्रतिसंतुलन कर सकता है।

यात्रा तरंग उपकरणों द्वारा अनुमानित आदर्श स्टर्लिंग चक्र, स्थायी तरंग उपकरणों द्वारा अनुमानित आदर्श ब्रेटन चक्र की तुलना में स्वाभाविक रूप से अधिक कुशल है। चूंकि, एक स्थायी तरंग ढेर की तुलना में एक यात्रा तरंग उपकरण में अच्छा थर्मल संपर्क देने के लिए आवश्यक संकीर्ण छिद्र, जिसके लिए निश्चयपूर्वक अपूर्ण तापीय संपर्क की आवश्यकता होती है, व्यावहारिक दक्षता को कम करते हुए, अधिक घर्षण नुकसान को भी जन्म देता है। टॉरॉयडल ज्योमेट्री अधिकतर यात्रा तरंग उपकरणों में उपयोग होती है, लेकिन स्थायी तरंग उपकरणों के लिए जरूरी नहीं है, लूप के चारों ओर गेडॉन स्ट्रीमिंग के कारण होने वाले नुकसान को भी बढ़ा सकती है।[further explanation needed]


यह भी देखें

  • विकिरण के उद्दीप्त उत्सर्जन द्वारा ध्वनि प्रवर्धन (एसएएसईआर)

संदर्भ

  1. Ceperley, P. (1979). "एक पिस्टन रहित स्टर्लिंग इंजन - ट्रैवलिंग वेव हीट इंजन". J. Acoust. Soc. Am. 66 (5): 1508–1513. Bibcode:1979ASAJ...66.1508C. doi:10.1121/1.383505.
  2. 2.0 2.1 2.2 "बिजली मुक्त एयर कॉन: थर्मोअकॉस्टिक डिवाइस बिना किसी अतिरिक्त शक्ति का उपयोग किए बेकार गर्मी को ठंड में बदल देता है". newatlas.com (in English). Retrieved 2019-01-26.
  3. Swift, Gregory W. (1988). "थर्मोअकॉस्टिक इंजन". The Journal of the Acoustical Society of America. 84 (4): 1145. Bibcode:1988ASAJ...84.1145S. doi:10.1121/1.396617. Retrieved 9 October 2015.
  4. physorg.com: A sound way to turn heat into electricity (pdf) Quote: "...Symko says the devices won’t create noise pollution...Symko says the ring-shaped device is twice as efficient as cylindrical devices in converting heat into sound and electricity. That is because the pressure and speed of air in the ring-shaped device are always in sync, unlike in cylinder-shaped devices..."
  5. Lee, Chris (May 28, 2007). "ध्वनि के साथ खाना बनाना: विकासशील देशों के उद्देश्य से नया स्टोव/जनरेटर/रेफ्रिजरेटर कॉम्बो". Ars Technica.
  6. SCORE (Stove for Cooking, Refrigeration and Electricity), illustration
  7. "अंतरिक्ष मिशनों के लिए थर्मो-अकूस्टिक जेनरेटर" (PDF).
  8. web archive backup: lanl.gov: More Efficient than Other No-Moving-Parts Heat Engines


आगे की पढाई


बाहरी कड़ियाँ