थर्मोअकॉस्टिक हीट इंजन: Difference between revisions
Line 34: | Line 34: | ||
# गैस का रुद्धोष्म संपीड़न तब होता है। जब गैस के एक पार्सल को उसकी सबसे दाहिनी स्थिति से उसके सबसे बाईं तरफ विस्थापित किया जाता है, तो पार्सल रूद्धोष्म रूप से संकुचित हो जाता है, जिससे उसका तापमान बढ़ जाता है। सबसे बाईं तरफ स्थित पार्सल में अब वार्म प्लेट की तुलना में अधिक तापमान होता है। | # गैस का रुद्धोष्म संपीड़न तब होता है। जब गैस के एक पार्सल को उसकी सबसे दाहिनी स्थिति से उसके सबसे बाईं तरफ विस्थापित किया जाता है, तो पार्सल रूद्धोष्म रूप से संकुचित हो जाता है, जिससे उसका तापमान बढ़ जाता है। सबसे बाईं तरफ स्थित पार्सल में अब वार्म प्लेट की तुलना में अधिक तापमान होता है। | ||
#आइसोबैरिक हीट ट्रांसफर तब होता है जब पार्सल का उच्च तापमान गैस को ठंडा करने का कारण बनता है, गर्मी को लगातार दबाव में प्लेट में स्थानांतरित | #आइसोबैरिक हीट ट्रांसफर तब होता है जब पार्सल का उच्च तापमान गैस को ठंडा करने का कारण बनता है, गर्मी को लगातार दबाव में प्लेट में स्थानांतरित करत | ||
यात्रा तरंग उपकरणों को [[स्टर्लिंग चक्र]] का उपयोग करके वर्णित किया जा सकता है। | यात्रा तरंग उपकरणों को [[स्टर्लिंग चक्र]] का उपयोग करके वर्णित किया जा सकता है। |
Revision as of 15:38, 12 January 2023
THERMOACOUSTICS इंजन (कभी-कभी टीए इंजन कहलाते हैं) तापध्वनिक उपकरण होते हैं जो एक स्थान से दूसरे स्थान पर पंप को गर्म करने के लिए उच्च-आयाम वाली ध्वनि तरंगों का उपयोग करते हैं (इसके लिए काम की आवश्यकता होती है, जो लाउडस्पीकर द्वारा प्रदान किया जाता है) या ध्वनि तरंगों से उत्पादित काम को करने के लिए गर्मी के अंतर का उपयोग करते हैं (इन तरंगों को तब विद्युत धारा में उसी तरह परिवर्तित किया जा सकता है जैसे एक माइक्रोफ़ोन करता है)।
इन उपकरणों को खड़ी लहर या हिलाना का उपयोग करने के लिए बनाया जा सकता है।
वाष्प-संपीड़न प्रशीतन की तुलना में, तापध्वनिक प्रशीतक में कोई शीतलक नहीं होता है और कुछ चलने वाले हिस्से (केवल लाउडस्पीकर) होते हैं, इसलिए गतिशील सीलिंग या स्नेहन की आवश्यकता नहीं होती है।[1]
इतिहास
ध्वनि उत्पन्न करने के लिए गर्मी की क्षमता सदियों पहले ग्लासब्लोअर्स द्वारा नोट की गई थी।[2] 1850 के दशक के प्रयोगों से पता चला कि इस घटना के लिए एक तापमान अंतर जिम्मेदार था, और ध्वनिक मात्रा और तीव्रता ट्यूब की लंबाई और बल्ब के आकार के साथ भिन्न थी।
पीटर रिच ने प्रदर्शित किया कि ट्यूब के शीर्ष चौथाई हिस्से में एक गर्म तार की स्क्रीन जोड़ने से ध्वनि बहुत बढ़ जाती है, जिससे उच्चतम दबाव के बिंदु पर ट्यूब में हवा को ऊर्जा की आपूर्ति होती है। आगे के प्रयोगों से पता चला है कि हवा को न्यूनतम दबाव के बिंदु तक ठंडा करने से भी इसी तरह का समान प्रवर्धन प्रभाव उत्पन्न होता है। प्राकृतिक संवहन का उपयोग करके एक अमीर ट्यूब गर्मी को ध्वनिक ऊर्जा में परिवर्तित करती है।
1887 के आसपास, जॉन स्ट्रट, तीसरे बैरन रेले ने ध्वनि के साथ गर्मी को पंप करने की संभावना पर चर्चा की।
1969 में, रॉट ने इस विषय को फिर से खोल दिया।[3] तरल पदार्थों के लिए नेवियर-स्टोक्स समीकरणों का उपयोग करते हुए, उन्होंने ताप ध्वनिकी के लिए विशिष्ट समीकरणों को व्युत्पन्न किया।[4] गणना के लिए एक बुनियादी मात्रात्मक समझ और संख्यात्मक मॉडल बनाने के लिए रैखिक थर्मोकॉस्टिक मॉडल विकसित किए गए थे।
स्विफ्ट ने इन समीकरणों के साथ जारी रखा, तापध्वनिक उपकरणों में ध्वनिक शक्ति के लिए एक अभिव्यक्ति प्राप्त की।।[5] 1992 में स्पेस शटल डिस्कवरी पर एक समान तापध्वनिक प्रशीतन उपकरण का उपयोग किया गया था।[2]
यूटा विश्वविद्यालय के ऑरेस्ट सिमको ने 2005 में तापध्वनिक पीजोइलेक्ट्रिक ऊर्जा रूपांतरण (TAPEC) नामक एक शोध परियोजना शुरू की।[6] आला अनुप्रयोग जैसे छोटे से मध्यम स्तर के क्रायोजेनिक अनुप्रयोग। स्कोर लिमिटेड को मार्च 2007 में खाना पकाने के चूल्हे पर शोध करने के लिए £2M से सम्मानित किया गया था जो विकासशील देशों में उपयोग के लिए बिजली और शीतलन भी प्रदान करता है।[7][8]गहरे अंतरिक्ष अन्वेषण मिशनों के लिए एयरबस द्वारा एक रेडियोआइसोटोप-हीटेड तापध्वनिक प्रणाली को प्रस्तावित और प्रोटोटाइप किया गया था। प्रणालियों में सम्मलित थर्मोकपल-आधारित प्रणाली, या अन्य जनरेटर प्रणाली जैसे उन्नत स्टर्लिंग रेडियोआइसोटोप जनरेटर प्रोटोटाइप में उपयोग किए जाने वाले प्रस्तावित स्टर्लिंग इंजन पर कुछ मामूली सैद्धांतिक लाभ हैं।।[9] साउंडएनर्जी ने एक (टीएचईएसी) प्रणाली विकसित की है जो गर्मी, अधिकतर अपशिष्ट गर्मी या सौर ताप को बिना किसी अन्य ऊर्जा स्रोत के कूलिंग में परिवर्तित कर सकती है। उपकरण आर्गन गैस का उपयोग करता है। उपकरण अपशिष्ट गर्मी द्वारा बनाई गई ध्वनि को बढ़ाता है, परिणामी दबाव को वापस दूसरे ताप अंतर में परिवर्तित करता है, और शीतलन प्रभाव उत्पन्न करने के लिए स्टर्लिंग चक्र का उपयोग करता है।।[2]
ऑपरेशन
एक थर्मोकॉस्टिक उपकरण इस तथ्य का लाभ उठाता है कि एक गैस वैकल्पिक रूप से संपीड़ित और विस्तारित होती है जो एक एडियाबेटिक प्रक्रिया के ध्वनि तरंग पार्सल में होती है, और दबाव और तापमान एक साथ बदलते हैं। जब दबाव अधिकतम या न्यूनतम तक पहुंचता है, तो तापमान भी होता है। इसमें मूल रूप से उष्मा का आदान प्रदान करने वाला, एक गुंजयमान यंत्र और एक स्टैक ( स्थायी तरंग उपकरण पर) या पुनर्योजी हीट एक्सचेंजर (यात्रा तरंग उपकरण पर) होता है।। इंजन के प्रकार के आधार पर ध्वनि तरंगों को उत्पन्न करने के लिए स्पीकर ड्राइवर या ध्वनि-विस्तारक यंत्र का उपयोग किया जा सकता है।
बंद सिरों वाली ट्यूब में, कुछ आवृत्तियों पर विपरीत दिशाओं में यात्रा करने वाली तरंगों के बीच हस्तक्षेप हो सकता है। यह अनुनाद पैदा करता है, और एक स्थायी लहर पैदा होती है। स्टैक में छोटे समानांतर चैनल होते हैं। जब स्टैक को स्थायी तरंग रेज़ोनेटर में एक निश्चित स्थिति में रखा जाता है, तो स्टैक में एक तापमान अंतर विकसित होता है। स्टैक के प्रत्येक तरफ हीट एक्सचेंजर्स लगाकर, गर्मी को स्थानांतरित किया जा सकता है। विपरीत भी संभव है: स्टैक के पार तापमान अंतर एक ध्वनि तरंग उत्पन्न करता है। पहला उदाहरण एक ऊष्मा पम्प है, जबकि दूसरा एक प्रमुख प्रेरक है।
गर्मी पंप
ठंड से गर्मी को गर्म जलाशय में बनाने या स्थानांतरित करने के लिए काम की आवश्यकता होती है। ध्वनिक शक्ति यह काम प्रदान करती है। स्टैक एक दबाव ड्रॉप बनाता है। आने वाली और परावर्तित ध्वनिक तरंगों के बीच हस्तक्षेप सही नहीं है। आयाम में अंतर के कारण खड़ी तरंग यात्रा करती है, जिससे तरंग को ध्वनिक शक्ति प्राप्त होती है।
खड़ी लहर उपकरण एक स्टैक के साथ हीट पंपिंग ब्रेटन चक्र का अनुसरण करती है।
रेफ़्रिजरेटर के लिए वामावर्त ब्रेटन चक्र में चार प्रक्रियाएँ होती हैं जो स्टैक की दो प्लेटों के बीच गैस के पार्सल को प्रभावित करती हैं।
- गैस का रुद्धोष्म संपीड़न तब होता है। जब गैस के एक पार्सल को उसकी सबसे दाहिनी स्थिति से उसके सबसे बाईं तरफ विस्थापित किया जाता है, तो पार्सल रूद्धोष्म रूप से संकुचित हो जाता है, जिससे उसका तापमान बढ़ जाता है। सबसे बाईं तरफ स्थित पार्सल में अब वार्म प्लेट की तुलना में अधिक तापमान होता है।
- आइसोबैरिक हीट ट्रांसफर तब होता है जब पार्सल का उच्च तापमान गैस को ठंडा करने का कारण बनता है, गर्मी को लगातार दबाव में प्लेट में स्थानांतरित करत
यात्रा तरंग उपकरणों को स्टर्लिंग चक्र का उपयोग करके वर्णित किया जा सकता है।
तापमान ढाल
इंजन और ताप पंप दोनों सामान्यतः स्टैक और हीट एक्सचेंजर्स का उपयोग करते हैं। प्राइम मूवर और हीट पंप के बीच की सीमा तापमान ढाल ऑपरेटर द्वारा दी जाती है, जो कि महत्वपूर्ण तापमान ढाल द्वारा विभाजित औसत तापमान ढाल है।
औसत तापमान ढाल स्टैक की लंबाई से विभाजित स्टैक भर में तापमान अंतर है।
महत्वपूर्ण तापमान ढाल एक मान है जो उपकरण की विशेषताओं जैसे आवृत्ति, क्रॉस-अनुभागीय क्षेत्र और गैस गुणों पर निर्भर करता है।
यदि तापमान ढाल ऑपरेटर एक से अधिक है, तो औसत तापमान ढाल महत्वपूर्ण तापमान ढाल से बड़ा होता है और स्टैक एक प्रमुख प्रस्तावक के रूप में कार्य करता है। यदि तापमान ढाल ऑपरेटर एक से कम है, तो औसत तापमान ढाल महत्वपूर्ण ढाल से छोटा होता है और स्टैक हीट पंप के रूप में कार्य करता है।
सैद्धांतिक दक्षता
ऊष्मप्रवैगिकी में कार्नोट दक्षता उच्चतम प्राप्त करने योग्य दक्षता है। तापध्वनिक इंजन की दक्षता की तुलना तापमान ढाल ऑपरेटर का उपयोग करके कार्नाट दक्षता से की जा सकती है।
तापध्वनिक इंजन की दक्षता किसके द्वारा निर्धारित की जा सकती है।
तापध्वनिक हीट पंप के प्रदर्शन का गुणांक इसके द्वारा दिया सकता है।
व्यावहारिक दक्षता
सबसे कुशल तापध्वनिक उपकरणों की क्षमता कार्नो इंजन गर्म करें के वास्तविक ताप इंजन की क्षमता की सीमा का 40% या समग्र रूप से लगभग 20% से 30% (हीट इंजन के तापमान पर निर्भर करता है) तक पहुंचती है।[10] तापध्वनिक उपकरणों के साथ उच्च गर्म अंत तापमान संभव हो सकता है क्योंकि उनके पास कोई हिलने वाले हिस्से नहीं होते हैं, जो कार्नाट दक्षता को उच्च होने की अनुमति देता है। यह कार्नोट के प्रतिशत के संदर्भ में पारंपरिक ताप इंजनों की तुलना में उनकी कम दक्षता को आंशिक रूप से ऑफसेट कर सकता है।
यात्रा तरंग उपकरणों द्वारा अनुमानित आदर्श स्टर्लिंग चक्र ब्रेटन चक्र की तुलना में अधिक कुशल है, जिसका अनुमान स्थायी तरंगों द्वारा लगाया जाता है। चूंकि, एक स्थायी तरंग स्टैक की तुलना में एक यात्रा तरंग उपकरण में अच्छा थर्मल संपर्क देने के लिए आवश्यक संकीर्ण छिद्र, जिसके लिए निश्चयपूर्वक अपूर्ण थर्मल संपर्क की आवश्यकता होती है, व्यावहारिक दक्षता को कम करते हुए, अधिक घर्षण नुकसान को भी जन्म देता है। टॉरॉयडल ज्योमेट्री अधिकतर यात्रा तरंग उपकरणेस में उपयोग होती है, लेकिन स्थायी तरंग उपकरणेस के लिए जरूरी नहीं है, लूप के चारों ओर गेडॉन स्ट्रीमिंग के कारण होने वाले नुकसान को भी बढ़ा सकती है।[further explanation needed]
यह भी देखें
- विकिरण के उद्दीप्त उत्सर्जन द्वारा ध्वनि प्रवर्धन (एसएएसईआर)
संदर्भ
- ↑ Ceperley, P. (1979). "एक पिस्टन रहित स्टर्लिंग इंजन - ट्रैवलिंग वेव हीट इंजन". J. Acoust. Soc. Am. 66 (5): 1508–1513. Bibcode:1979ASAJ...66.1508C. doi:10.1121/1.383505.
- ↑ 2.0 2.1 2.2 "बिजली मुक्त एयर कॉन: थर्मोअकॉस्टिक डिवाइस बिना किसी अतिरिक्त शक्ति का उपयोग किए बेकार गर्मी को ठंड में बदल देता है". newatlas.com (in English). Retrieved 2019-01-26.
- ↑ "तापध्वनिक दोलन, डोनाल्ड फेहे, वेव मोशन एंड ऑप्टिक्स, स्प्रिंग 2006, प्रो. पीटर टिम्बी" (PDF).
- ↑ Rott, N. (1980). "THERMOACOUSTICS". Adv. Appl. Mech. Advances in Applied Mechanics. 20 (135): 135–175. doi:10.1016/S0065-2156(08)70233-3. ISBN 9780120020201.
- ↑ Swift, Gregory W. (1988). "थर्मोअकॉस्टिक इंजन". The Journal of the Acoustical Society of America. 84 (4): 1145. Bibcode:1988ASAJ...84.1145S. doi:10.1121/1.396617. Retrieved 9 October 2015.
- ↑ physorg.com: A sound way to turn heat into electricity (pdf) Quote: "...Symko says the devices won’t create noise pollution...Symko says the ring-shaped device is twice as efficient as cylindrical devices in converting heat into sound and electricity. That is because the pressure and speed of air in the ring-shaped device are always in sync, unlike in cylinder-shaped devices..."
- ↑ Lee, Chris (May 28, 2007). "ध्वनि के साथ खाना बनाना: विकासशील देशों के उद्देश्य से नया स्टोव/जनरेटर/रेफ्रिजरेटर कॉम्बो". Ars Technica.
- ↑ SCORE (Stove for Cooking, Refrigeration and Electricity), illustration
- ↑ "अंतरिक्ष मिशनों के लिए थर्मो-अकूस्टिक जेनरेटर" (PDF).
- ↑ web archive backup: lanl.gov: More Efficient than Other No-Moving-Parts Heat Engines
आगे की पढाई
- Gardner, D.; Swift, G. (2003). "A cascade thermoacoustic engine". J. Acoust. Soc. Am. 114 (4): 1905–1919. Bibcode:2003ASAJ..114.1905G. doi:10.1121/1.1612483. PMID 14587591.
- Garrett, Steven; Backaus, Scott (November 2000). "The Power of Sound". American Scientist. 88 (6): 561. doi:10.1511/2000.6.516. Semipopular introduction to thermoacoustic effects and devices.
- Frank Wighard "Double Acting Pulse Tube Electroacoustic System" US Patent 5,813,234
- de Blok, Kees (February 2013). "Multi-stage traveling wave thermoacoustics in practice" (PDF). 19th International Congress on Sound and Vibration 2012. ICSV 19. Vol. 2. Red Hook, New York: Curran Associates. pp. 1573–1580. CiteSeerX 10.1.1.454.1398. ISBN 978-1-62276-465-5. Retrieved 2021-12-08.
इस पेज में लापता आंतरिक लिंक की सूची
- गर्मी पंप
- गूंज
- प्रदर्शन के गुणांक
- toroid
- चलित पुर्ज़े
- विकिरण के उत्तेजित उत्सर्जन द्वारा ध्वनि प्रवर्धन