तारामंडल आरेख

From Vigyanwiki
File:8PSK Gray Coded.svg
8-फेज-शिफ्ट कुंजीयन। उपरोक्त आरेख में वर्णित योजना के अनुसार प्रेषित सूचना को 8 प्रतीकों में से एक के रूप में एन्कोड किया गया है, प्रत्येक 3 बिट डेटा का प्रतिनिधित्व करता है। प्रत्येक प्रतीक को वाहक साइन लहर के एक अलग चरण बदलाव के रूप में एन्कोड किया गया है: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°।

तारामंडल आरेख एक डिजिटल मॉडुलन योजना जैसे द्विघात आयाम मॉडुलन या कला विस्थापन कुंजीयन द्वारा संशोधित संकेत का प्रतिनिधित्व है।[1] यह प्रतीक नमूना तत्काल पर सम्मिश्र समतल में द्वि-आयामी xy-समतल प्रकीर्णन आरेख के रूप में संकेत प्रदर्शित करता है। फेजर आरेख के समान एक तरीके से, बिंदु का कोण, क्षैतिज अक्ष से वामावर्त मापा जाता है, संदर्भ चरण से वाहक तरंग के चरण बदलाव का प्रतिनिधित्व करता है;मूल से एक बिंदु की दूरी संकेत के आयाम या शक्ति के माप का प्रतिनिधित्व करती है।

डिजिटल मॉडुलन प्रणाली में, सूचना नमूनों की श्रृंखला के रूप में प्रसारित होती है, प्रत्येक एक समान समय स्लॉट पर अभिग्रहण कर लेता है। प्रत्येक नमूने के दौरान, वाहक तरंग का एक निरंतर आयाम और चरण होता है, जो मूल्यों की एक सीमित संख्या में से एक तक सीमित होता है। इसलिए प्रत्येक नमूना "प्रतीकों" की एक परिमित संख्या में से एक को कूटबद्ध करता है, जो बदले में सूचना के एक या अधिक द्विआधारी अंकों (बिट्स) का प्रतिनिधित्व करता है। प्रत्येक प्रतीक को वाहक के आयाम और चरण के एक अलग संयोजन के रूप में एन्कोड किया गया है, इसलिए प्रत्येक प्रतीक को नक्षत्र आरेख पर एक बिंदु द्वारा दर्शाया जाता है, जिसे नक्षत्र बिंदु कहा जाता है। तारामंडल आरेख उन सभी संभावित प्रतीकों को दिखाता है जिन्हें बिंदुओं के संग्रह के रूप में सिस्टम द्वारा प्रेषित किया जा सकता है। आवृत्ति या चरण-संशोधित संकेत में, संकेत आयाम स्थिर होता है, इसलिए बिंदु मूल के चारों ओर एक चक्र पर स्थित होते हैं।

प्रत्येक प्रतीक का प्रतिनिधित्व करने वाले वाहक को कोज्या तरंग की विभिन्न मात्रा को एक साथ जोड़कर बनाया जा सकता है जो "I" या इन-फेज वाहक का प्रतिनिधित्व करता है, और एक ज्या तरंग, जिसे I वाहक से 90° से "Q" या चतुष्कोण वाहक कहा जाता है। इस प्रकार प्रत्येक प्रतीक को सम्मिश्र संख्या द्वारा दर्शाया जा सकता है, और नक्षत्र आरेख को सम्मिश्र समतल के रूप में माना जा सकता है, जिसमें क्षैतिज वास्तविक अक्ष I घटक का प्रतिनिधित्व करता है और ऊर्ध्वाधर काल्पनिक अक्ष Q घटक का प्रतिनिधित्व करता है। सुसंगत संसूचक इन वाहकों को स्वतंत्र रूप से हतोत्साहित करने में सक्षम है। दो स्वतंत्र रूप से मॉडुलित वाहकों का उपयोग करने का यह सिद्धांत चतुष्टय मॉडुलन की नींव है। शुद्ध चरण मॉडुलन में, मॉडुलन प्रतीक का चरण स्वयं वाहक का चरण है और यह मॉडुलित संकेत का सर्वश्रेष्ठ प्रतिनिधित्व है।

'संकेत अंतरिक्ष आरेख' आदर्श तारामंडल आरेख है जो बिंदु की सही स्थिति को दर्शाता है। संचार चैनल के माध्यम से गुजरने के बाद, संकेत में जोड़े गए इलेक्ट्रॉनिक रव या विरूपण के कारण, डिमोडलेटर द्वारा प्राप्त आयाम और चरण प्रतीक के लिए सही मूल्य से अलग हो सकते हैं। जब नक्षत्र आरेख पर प्लॉट किया जाता है तो प्राप्त नमूना का प्रतिनिधित्व करने वाले बिंदु को उस प्रतीक के लिए सही स्थिति से ऑफसेट किया जाएगा। इलेक्ट्रॉनिक परीक्षण उपकरण जिसे सदिश संकेत विश्लेषक कहा जाता है, संकेत का नमूना करके और प्रत्येक प्राप्त प्रतीक को एक बिंदु के रूप में प्लाट करके डिजिटल संकेत के नक्षत्र आरेख को प्रदर्शित कर सकता है। परिणाम प्रत्येक प्रतीक स्थिति के आसपास के बिंदुओं का 'बॉल' या 'क्लाउड' होता है। मापित नक्षत्र आरेख का प्रयोग संकेत में हस्तक्षेप और विरूपण के प्रकार को पहचानने के लिए किया जा सकता है।

व्याख्या

File:16QAM Gray Coded.svg
आयताकार 16-चतुर्भुज आयाम मॉडुलन के लिए एक तारामंडल आरेख।
File:Different views showing a QAM 4096 constellation diagram.jpg
QAM 4096 तारामंडल आरेख दिखाने के लिए विभिन्न विचारों का उपयोग करते हुए एक स्पेक्ट्रम विश्लेषक सॉफ्टवेयर
File:FDD 16-QAM.png
नक्षत्र जैसा प्राप्त हुआ, रव के साथ जोड़ा गया।

आरेख में तारामंडल बिंदुओं की संख्या प्रतीकों के "वर्णमाला" का आकार देती है जिसे प्रत्येक नमूने द्वारा प्रेषित किया जा सकता है, और इसलिए प्रति नमूना प्रसारित बिट्स की संख्या निर्धारित करता है। यह सामान्यतः 2 की शक्ति होती है। उदाहरण के लिए, चार बिंदुओं वाला एक आरेख, मॉडुलन योजना का प्रतिनिधित्व करता है जो दो बिट्स के सभी 4 संयोजनों को अलग-अलग एन्कोड कर सकता है: 00, 01, 10 और 11, और इसलिए प्रति नमूना दो बिट संचारित कर सकता है। इस प्रकार सामान्य रूप से नक्षत्र बिंदुओं के साथ मॉड्यूलेशन प्रति नमूना बिट प्रसारित करता है।

संचार चैनल से गुजरने के बाद सिग्नल को विमाडुलक द्वारा डिकोड किया जाता है। विमाडुलक का कार्य प्रत्येक नमूने को एक प्रतीक के रूप में वर्गीकृत करना है। नमूना मूल्यों का सेट जिसे डेमोडुलेटर दिए गए प्रतीक के रूप में वर्गीकृत करता है, प्रत्येक नक्षत्र बिंदु के चारों ओर खींचे गए विमान में एक क्षेत्र द्वारा प्रदर्शित किया जा सकता है। यदि रव किसी नमूने का प्रतिनिधित्व करने वाले बिंदु को दूसरे प्रतीक का प्रतिनिधित्व करने वाले क्षेत्र में भटकने का कारण बनता है, तो डेमोडुलेटर उस नमूने को दूसरे प्रतीक के रूप में गलत पहचान देगा, जिसके परिणामस्वरूप प्रतीक त्रुटि होगी। अधिकांश विमाडुलक चुनते हैं, जैसा कि वास्तव में प्रसारित किया गया था, इसके अनुमान के रूप में, प्राप्त नमूने के निकटतम (यूक्लिडियन दूरी अर्थ में) नक्षत्र बिंदु; इसे अधिकतम संभावना पहचान कहा जाता है। तारामंडल आरेख पर इन पहचान क्षेत्रों को बिंदुओं के प्रत्येक आसन्न जोड़े से समान दूरी पर रेखाओं द्वारा विमान को विभाजित करके आसानी से दर्शाया जा सकता है।

पड़ोसी बिंदुओं की प्रत्येक जोड़ी के बीच की आधी दूरी एडिटिव शोर या विरूपण का आयाम है जो एक बिंदु को दूसरे के रूप में गलत रूप से पहचाना जाने के लिए आवश्यक है, और इस प्रकार प्रतीक त्रुटि का कारण बनता है। इसलिए, आगे के बिंदु एक दूसरे से अलग होते हैं, मॉडुलन की शोर प्रतिरक्षा जितनी अधिक होती है। व्यावहारिक मॉडुलन प्रणाली को प्रतीक त्रुटि उत्पन्न करने के लिए आवश्यक न्यूनतम शोर को अधिकतम करने के लिए डिज़ाइन किया गया है; नक्षत्र आरेख पर, इसका मतलब है कि आसन्न बिंदुओं के प्रत्येक जोड़े के बीच दूरी समान है।

प्राप्त संकेत गुणवत्ता का विश्लेषण एक सदिश संकेत विश्लेषक पर रिसीवर पर संकेत के नक्षत्र आरेख को प्रदर्शित करके किया जा सकता है। कुछ प्रकार के विरूपण आरेख पर विशिष्ट पैटर्न के रूप में प्रदर्शित होते हैं:

  • गाऊसी रव के कारण प्रत्येक नक्षत्र बिंदु के बारे में यादृच्छिक गेंद में नमूनों को उतारा जाता है।
  • एकल आवृत्ति हस्तक्षेप प्रत्येक नक्षत्र बिंदु के बारे में नमूने बनाने वाले सर्किलों के रूप में दिखाता है
  • प्रावस्था रव उस नक्षत्र बिन्दु के रूप में प्रकट होता है जो मूल पर केन्द्रित होता है
  • प्रवर्धक संपीडन कोने के बिंदुओं को केंद्र की ओर ले जाने का कारण बनता है

तारामंडल आरेख उन परिघटनाओं की कल्पना करता है जो एक आँख पैटर्न आयामी संकेतों के लिए करता है। मॉडुलन के आयाम में टाइमिंग घबराना देखने के लिए आई पैटर्न का उपयोग किया जा सकता है।

यह भी देखें

संदर्भ

  1. ANDREW S. TANENBAUM (2011). कंप्यूटर नेटवर्क. PRENTICE HALL. pp. 131–132. ISBN 978-0-13-212695-3.