आणविक मॉडल

From Vigyanwiki

आणविक मॉडल एक परमाणु प्रणाली का एक भौतिक मॉडल है जो अणुओं और उनकी प्रक्रियाओं का प्रतिनिधित्व करता है। वे रसायन विज्ञान को समझने और परिकल्पनाओं को उत्पन्न करने और परीक्षण करने में महत्वपूर्ण भूमिका निभाते हैं। आणविक गुणों और व्यवहार के गणितीय मॉडल के निर्माण को आणविक मॉडलिंग कहा जाता है, और उनके चित्रमय चित्रण को आणविक ग्राफिक्स कहा जाता है।

आणविक मॉडल शब्द उन प्रणालियों को संदर्भित करता है जिनमें एक या अधिक स्पष्ट परमाणु होते हैं (चूँकि विलायक परमाणुओं को अंतर्निहित रूप से दर्शाया जा सकता है) और जहां परमाणु संरचना की उपेक्षा की जाती है। इलेक्ट्रॉनिक संरचना को भी अधिकांशतः छोड़ दिया जाता है जब तक कि यह मॉडल किए जा रहे अणु के कार्य को दर्शाने के लिए आवश्यक न होती हो ।

आणविक मॉडल कई कारणों से बनाए जा सकते हैं - छात्रों या परमाणु संरचनाओं से अपरिचित लोगों के लिए शैक्षणिक उपकरण के रूप में सिद्धांतों को उत्पन्न करने या परीक्षण करने के लिए वस्तुओं के रूप में (उदाहरण के लिए, डीएनए की संरचना); एनालॉग कंप्यूटर के रूप में (उदाहरण के लिए, लचीली प्रणालियों में दूरियां और कोण मापने के लिए); या के रूप में कला और विज्ञान की सीमा पर सौंदर्य की दृष्टि से मनभावन वस्तुएँ है।

भौतिक मॉडलों का निर्माण अधिकांशतः एक रचनात्मक कार्य होता है और विज्ञान विभागों की कार्यशालाओं में कई विशिष्ट उदाहरण सावधानीपूर्वक बनाए गए हैं। भौतिक मॉडलिंग के लिए दृष्टिकोणों की एक बहुत विस्तृत श्रृंखला है, जिसमें व्यावसायिक रूप से खरीद के लिए उपलब्ध बॉल-एंड-स्टिक मॉडल से लेकर 3 थ्री डी प्रिण्टर का उपयोग करके बनाए गए हैं आणविक मॉडल सम्मिलित हैं। मुख्य रणनीति, प्रारंभिक में पाठ्यपुस्तकों और शोध लेखों में और वर्तमान में कंप्यूटर पर आणविक ग्राफिक्स ने कंप्यूटर हार्डवेयर पर आणविक मॉडलों के दृश्य को आसान अधिक सुलभ और सस्ता बना दिया है, चूँकि चित्रित किए जा रहे स्पर्श और दृश्य संदेश को बढ़ाने के लिए भौतिक मॉडल का व्यापक रूप से उपयोग किया जाता है।

इतिहास

मीथेन के लिए हॉफमैन का मॉडल

1600 के दशक में, जोहान्स केप्लर ने बर्फ के टुकड़ों की समरूपता और फलों जैसे निकटतम गोलाकार पैकिंग पर भी अनुमान लगाया गया (केप्लर अनुमान वर्तमान तक अनसुलझा रहा)।[1] निकटतम से पैक किए गए गोले की सममित व्यवस्था ने 1800 के दशक के अंत में आणविक संरचना के सिद्धांतों को सूचित किया गया था और क्रिस्टलोग्राफी और ठोस अकार्बनिक संरचना के कई सिद्धांतों ने पैकिंग का अनुकरण करने और संरचना की भविष्यवाणी करने के लिए समान और असमान क्षेत्रों के संग्रह का उपयोग किया गया था ।

जॉन डाल्टन ने यौगिकों को वृत्ताकार परमाणुओं के एकत्रीकरण के रूप में प्रस्तुत किया है और चूँकि जोहान जोसेफ लॉस्च्मिड्ट ने भौतिक मॉडल नहीं बनाए, जिससे वृत्तों पर आधारित उनके चित्र बाद के मॉडल के द्वि-आयामी एनालॉग हैं।[2] अगस्त विल्हेम वॉन हॉफमैन को 1860 के आसपास पहले भौतिक आणविक मॉडल का श्रेय दिया जाता है।[3] ध्यान दें कि कार्बन का आकार हाइड्रोजन से छोटा कैसे दिखाई देता है। तब त्रिविम के महत्व को पहचाना नहीं गया था और मॉडल अनिवार्य रूप से टोपोलॉजिकल है (यह एक 3-आयामी चतुर्पाश्वीय होना चाहिए)।

जेकोबस हेनरिकस वैन टी हॉफ और जोसेफ ले बेल ने अंतरिक्ष के तीन आयामों, अथार्त स्टीरियोकैमिस्ट्री में रसायन विज्ञान की अवधारणा प्रस्तुति की थी वैन टी हॉफ ने कार्बन के त्रि-आयामी गुणों का प्रतिनिधित्व करने वाले चतुष्फलकीय अणुओं का निर्माण किया गया था।


गोले पर आधारित मॉडल

सोडियम क्लोराइड (NaCl) जाली, क्लोज-पैक्ड गोले दिखाती है जो NaCl और अधिकांश अन्य क्षार halide ों के समान एक फलक-केंद्रित घन AB जाली का प्रतिनिधित्व करती है। इस मॉडल में गोले समान आकार के हैं जबकि अधिक यथार्थवादी मॉडल में धनायन और आयनों के लिए अलग-अलग त्रिज्याएँ होंगी।

दोहराई जाने वाली इकाइयाँ यह दिखाने में सहायता करेंगी कि परमाणुओं का प्रतिनिधित्व करने वाली गेंदों के माध्यम से अणुओं का प्रतिनिधित्व करना कितना आसान और स्पष्ट है।

द्विआधारी यौगिक सोडियम क्लोराइड (NaCl) और सीज़ियम क्लोराइड (CsCl) में घन संरचनाएं होती हैं किंतु अलग-अलग स्थान समूह होते हैं। इसे विभिन्न आकारों के गोले की निकटतम पैकिंग के संदर्भ में तर्कसंगत बनाया जा सकता है। उदाहरण के लिए, NaCl को अष्टभुजाकार छिद्रों में सोडियम आयन के साथ क्लोज-पैक क्लोराइड आयनों (एक फलक-केंद्रित घन जाली में) के रूप में वर्णित किया जा सकता है। क्रिस्टल संरचनाओं के निर्धारण के लिए एक उपकरण के रूप में एक्स - रे क्रिस्टलोग्राफी के विकास के बाद, कई प्रयोगशालाओं ने गोले के आधार पर मॉडल बनाए गये थे।जो की प्लास्टिक या पॉलीस्टायरीन गेंदों के विकास के साथ अब ऐसे मॉडल बनाना आसान हो गया है।

बॉल-एंड-स्टिक पर आधारित मॉडल

परमाणुओं के बीच सीधे संबंध के रूप में रासायनिक बंधन की अवधारणा को गेंदों (परमाणु) को छड़ियों/छड़ (बंधन) से जोड़कर तैयार किया जा सकता है। यह अधिक लोकप्रिय रहा है और आज भी इसका व्यापक रूप से उपयोग किया जाता है। प्रारंभ में परमाणु गोलाकार लकड़ी की गेंदों से बने होते थे जिनमें छड़ों के लिए विशेष रूप से ड्रिल किए गए होल होते थे। इस प्रकार कार्बन को चतुष्फलकीय कोण cos−1(-13) ≈ 109.47° पर चार छिद्रों वाले एक गोले के रूप में दर्शाया जा सकता है.

कठोर बंधनों और छिद्रों के साथ एक समस्या यह है कि इच्छानुसार कोण वाले प्रणाली का निर्माण नहीं किया जा सकता है। इसे लचीले बंधनों से दूर किया जा सकता है,जो की मूल रूप से पेचदार स्प्रिंग्स किंतु अब सामान्यतः प्लास्टिक यह दोहरे और तिहरे बांडों को कई एकल बांडों द्वारा अनुमानित करने की भी अनुमति देता है।

एक आधुनिक प्लास्टिक बॉल और स्टिक मॉडल। दिखाया गया अणु PROLINE है

बाईं ओर दिखाया गया मॉडल प्रोलाइन के बॉल-एंड-स्टिक मॉडल का प्रतिनिधित्व करता है। गेंदों में रंग होते हैं: काला कार्बन (सी) का प्रतिनिधित्व करता है; लाल, ऑक्सीजन (O); नीला, नाइट्रोजन (एन); और सफेद, हाइड्रोजन (एच) प्रत्येक गेंद को उसके पारंपरिक वैलेंस (रसायन शास्त्र) (सी: 4; एन: 3; ओ: 2; एच: 1) के रूप में कई छेदों के साथ ड्रिल किया जाता है, जो टेट्राहेड्रोन के शीर्ष की ओर निर्देशित होता है। एकल बांडों को (अधिक सीमा तक) कठोर ग्रे छड़ों द्वारा दर्शाया जाता है। डबल और ट्रिपल बॉन्ड दो लंबे लचीले बॉन्ड का उपयोग करते हैं जो घूर्णन को प्रतिबंधित करते हैं और पारंपरिक सीआईएस-ट्रांस आइसोमेरिज्म आइसोमेरिज्म स्टीरियोकैमिस्ट्री का समर्थन करते हैं।

File:Ruby model.jpg
ऐक्रेलिक गेंदों और स्टेनलेस स्टील की छड़ों से बने माणिक (सीआर-डॉप्ड कोरन्डम) का बीवर बॉल और स्टिक मॉडल


चूँकि अधिकांश अणुओं को अन्य कोणों पर होल की आवश्यकता होती है और विशेषज्ञ कंपनियां किट और बीस्पोक मॉडल बनाती हैं। चतुष्फलकीय, त्रिकोणीय और अष्टफलकीय छिद्रों के अतिरिक्त 24 छिद्रों वाली सर्व-उद्देश्यीय गेंदें भी थीं। इन मॉडलों ने एकल रॉड बांड के चारों ओर घूमने की अनुमति दी जाती है जो एक लाभ (आणविक लचीलापन दिखा रहा है) और एक हानि (मॉडल फ्लॉपी हैं) दोनों हो सकते हैं। अनुमानित मापदंड 5 सेमी प्रति एंगस्ट्रॉम (0.5 मीटर/एनएम या 500,000,000:1) था, किंतु सभी तत्वों पर सुसंगत नहीं था।

एडिनबरा में अर्नोल्ड बीवर्स ने पीएमएमए गेंदों और स्टेनलेस स्टील की छड़ों का उपयोग करके छोटे मॉडल बनाए। इन मॉडलों में स्पष्ट बॉन्ड कोण और बॉन्ड लंबाई के साथ व्यक्तिगत रूप से ड्रिल की गई गेंदों का उपयोग करते है, बड़ी क्रिस्टल संरचनाएं स्पष्ट रूप से बनाई जा सकती हैं, किंतु हल्के और कठोर रूप के साथ चित्र 4 इस शैली में माणिक की एक इकाई कोशिका दिखाता है।

कंकाल मॉडल

क्रिक और वॉटसन का डीएनए मॉडल और जॉन केंड्रयू की प्रोटीन-निर्माण किट पहले कंकाल मॉडल में से थे। ये परमाणु घटकों पर आधारित थे जहां संयोजकता को छड़ों द्वारा दर्शाया जाता था; जो की परमाणु प्रतिच्छेदन बिंदु थे। बॉन्ड को लॉकिंग स्क्रू के साथ ट्यूबलर कनेक्टर के साथ घटकों को जोड़कर बनाया गया था।

आंद्रे ड्रिडिंग ने 1950 के दशक के अंत में एक आणविक मॉडलिंग किट प्रस्तुति की जिसमें कनेक्टर्स सम्मिलित नहीं थे। किसी दिए गए परमाणु में ठोस और खोखले वैलेंस स्पाइक्स होंगे। ठोस छड़ें ट्यूबों में चिपक जाती हैं और एक बंधन बनाती हैं, जो की यह सामान्यतः मुक्त घुमाव के साथ होती है ये कार्बनिक रसायन विज्ञान विभागों में बहुत व्यापक रूप से उपयोग किए जाते थे और हैं और इतने स्पष्ट रूप से बनाए गए थे कि शासक द्वारा अंतर-परमाणु माप किए जा सकते थे।

वर्तमान में, सस्ते प्लास्टिक मॉडल (जैसे ऑर्बिट) एक समान सिद्धांत का उपयोग करते हैं। एक छोटे प्लास्टिक के गोले में उभार होते हैं जिन पर प्लास्टिक ट्यूब फिट की जा सकती हैं। प्लास्टिक के लचीलेपन का मतलब है कि विकृत ज्यामिति बनाई जा सकती है।

बहुफलकीय मॉडल

कई अकार्बनिक ठोस ऐसे परमाणुओं से बने होते हैं जो विद्युत ऋणात्मक परमाणुओं के समन्वय क्षेत्र से घिरे होते हैं (जैसे PO4 ) टेट्राहेड्रा, TiO6 अष्टफलक) कागज या प्लास्टिक से बने पॉलीहेड्रा को एक साथ चिपकाकर संरचनाओं का मॉडल तैयार किया जा सकता है।

समग्र मॉडल

File:Peptide model s.jpg
एक निकोलसन मॉडल, साइड चेन (ग्रे) के साथ प्रोटीन रीढ़ की हड्डी (सफेद) का एक छोटा हिस्सा दिखा रहा है। हाइड्रोजन परमाणुओं का प्रतिनिधित्व करने वाले कटे हुए स्टब्स पर ध्यान दें।

मिश्रित मॉडल का एक अच्छा उदाहरण निकोलसन दृष्टिकोण है, जिसका व्यापक रूप से 1970 के दशक के अंत से जैविक मैक्रो मोलेक्यूल के मॉडल बनाने के लिए उपयोग किया जाता है। घटक मुख्य रूप से एमिनो अम्ल और न्यूक्लिक अम्ल होते हैं जिनके पूर्वनिर्मित अवशेष परमाणुओं के समूहों का प्रतिनिधित्व करते हैं। इनमें से कई परमाणुओं को सीधे टेम्पलेट में प्रवाहित किया जाता है, और प्लास्टिक के ठूंठों को छोटे छिद्रों में धकेल कर एक साथ फिट किया जाता है। प्लास्टिक अच्छी तरह से पकड़ता है और बंधनों को घुमाना कठिन बनाता है, जिससे इच्छानुसार रूप से मरोड़ वाले कोणों को सेट किया जा सकता है और उनके मूल्य को बनाए रखा जा सकता है। रीढ़ की हड्डी की जंजीर और पक्ष श्रृंखला की संरचना मरोड़ कोण की पूर्व-गणना और फिर एक चांदा के साथ मॉडल को समायोजित करके निर्धारित की जाती है।

प्लास्टिक सफेद है और इसे O और N परमाणुओं के बीच अंतर करने के लिए पेंट किया जा सकता है। हाइड्रोजन परमाणु सामान्यतः अंतर्निहित होते हैं और तीलियों को काटकर प्रतिरूपित होते हैं। लगभग 300 अवशेषों वाले एक विशिष्ट प्रोटीन का एक मॉडल बनाने में एक महीने का समय लग सकता है। प्रयोगशालाओं के लिए हल किए गए प्रत्येक प्रोटीन के लिए एक मॉडल बनाना आम बात थी। 2005 तक, इतनी अधिक प्रोटीन संरचनाएँ निर्धारित की जा रही थीं कि अपेक्षाकृत कम मॉडल बनाए गए थे।

कंप्यूटर आधारित मॉडल

File:Anthrax and gfp s.jpg
एकीकृत प्रोटीन मॉडल

कंप्यूटर-आधारित भौतिक मॉडलिंग के विकास के साथ है अब किसी सतह के निर्देशांक को कंप्यूटर में फीड करके पूर्ण एकल-टुकड़ा मॉडल बनाना संभव है। चित्र 6 में बिसहरिया विष के मॉडल दिखाए गए हैं, बाएं (लगभग 20 Å/सेमी या 1:5,000,000 के मापदंड पर) और हरी फ्लोरोसेंट प्रोटीन, दाएं (5 सेमी ऊंचे, लगभग 4 Å/सेमी या 1:25,000,000 के मापदंड पर) 3डी आणविक डिजाइन मॉडल तेजी से प्रोटोटाइपिंग प्रक्रिया का उपयोग करके प्लास्टर या स्टार्च से बने होते हैं।

वर्तमान में उपसतह लेजर उत्कीर्णन नामक तकनीक का उपयोग करते है जिससे ग्लास ब्लॉकों के अंदर स्पष्ट आणविक मॉडल बनाना भी संभव हो गया है। दाईं ओर की छवि ब्रिटिश कंपनी ल्यूमिनोरम लिमिटेड द्वारा कांच के एक ब्लॉक के अंदर उकेरी गई ई. कोली प्रोटीन (डीएनए पोलीमरेज़ बीटा-उपइकाई, प्रोटीन डाटा बैंक कोड 1एमएमआई) की 3डी संरचना दिखाती है।

कम्प्यूटेशनल मॉडल

कंप्यूटर अणुओं का गणितीय मॉडल भी बना सकते हैं। एवोगैड्रो जैसे प्रोग्राम विशिष्ट डेस्कटॉप पर चल सकते हैं और बॉन्ड की लंबाई और कोण, आणविक ध्रुवता और चार्ज वितरण, और यहां तक ​​​​कि अवशोषण और उत्सर्जन स्पेक्ट्रा जैसे क्वांटम यांत्रिक गुणों की भविष्यवाणी कर सकते हैं। चूँकि इस प्रकार के कार्यक्रम अणुओं का मॉडल नहीं बना सकते क्योंकि अधिक परमाणु जोड़े जाते हैं, क्योंकि गणना की संख्या सम्मिलित परमाणुओं की संख्या में द्विघात होती है; यदि एक अणु में चार गुना अधिक परमाणुओं का उपयोग किया जाता है, तो गणना में 16 गुना अधिक समय लगता है। अधिकांश वास्तविक उद्देश्यों के लिए, जैसे दवा डिजाइन या प्रोटीन फोल्डिंग के लिए किसी मॉडल की गणना के लिए सुपरकंप्यूटिंग की आवश्यकता होती है या इसे उचित समय में मौलिक कंप्यूटर पर नहीं किया जा सकता है। क्वांटम कंप्यूटर कम गणनाओं के साथ अणुओं का मॉडल बना सकते हैं क्योंकि क्वांटम कंप्यूटर द्वारा प्रत्येक चक्र में की जाने वाली गणनाएं आणविक मॉडलिंग के लिए उपयुक्त होती हैं।

सामान्य रंग

आणविक मॉडलों में उपयोग किए जाने वाले कुछ सबसे समान्य रंग इस प्रकार हैं:

हाइड्रोजन वाइट
क्षारीय धातु वायलेट
क्षारीय पृथ्वी धातु डार्क ग्रीन
बोरोन, सर्वाधिक संक्रमण धातुएँ पिंक
कार्बन ब्लैक
नाइट्रोजन ब्लू
ऑक्सीजन रेड
फ़्लुओरीन ग्रीन येलो
क्लोरीन लाइम ग्रीन
ब्रोमिन डार्क रेड
आयोडीन डार्क वोइलेट
उत्कृष्ट गैस सियान
फास्फोरस ऑरेंज
सल्फर येलो
टाइटेनियम ग्रे
ताँबा एप्रीकॉट
मरकरी हल्का भूरा रंग


कालक्रम

यह तालिका उन घटनाओं का अधूरा कालक्रम है जहां भौतिक आणविक मॉडल प्रमुख वैज्ञानिक अंतर्दृष्टि प्रदान करते हैं।

डेवलपर तारीख तकनीकी टिप्पणियाँ
जोहान्स केप्लर c. 1600 गोले की पैकिंग, बर्फ के टुकड़ों की समरूपता।
जोहान जोसेफ लॉस्च्मिड्ट 1861 2-डी ग्राफिक्स वृत्तों को स्पर्श करके परमाणुओं और बंधों का प्रतिनिधित्व
अगस्त विल्हेम वॉन हॉफमैन 1860 गेंद और छड़ी पहला पहचानने योग्य भौतिक आणविक मॉडल
जेकोबस हेनरिकस वैन 'टी हॉफ 1874 पेपर? टेट्राहेड्रा के रूप में परमाणुओं के प्रतिनिधित्व ने स्टीरियोकैमिस्ट्री के विकास का समर्थन किया
जॉन डेसमंड बर्नाल c. 1930 प्लास्टिसिन और प्रवक्ता तरल पानी का मॉडल
रॉबर्ट कोरी, लिनस पॉलिंग, वाल्टर कोल्टन (सीपीके रंग) 1951 अल्फा-हेलिक्स आदि के स्थान-भरने वाले मॉडल। पॉलिंग के "रासायनिक बंधन की प्रकृति" ने आणविक संरचना के सभी पहलुओं को कवर किया और मॉडल के कई पहलुओं को प्रभावित किया जाता है
फ्रांसिस क्रिक और जेम्स डी. वाटसन 1953 स्पाइक्स, फ्लैट टेम्पलेट्स और स्क्रू के साथ कनेक्टर डीएनए का मॉडल
आणविक ग्राफिक्स c. 1960 कंप्यूटर स्क्रीन पर प्रदर्शित करें भौतिक मॉडलों को प्रतिस्थापित करने के बजाय पूरक करता है


यह भी देखें

संदर्भ

  1. Kepler, Johannes; Hardie, Colin (translated) (1611). स्ट्रेना, सेउ डे निवे सेक्संगुला।. Clarendon Press. Retrieved 13 June 2022.
  2. Dalton, John (1808). रासायनिक दर्शन की एक नई प्रणाली।. London, United Kingdom: Henderson & Spalding. Retrieved 14 June 2022.
  3. McBride, M. "Models and Structural Diagrams in the 1860s". Yale University. Retrieved 14 June 2022.


अग्रिम पठन


बाहरी संबंध