ओर्गनेसन

From Vigyanwiki
(Redirected from ओगानेसन)
Oganesson, 118Og
Oganesson
उच्चारण
दिखावटmetallic (predicted)
जन अंक[294]
Oganesson in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Rn

Og

(Usb)
tennessineoganessonununennium
Atomic number (Z)118
समूहgroup 18 (noble gases)
अवधिperiod 7
ब्लॉक  p-block
ऋणावेशित सूक्ष्म अणु का विन्यास[Rn] 5f14 6d10 7s2 7p6 (predicted)[3][4]
प्रति शेल इलेक्ट्रॉन2, 8, 18, 32, 32, 18, 8 (predicted)
भौतिक गुण
Phase at STPsolid (predicted)[5]
गलनांक325 ± 15 K ​(52 ± 15 °C, ​125 ± 27 °F) (predicted)[5]
क्वथनांक450 ± 10 K ​(177 ± 10 °C, ​350 ± 18 °F) (predicted)[5]
Density (near r.t.)7.2 g/cm3 (solid, 319 K, calculated)[5]
when liquid (at m.p.)6.6 g/cm3 (liquid, 327 K, calculated)[5]
परमाणु गुण
ऑक्सीकरण राज्य(−1),[4] (0), (+1),[6] (+2),[7] (+4),[7] (+6)[4] (predicted)
Ionization energies
  • 1st: 860 kJ/mol (calculated)[8]
  • 2nd: 1560 kJ/mol (calculated)[8]
परमाणु का आधा घेराempirical: 152 pm (predicted)[9]
सहसंयोजक त्रिज्या157 pm (predicted)[10]
अन्य गुण
प्राकृतिक घटनाsynthetic
क्रिस्टल की संरचनाface-centered cubic (fcc)
Face-centered cubic crystal structure for oganesson

(extrapolated)[11]
CAS नंबर54144-19-3
History
नामीafter Yuri Oganessian
भविष्यवाणीHans Peter Jørgen Julius Thomsen (1895)
खोज]Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory (2002)
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
 Category: Oganesson
| references

ओगेनसन (युनुनोक्टियम) एक कृत्रिम रसायन तत्व है जिसका प्रतीक Og और परमाणु संख्या 118 है। इसे पहली बार 2002 में रूसी और अमेरिकी वैज्ञानिकों की एक संयुक्त दल द्वारा मास्को, रूस के पास डबना में संयुक्त परमाणु अनुसंधान संस्थान (JINR) में संश्लेषित किया गया था। दिसंबर 2015 में, इसे अंतर्राष्ट्रीय वैज्ञानिक निकायों शुद्ध और व्यावहारिक रसायन के अंतर्राष्ट्रीय संघ और इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड फिजिक्स के IUPAC / IUPAP संयुक्त कार्य दल द्वारा इसे चार नए तत्वों में से एक के रूप में मान्यता दी गई थी। इसका औपचारिक नामकरण 28 नवंबर 2016 को किया गया।[12][13] यह नाम परमाणु भौतिक विज्ञानी यूरी ओगेनेसियन का सम्मान करता है, जिन्होंने आवर्त सारणी में सबसे भारी तत्वों की खोज में अग्रणी भूमिका निभाई थी। यह केवल दो तत्वों में से एक है जिसका नाम उस व्यक्ति के नाम पर रखा गया है जो नामकरण के समय जीवित था, दूसरा सीबोर्गियम है, और एकमात्र तत्व जिसका उपनाम 2023 तक जीवित है। [14][lower-alpha 1]

ओर्गनेसन के पास सभी ज्ञात तत्वों का उच्चतम परमाणु क्रमांक और उच्चतम परमाणु द्रव्यमान है। रेडियोधर्मी क्षय ओगानेसन परमाणु बहुत अस्थिर है, और 2005 के बाद से, समस्थानिक ओगानेसन -294 के केवल पांच (संभवतः छह) परमाणुओं का पता लगाया गया है।[16] हालांकि इसने इसके गुणों और संभावित यौगिकों के बहुत कम प्रायोगिक लक्षण वर्णन की अनुमति दी, सैद्धांतिक गणनाओं के परिणामस्वरूप कई भविष्यवाणियां हुई हैं, जिनमें कुछ आश्चर्यजनक भी सम्मिलित हैं। उदाहरण के लिए, हालांकि ओगानेसन समूह 18 (उत्कृष्ट गैसों) का सदस्य है - ऐसा होने वाला पहला कृत्रिम तत्व - यह उस समूह के अन्य सभी तत्वों के विपरीत महत्वपूर्ण रूप से प्रतिक्रियाशील हो सकता है।[3] इसे पहले सामान्य परिस्थितियों में एक गैस माना जाता था लेकिन अब सापेक्षिक प्रभावों के कारण अब इसे एक ठोस होने की भविष्यवाणी की गई है।[3]तत्वों की आवर्त सारणी पर यह एक पी-खंड तत्व है और 7 की अवधि का अंतिम है।

परिचय

सबसे भारी[बी] परमाणु नाभिक परमाणु प्रतिक्रियाओं में बनाए जाते हैं जो असमान आकार के दो अन्य नाभिक[सी] को एक में मिलाते हैं; मोटे तौर पर, द्रव्यमान के संदर्भ में दो नाभिक जितने अधिक असमान होंगे, दोनों के प्रतिक्रिया करने की संभावना उतनी ही अधिक होगी।[26] भारी नाभिक से बनी सामग्री को एक लक्ष्य में बनाया जाता है, जिस पर हल्के नाभिक की किरण द्वारा बमबारी की जाती है। दो नाभिक एक में विलय तभी कर सकते हैं जब वे एक-दूसरे के काफी निकट हों; सामान्यतः, नाभिक (सभी धनात्मक रूप से आवेशित) स्थिरवैद्युत प्रतिकर्षण के कारण एक दूसरे को पीछे हटाते हैं। मजबूत अंतःक्रिया इस प्रतिकर्षण को दूर कर सकती है लेकिन केवल एक नाभिक से बहुत कम दूरी के भीतर; धरणी नाभिक के वेग की तुलना में इस तरह के प्रतिकर्षण को नगण्य बनाने के लिए धरणी नाभिक को बहुत तेज किया जाता है।[27] दो नाभिकों के संलयन के लिए अकेले समीप आना पर्याप्त नहीं है: जब दो नाभिक एक-दूसरे के पास आते हैं, तो वे सामान्यतः लगभग 10-20 सेकंड के लिए एक साथ रहते हैं और पुनःअलग हो जाते हैं (जरूरी नहीं कि उसी संरचना में प्रतिक्रिया से पहले) एक एकल बनाने के बजाय नाभिक।[27][28] यदि संलयन होता है, तो अस्थायी विलय - जिसे यौगिक नाभिक कहा जाता है - एक उत्तेजित अवस्था है। अपनी उत्तेजना ऊर्जा को खोने और अधिक स्थिर स्थिति तक पहुंचने के लिए, एक यौगिक नाभिक या तो विखंडन करता है या एक या कई न्यूट्रॉन को बाहर निकालता है,[डी] जो ऊर्जा को दूर ले जाते हैं। प्रारंभिक टक्कर के बाद यह लगभग 10−16 सेकंड में होता है।[29][ई]

धरणी लक्ष्य के माध्यम से गुजरता है और अगले कक्ष, विभाजक तक पहुंचता है; यदि एक नया नाभिक उत्पन्न होता है, तो इसे इस धरणी के साथ ले जाया जाता है।[32] विभाजक में, नए उत्पादित नाभिक को अन्य न्यूक्लाइड्स (मूल धरणी और किसी भी अन्य प्रतिक्रिया उत्पादों)[एफ] से अलग किया जाता है और एक सतह-बाधा संसूचक में स्थानांतरित किया जाता है, जो नाभिक को रोकता है। संसूचक पर आगामी प्रभाव का सटीक स्थान चिह्नित है; इसकी ऊर्जा और आगमन के समय को भी चिन्हित किया गया है।[32] स्थानांतरण में लगभग 10−6 सेकंड लगते हैं; पता लगाने के लिए, नाभिक को इतने लंबे समय तक जीवित रहना चाहिए।[35] एक बार जब नाभिक का क्षय पंजीकृत हो जाता है, तो नाभिक को पुनः अभिलिखित किया जाता है, और क्षय का स्थान, ऊर्जा और समय मापा जाता है।[32]

एक नाभिक की स्थिरता मजबूत अंतःक्रिया द्वारा प्रदान की जाती है। हालाँकि, इसकी सीमा बहुत कम है; जैसे-जैसे नाभिक बड़े होते जाते हैं, सबसे बाहरी नाभिकों (प्रोटॉन और न्यूट्रॉन) पर उनका प्रभाव कमजोर होता जाता है। उसी समय, प्रोटॉन के बीच स्थिरवैद्युत प्रतिकर्षण द्वारा नाभिक फट जाता है, क्योंकि इसकी सीमा असीमित होती है।[36] इस प्रकार सबसे भारी तत्वों के नाभिकों की सैद्धांतिक रूप से भविष्यवाणी की जाती है[37] और अब तक देखा गया है[38] मुख्य रूप से क्षय पर्याय के माध्यम से क्षय होता है जो इस तरह के प्रतिकर्षण के कारण होता है: अल्फा क्षय और सहज विखंडन;[जी] ये पर्याय नाभिक के लिए प्रमुख अतिभारी तत्व हैं। अल्फा क्षय उत्सर्जित अल्फा कणों द्वारा पंजीकृत होते हैं, और वास्तविक क्षय से पहले क्षय उत्पादों को निर्धारित करना आसान होता है; यदि इस तरह के क्षय या क्रमिक क्षय की एक श्रृंखला एक ज्ञात नाभिक का उत्पादन करती है, तो प्रतिक्रिया का मूल उत्पाद अंकगणितीय रूप से निर्धारित किया जा सकता है।[i]

सबसे भारी तत्वों में से एक को संश्लेषित करने के उद्देश्य से भौतिकविदों के लिए उपलब्ध जानकारी इस प्रकार संसूचको पर एकत्र की गई जानकारी है: संसूचक के लिए एक कण के आगमन का स्थान, ऊर्जा और समय, और इसके क्षय। भौतिक विज्ञानी इस आंकड़े का विश्लेषण करते हैं और यह निष्कर्ष निकालना चाहते हैं कि यह वास्तव में एक नए तत्व के कारण हुआ था और दावा किए गए से भिन्न न्यूक्लाइड के कारण नहीं हो सकता था। अक्सर, प्रदान किया गए आंकड़े इस निष्कर्ष के लिए अपर्याप्त है कि एक नया तत्व निश्चित रूप से बनाया गया था और देखे गए प्रभावों के लिए कोई अन्य स्पष्टीकरण नहीं है; आंकड़े की व्याख्या करने में त्रुटियां की गई हैं।[जे]

इतिहास

प्रारंभिक अटकलें

हीलियम, नियोन, आर्गन, क्रीप्टोण , क्सीनन और रेडॉन के बाद सातवीं महान गैस की संभावना पर लगभग तभी विचार किया गया जब नोबल गैस समूह की खोज की गई। डेनिश रसायनशास्त्री हैंस पीटर जोर्जेन जूलियस थॉमसन ने अप्रैल 1895 में, आर्गन की खोज के एक साल बाद भविष्यवाणी की थी कि आर्गन के समान रासायनिक रूप से अक्रिय गैसों की एक पूरी श्रृंखला थी जो हलोजन और क्षार धातु समूहों को पाट देगी: उन्होंने आशा की थी कि इसका सातवां श्रृंखला एक 32-तत्व अवधि को समाप्त कर देगी जिसमें थोरियम और यूरेनियम सम्मिलित थे और इसका परमाणु भार 292 था, जो अब 294 के समीप है जो अब ओर्गनेसन के पहले और एकमात्र पुष्टि समस्थानिक के लिए जाना जाता है।[17] डेनिश भौतिक विज्ञानी नील्स बोह्र ने 1922 में ध्यान दिया कि इस सातवीं महान गैस की परमाणु संख्या 118 होनी चाहिए और इसकी इलेक्ट्रॉनिक संरचना की भविष्यवाणी 2, 8, 18, 32, 32, 18, 8 के रूप में की गई, जो आधुनिक भविष्यवाणियों से मेल खाती है।[18] इसके बाद, जर्मन रसायनशास्त्री एरिस्टिड वॉन ग्रोस ने 1965 में तत्व 118 के संभावित गुणों की भविष्यवाणी करते हुए एक लेख लिखा था। यह थॉमसन की भविष्यवाणी से 107 साल पहले था जब ओर्गनेसन को सफलतापूर्वक संश्लेषित किया गया था, हालांकि इसके रासायनिक गुणों की जांच यह निर्धारित करने के लिए नहीं की गई है कि यह भारी के रूप में व्यवहार करता है या नहीं। रेडॉन का कोजेनर (रसायन विज्ञान)[19] 1975 के एक लेख में, अमेरिकी रसायनशास्त्री केनेथ पित्जर ने सुझाव दिया कि तत्व 118 सापेक्षवादी क्वांटम रसायन के कारण गैस या वाष्पशीलता (रसायन) तरल होना चाहिए।[20]

अपुष्ट खोज के दावे

1998 के अंत में, पोलिश भौतिक विज्ञानी रॉबर्ट स्मोलेंज़ुक ने ओर्गनेसन सहित अतिभारी तत्व के संश्लेषण के लिए परमाणु नाभिक के संलयन पर गणना प्रकाशित की।[21] उनकी गणना ने सुझाव दिया कि सावधानी से नियंत्रित परिस्थितियों में क्रिप्टन के साथ सीसे को मिलाकर तत्व 118 बनाना संभव हो सकता है, और उस प्रतिक्रिया की संलयन संभावना ( व्यापक प्रतिनिधित्व (भौतिकी)) सीसा-क्रोमियम प्रतिक्रिया के समीप होगी जिसने तत्व का उत्पादन किया था 106, सीबोर्गियम का उत्पादन किया था। इसने भविष्यवाणियों का खंडन किया कि परिणामी तत्वों की परमाणु संख्या में वृद्धि के साथ सीसा या विस्मुट लक्ष्य के साथ प्रतिक्रियाओं के लिए व्यापक प्रतिनिधित्व तेजी से नीचे जाएगा।[21]

1999 में, लॉरेंस बर्कले राष्ट्रीय प्रयोगशाला के शोधकर्ताओं ने इन भविष्यवाणियों का उपयोग किया और भौतिक समीक्षा पत्र में प्रकाशित एक लेख्य में 118 और और 116 तत्वों की खोज की घोषणा की।[22] और विज्ञान (पत्रिका) में परिणामों की प्रतिवेदन के तुरंत बाद।[23] शोधकर्ताओं ने बताया कि उन्होंने परमाणु प्रतिक्रिया की थी

208
82
Pb
+ 86
36
Kr
293
118
Og
+
n
.

2001 में, अन्य प्रयोगशालाओं के शोधकर्ताओं द्वारा परिणामों की नकल करने में असमर्थ होने और बर्कले प्रयोगशाला में भी उनकी नकल नहीं कर पाने के बाद उन्होंने एक प्रतिगमन प्रकाशित किया।[24] जून 2002 में, प्रयोगशाला के निदेशक ने घोषणा की कि इन दो तत्वों की खोज का मूल दावा प्रमुख लेखक विक्टर नीनवे द्वारा गढ़े गए आंकड़े पर आधारित था।[25][26] नए प्रयोगात्मक परिणामों और सैद्धांतिक भविष्यवाणियों ने परिणामी न्यूक्लाइड की परमाणु संख्या बढ़ने के साथ सीसा और बिस्मथ लक्ष्यों के साथ व्यापक प्रतिनिधित्व में घातीय कमी की पुष्टि की है।[27]

डिस्कवरी रिपोर्ट

Schematic diagram of oganesson-294 alpha decay, with a half-life of 0.89 ms and a decay energy of 11.65 MeV. The resulting livermorium-290 decays by alpha decay, with a half-life of 10.0 ms and a decay energy of 10.80 MeV, to flerovium-286. Flerovium-286 has a half-life of 0.16 s and a decay energy of 10.16 MeV, and undergoes alpha decay to copernicium-282 with a 0.7 rate of spontaneous fission. Copernicium-282 itself has a half-life of only 1.9 ms and has a 1.0 rate of spontaneous fission.
Radioactive decay pathway of the isotope oganesson-294. The decay energy and average half-life is given for the parent isotope and each daughter isotope. The fraction of atoms undergoing spontaneous fission (SF) is given in green.

ओर्गनेसन के परमाणुओं का पहला वास्तविक क्षय 2002 में रूसी और अमेरिकी वैज्ञानिकों की एक संयुक्त टीम द्वारा डबना में , रूस में संयुक्त परमाणु अनुसंधान संस्थान (JINR) में देखा गया था। अर्मेनियाई जातीयता के एक रूसी परमाणु भौतिक विज्ञानी यूरी ओगनेसियन के नेतृत्व में, टीम में कैलिफोर्निया में लॉरेंस लिवरमोर राष्ट्रीय प्रयोगशाला के अमेरिकी वैज्ञानिक सम्मिलित थे।[28] खोज की तुरंत घोषणा नहीं की गई थी, क्योंकि 294Og की क्षय ऊर्जा 212mPo, की क्षय ऊर्जा से मेल खाती थी, जो अतिभारी तत्वों के उत्पादन के उद्देश्य से संलयन प्रतिक्रियाओं में उत्पन्न एक सामान्य अशुद्धता थी, और इस प्रकार घोषणा को 2005 के पुष्टिकरण प्रयोग के बाद तक विलंबित कर दिया गया, जिसका अधिक ओर्गनेसन परमाणुओं का उत्पादन करना था।[29]2005 के प्रयोग ने एक अलग धरणी ऊर्जा (245 MeV के बजाय 251 MeV) और लक्ष्य मोटाई (0.23 mg/cm2 के बजाय 0.34 mg/cm) का उपयोग किया। 9 अक्टूबर 2006 को, शोधकर्ताओं ने घोषणा की कि उन्होंने परोक्ष रूप से कुल तीन (संभवतः चार) ओगानेसन-294 (2002 में एक या दो) [30] और 2005 में दो और) के नाभिक का पता लगाया था जो कैलिफोर्नियम के टकराव के माध्यम से उत्पन्न हुए थे -249 परमाणुओं और कैल्शियम-48 आयनों।[31][32][33][34][35]

249
98
Cf
+ 48
20
Ca
294
118
Og
+ 3
n
.

2011 में, इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री (IUPAC) ने डबना-लिवरमोर सहयोग के 2006 के परिणामों का मूल्यांकन किया और निष्कर्ष निकाला: "Z = 118 समस्थानिक के लिए प्रतिवेदन की गई तीन घटनाओं में बहुत अच्छा आंतरिक अतिरेक है लेकिन ज्ञात नाभिक के लिए कोई लंगर खोज के मानदंडों को पूरा नहीं करता है"।[36]

बहुत कम संलयन प्रतिक्रिया संभावना के कारण (संलयन परमाणु व्यापक प्रतिनिधित्व ~0.3–0.6 pb या (3–6)×10−41 m2) प्रयोग में चार महीने लगे और इसमें 2.5×1019 कैल्शियम आयन की धरणी खुराक शामिल थी जिसे कैलीफ़ोर्नियम लक्ष्य पर गोली मारी जा सकती है, जिससे पहली अभिलिखित की गई घटना को ओगेनेसन का संश्लेषण माना जाता है।[37] पुनः भी, शोधकर्ताओं को अत्यधिक विश्वास था कि परिणाम झूठे सकारात्मक नहीं थे, क्योंकि पता लगाने के लिए यादृच्छिक घटनाएं होने की संभावना 100000 में एक भाग से कम होने का अनुमान लगाया गया था।[38]

प्रयोगों में, ओगानेसन के तीन परमाणुओं का अल्फा-क्षय देखा गया। प्रत्यक्ष सहज विखंडन द्वारा चौथा क्षय भी प्रस्तावित किया गया था। 0.89 ms के आधे जीवन की गणना की गई: 294
Og
में क्षय होता है 290
Lv
अल्फा क्षय द्वारा। चूंकि केवल तीन नाभिक थे, देखे गए जीवनकाल से प्राप्त अर्ध-जीवन में बड़ी अनिश्चितता है: 0.89+1.07
−0.31
 ms
.

294
118
Og
290
116
Lv
+ 4
2
He

की पहचान 294
Og
नाभिक को अलग-अलग पुटीय क्षय उत्पाद बनाकर सत्यापित किया गया था 290
Lv
सीधे बमबारी के माध्यम से 245
Cm
साथ 48
Ca
आयन,

245
96
Cm
+ 48
20
Ca
290
116
Lv
+ 3
n
,

और जांच कर रहा है कि 290
Lv
क्षय की क्षय श्रृंखला से मेल खाता है 294
Og
नाभिक।बेटी नाभिक 290
Lv
बहुत अस्थिर है, 14 मिलीसेकंड के जीवनकाल के साथ क्षय हो रहा है 286
Fl
, जिसमें सहज विखंडन या अल्फा क्षय का अनुभव हो सकता है 282
Cn
, जो सहज विखंडन से गुजरेगा।


पुष्टि

दिसंबर 2015 में, अंतरराष्ट्रीय वैज्ञानिक निकायों इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री (IUPAC) और इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड फिजिक्स (IUPAP) के IUPAC/IUPAP संयुक्त कार्य दल ने तत्व की खोज को मान्यता दी और डबना-लिवरमोर सहयोग को खोज की प्राथमिकता सौंपी।[39] यह लॉरेंस बर्कले नेशनल लेबोरेटरी में,294Og 286Fl की पोती के गुणों की दो 2009 और 2010 की पुष्टि के साथ-साथ 2012 में डबना समूह द्वारा 294Og की एक और लगातार क्षय श्रृंखला के अवलोकन के कारण था। का लक्ष्य वह प्रयोग 249Bk(48Ca,3n), प्रतिक्रिया के माध्यम से 294Ts का संश्लेषण था, लेकिन 249Bk के छोटे आधे जीवन के परिणामस्वरूप लक्ष्य की एक महत्वपूर्ण मात्रा 249Cf तक क्षय हो गई, जिसके परिणामस्वरूप टेनेसाइन के बजाय ओगेनेसन का संश्लेषण हुआ।[40]

1 अक्टूबर 2015 से 6 अप्रैल 2016 तक डबना टीम ने 295Og और 296Og भारी ओर्गनेसन समस्थानिकके उत्पादन के उद्देश्य से 249Cf, 250Cf, और 251Cf युक्त मिश्रित- समस्थानिक कैलिफ़ोर्नियम लक्ष्य के उद्देश्य से 48Ca प्रक्षेप्य के साथ एक समान प्रयोग किया। 252 MeV और 258 MeV पर दो धरणी ऊर्जा का उपयोग किया गया। निचली धरणी ऊर्जा पर केवल एक परमाणु देखा गया था, जिसकी क्षय श्रृंखला पहले से ज्ञात 294Og (286Fl के सहज विखंडन के साथ समाप्त) में उपयुक्त थी,, और उच्च धरणी ऊर्जा पर कोई भी नहीं देखा गया। प्रयोग को तब रोक दिया गया था, क्योंकि क्षेत्रक ढांचा से गोंद ने लक्ष्य को कवर किया था और वाष्पीकरण अवशेषों को संसूचको से बचने से रोक दिया था।[41] इस प्रतिक्रिया का उपयोग करके 293Og और इसकी बेटी 289Lv, साथ ही इससे भी भारी समस्थानिक297Og का उत्पादन भी संभव है। समस्थानिक295Og और 296Og को 50Ti प्रक्षेप्य के साथ 248Cm के संलयन में भी उत्पादित किया जा सकता है।[41][42][43] इस प्रतिक्रिया के 3n चैनल में 295Og के लिए 295Og के लिए RIKEN में 2016 की गर्मियों में शुरू हुई खोज असफल रही, हालांकि अध्ययन को पुनः से शुरू करने की योजना है; एक विस्तृत विश्लेषण और व्यापक प्रतिनिधित्व सीमा प्रदान नहीं की गई थी। ये भारी और अधिक स्थिर समस्थानिक ओगानेसन के रसायन विज्ञान की जांच में उपयोगी हो सकते हैं।[44][45]

नामकरण

अज्ञात और अनदेखे तत्वों के लिए मेंडेलीव के नामकरण का उपयोग करते हुए, ओगानेसन को कभी-कभी ईका-रेडॉन के रूप में जाना जाता है (1960 के दशक तक ईका-इमैनेशन के रूप में, रेडॉन के लिए पुराना नाम एमनेशन था)।[11]1979 में, IUPAC ने Uuo के संबंधित प्रतीक के साथ, अनदेखे तत्व को व्यवस्थित प्लेसहोल्डर का नाम ununoctium सौंपा,[46] और अनुशंसा की कि तत्व की पुष्टि की खोज के बाद तक इसका उपयोग किया जाए।[47] यद्यपि रासायनिक समुदाय में व्यापक रूप से सभी स्तरों पर उपयोग किया जाता है, रसायन विज्ञान कक्षाओं से लेकर उन्नत पाठ्यपुस्तकों तक, अनुशंसित को ज्यादातर क्षेत्र के वैज्ञानिकों के बीच अनदेखा किया जाता है, जिन्होंने इसे "तत्व 118" कहा, E118, (118) के प्रतीक के साथ, या यहां तक ​​​​कि बस 118।[4]

2001 में वापस लेने से पहले, बर्कले के शोधकर्ताओं ने अल्बर्ट घिरसो (अनुसंधान दल के एक प्रमुख सदस्य) के नाम पर तत्व का नाम घियोर्सियम (घ) रखने का इरादा किया था।[48]

रूसी खोजकर्ताओं ने 2006 में अपने संश्लेषण की सूचना दी। IUPAC की अनुशंसित के अनुसार, एक नए तत्व के खोजकर्ताओं को एक नाम सुझाने का अधिकार है।[49] 2007 में, रूसी संस्थान के प्रमुख ने कहा कि टीम नए तत्व के लिए दो नामों पर विचार कर रही थी: डबना में अनुसंधान प्रयोगशाला के संस्थापक जॉर्ज फ्लायरोव के सम्मान में फ्लायोरियम; और मोस्कोवियम, मास्को क्षेत्र की मान्यता में जहां डबना स्थित है।[50] उन्होंने यह भी कहा कि यद्यपि तत्व को एक अमेरिकी सहयोग के रूप में खोजा गया था, जिसने कैलिफ़ोर्नियम लक्ष्य प्रदान किया था, तत्व को रूस के सम्मान में सही नाम दिया जाना चाहिए क्योंकि JINR में परमाणु प्रतिक्रियाओं की फ़्लायरोव प्रयोगशाला दुनिया में एकमात्र सुविधा थी जो इसे प्राप्त कर सकती थी। परिणाम।[51] ये नाम बाद में तत्व 114(फ्लेरोवियम) और तत्व 116 (मोस्कोवियम) के लिए सुझाए गए थे।[52] फ्लेरोवियम तत्व 114 का नाम बन गया; एलिमेंट 116 के लिए प्रस्तावित अंतिम नाम लिवरमोरियम था,[53] बाद में मोस्कोवियम को एलिमेंट 115 के लिए प्रस्तावित और स्वीकार किया गया।[14]

परंपरागत रूप से, हीलियम के अपवाद के साथ, सभी महान गैसों के नाम "-ऑन" में समाप्त होते हैं, जो कि खोजे जाने पर एक महान गैस के रूप में नहीं जाना जाता था। खोज अनुमोदन के क्षण में मान्य IUPAC दिशानिर्देशों के लिए आवश्यक है कि सभी नए तत्वों को "-ium" समाप्त होने के साथ नाम दिया जाए, भले ही वे हलोजन (पारंपरिक रूप से "-ine" में समाप्त हो) या नोबल गैस (परंपरागत रूप से "-on" में समाप्त) हों।[54] जबकि अनंतिम नाम ununoctium ने इस सम्मेलन का पालन किया, 2016 में प्रकाशित एक नई IUPAC अनुशंसित ने नए समूह 18 तत्वों के लिए "-ऑन" समाप्ति का उपयोग करने की अनुशंसित की, भले ही वे एक महान गैस के रासायनिक गुणों को प्राप्त करते हों।[55]

तत्व 118 की खोज में सम्मिलित वैज्ञानिकों, साथ ही साथ 117 और 115 की खोज में शामिल वैज्ञानिकों ने 23 मार्च 2016 को अपने नाम तय करने के लिए एक सम्मेलन आयोजित किया। तत्व 118 पर निर्णय लिया जाना अंतिम था; ओगेनेसियन को मांग छोड़ने के लिए कहने के बाद, शेष वैज्ञानिकों ने सर्वसम्मति से उसके बाद तत्व "ओगेनेसन" रखने का फैसला किया। ओगेनेसियन साठ वर्षों तक क्षेत्र की नींव तक पहुंचने के लिए अतिभारी तत्व अनुसंधान में अग्रणी थे: उनकी टीम और उनकी प्रस्तावित तकनीकों ने सीधे 107 से 118 के तत्वों के संश्लेषण का नेतृत्व किया था। एलएलएनएल में एक परमाणु रसायनज्ञ मार्क स्टॉयर ने बाद में याद किया, "हमने लिवरमोर से उस नाम का प्रस्ताव करने का इरादा किया था, और एक ही समय में कई स्थानों से इस तरह की चीजें प्रस्तावित हुईं। मुझे नहीं पता कि क्या हम दावा कर सकते हैं कि वास्तव में हमने नाम प्रस्तावित किया था, लेकिन हमने इसका इरादा किया था।"[56]

आंतरिक चर्चाओं में, IUPAC ने JINR से पूछा कि क्या वे रूसी वर्तनी से अधिक बारीकी से मिलान करने के लिए तत्व को "ओगेनसन" वर्तनी देना चाहते हैं। फ्रांसीसी भाषा के नियमों के तहत लैटिन वर्णमाला में नामों के लिप्यंतरण के सोवियत-युग के अभ्यास का हवाला देते हुए ओगेनेसियन और जीआईएनआर ने इस प्रस्ताव को अस्वीकार कर दिया ("ओगनेसियन" एक ऐसा लिप्यंतरण है) और तर्क दिया कि "ओगानेसन" को जुड़ना आसान होगा।[57][lower-alpha 2] जून 2016 में, आईयूपीएसी ने घोषणा की कि खोजकर्ताओं ने तत्व को ओर्गनेसन (प्रतीक: Og) नाम देने की योजना बनाई है। 28 नवंबर 2016 को नाम आधिकारिक हो गया।[14]2017 में, ओगनेसियन ने नामकरण पर टिप्पणी की:[58]

मेरे लिए यह एक सम्मान की बात है। तत्व 118 की खोज रूस में ज्वाइंट इंस्टीट्यूट फॉर न्यूक्लियर रिसर्च और अमेरिका में लॉरेंस लिवरमोर नेशनल लेबोरेटरी के वैज्ञानिकों द्वारा की गई थी, और यह मेरे सहयोगी थे जिन्होंने ओगनेसन नाम प्रस्तावित किया था। मेरे बच्चे और नाती-पोते दशकों से अमेरिका में रह रहे हैं, लेकिन मेरी बेटी ने मुझे यह कहने के लिए लिखा है कि जिस रात उसने सुना वह रो रही थी, उसे नींद नहीं आई।[58]

— Yuri Oganessian

मास्को में रूसी विज्ञान अकादमी में 2 मार्च 2017 को मोस्कोवियम, टेनेसाइन और ओगानेसन का नामकरण समारोह आयोजित किया गया था।[59]

2019 के एक साक्षात्कार में, यह पूछे जाने पर कि अल्बर्ट आइंस्टीन, दिमित्री मेंडेलीव, क्यूरी परिवार और अर्नेस्ट रदरफोर्ड के बगल में आवर्त सारणी में उनका नाम देखना कैसा था, तो ओगेनेसियन ने जवाब दिया:[57]

ज्यादा पसंद नहीं! आप देखिए, ज्यादा पसंद नहीं है। विज्ञान में किसी नई चीज का नाम उसके खोजकर्ता के नाम पर रखने की प्रथा है। यह सिर्फ इतना है कि कुछ तत्व हैं, और ऐसा बहुत कम ही होता है। लेकिन देखें कि गणित में कितने समीकरण और प्रमेय किसी के नाम पर रखे गए हैं। और चिकित्सा में? अल्जाइमर, पार्किंसंस। इसमें कोई खास बात नहीं है।

विशेषताएं

परमाणु गुणों के अलावा, ओगानेसन या इसके यौगिकों के किसी भी गुण को मापा नहीं गया है; यह इसके बेहद सीमित और महंगे उत्पादन के कारण है और इस तथ्य के कारण है कि यह बहुत शीघ्र क्षय हो जाता है। इस प्रकार केवल भविष्यवाणियाँ उपलब्ध हैं।

परमाणु स्थिरता और समस्थानिक

ओर्गनेसन (पंक्ति 118) स्थिरता के द्वीप (सफेद दीर्घवृत्त) से थोड़ा ऊपर है और इस प्रकार इसके नाभिक अन्यथा भविष्यवाणी की तुलना में थोड़ा अधिक स्थिर हैं।

क्यूरियम के बाद परमाणु संख्या में वृद्धि के साथ नाभिक की स्थिरता तेजी से घटती है, तत्व 96, जिसका सबसे स्थिर समस्थानिक247Cm, किसी भी बाद के तत्व की तुलना में परिमाण के चार क्रमों का आधा जीवन है। 101 से अधिक परमाणु संख्या वाले सभी न्यूक्लाइड 30 घंटे से कम आधे जीवन के साथ रेडियोधर्मी क्षय से गुजरते हैं।82 (सीसा के बाद) से अधिक परमाणु क्रमांक वाले किसी भी तत्व में स्थिर समस्थानिक नहीं होता हैं।[60] यह प्रोटॉन के लगातार बढ़ते कूलम्ब प्रतिकर्षण के कारण है, ताकि मजबूत परमाणु बल लंबे समय तक सहज विखंडन के खिलाफ नाभिक को एक साथ नहीं रख सके। गणनाओं से पता चलता है कि अन्य स्थिर कारकों की अनुपस्थिति में, 104 से अधिक प्रोटॉन वाले तत्वों का अस्तित्व नहीं होना चाहिए।[61] हालांकि,1960 के दशक में शोधकर्ताओं ने सुझाव दिया कि 114 प्रोटॉन और 184 न्यूट्रॉन के आसपास के बंद परमाणु गोले को इस अस्थिरता का प्रतिकार करना चाहिए, जिससे स्थिरता का एक द्वीप बन सके जिसमें न्यूक्लाइड्स का आधा जीवन हजारों या लाखों वर्षों तक हो सके। जबकि वैज्ञानिक अभी भी द्वीप पर नहीं पहुंचे हैं, अतिभारी तत्वों (ओगानेसन सहित) का मात्र अस्तित्व इस बात की पुष्टि करता है कि यह स्थिरीकरण प्रभाव वास्तविक है, और सामान्य रूप से ज्ञात अतिभारी न्यूक्लाइड तेजी से लंबे समय तक जीवित रहते हैं क्योंकि वे द्वीप के अनुमानित स्थान तक पहुंचते हैं।[62][63] ओर्गनेसन रेडियोधर्मी है, अल्फा क्षय और सहज विखंडन के माध्यम से क्षय होता है,[64][65] आधे जीवन के साथ जो एक मिलीसेकंड से कम प्रतीत होता है। बहरहाल,यह अभी भी कुछ अनुमानित मूल्यों से अधिक है।[66][67]

क्वांटम-टनलिंग प्रतिरूप का उपयोग करने वाली गणनाएं ओगानेसन के कई भारी समस्थानिकों के अस्तित्व की भविष्यवाणी करती हैं, जिनमें अल्फा-क्षय अर्ध-जीवन 1 ms के समीपहै।[68][69]

अन्य समस्थानिकों के लिए कृत्रिम रास्ते और उनके आधे जीवन पर किए गए सैद्धांतिक गणना से पता चला है कि कुछ संश्लेषित समस्थानिक 294Og की तुलना में थोड़ा अधिक स्थिर हो सकते हैं, सबसे अधिक संभावना 293Og, 295Og, 296Og, 297Og, 298Og, 300और 302Og (आखिरी बार N = 184 खोल क्लोजर तक पहुंचना)।[66][70] इनमें से, 297Og लंबे समय तक रहने वाले नाभिक प्राप्त करने का सर्वोत्तम अवसर प्रदान कर सकता है,[66][70]और इस प्रकार इस तत्व के साथ भविष्य के काम का फोकस बन सकता है। कई और न्यूट्रॉन वाले कुछ समस्थानिक, जैसे कि 313Og, के आसपास स्थित कुछ समस्थानिकभी लंबे समय तक रहने वाले नाभिक प्रदान कर सकते हैं।[71]

क्वांटम-टनलिंग प्रतिरूप में, अल्फा का आधा जीवन क्षय होता है 294
Og
होने का अनुमान 0.66+0.23
−0.18
 ms
था[66]प्रायोगिक क्यू वैल्यू (परमाणु विज्ञान) 2004 में प्रकाशित हुआ।[72] Muntian-Hofman-Patyk-Sobiczewski के मैक्रोस्कोपिक-माइक्रोस्कोपिक प्रतिरूप से सैद्धांतिक क्यू-वैल्यू के साथ गणना किंचित कम लेकिन तुलनात्मक परिणाम देती है।[73]

परिकलित परमाणु और भौतिक गुण

ओर्गनेसन समूह 18, शून्य-संयुजतातत्वों का सदस्य है। इस समूह के सदस्य सामान्यतः सबसे आम रासायनिक प्रतिक्रियाओं (उदाहरण के लिए, दहन) के लिए निष्क्रिय होते हैं क्योंकि बाहरी संयोजी खोल पूरी तरह से आठ इलेक्ट्रॉनों से भरा होता है। यह एक स्थिर, न्यूनतम ऊर्जा विन्यास पैदा करता है जिसमें बाहरी इलेक्ट्रॉन कसकर बंधे होते हैं।[74] ऐसा माना जाता है कि इसी तरह, ओगानेसन के पास एक बंद खोल बाहरी संयुजता खोल होता है जिसमें इसके रासायनिक संयोजन इलेक्ट्रॉन 7s27p6 विन्यास में व्यवस्थित होते हैं।।[3]

फलस्वरूप, कुछ लोगों को आशा है कि ओर्गनेसन के पास अपने समूह के अन्य सदस्यों के समान भौतिक और रासायनिक गुण होंगे, जो आवर्त सारणी, रेडॉन में इसके ऊपर की महान गैस के सबसे निकट हैं।[75]आवधिक प्रवृत्ति के बाद, राडोण की तुलना में ओगानेसन को थोड़ा अधिक प्रतिक्रियाशील होने की आशा होगी। हालांकि, सैद्धांतिक गणना से पता चला है कि यह काफी अधिक प्रतिक्रियाशील हो सकता है।[7]रेडॉन की तुलना में कहीं अधिक प्रतिक्रियाशील होने के अलावा, ओगानेसन तत्वों फ्लोरोवियम और कोपरनिकस से भी अधिक प्रतिक्रियाशील हो सकता है, जो क्रमशः अधिक रासायनिक रूप से सक्रिय तत्वों सीसा और पारा (तत्व) के भारी सजात हैं।[3]राडोण के सापेक्ष ओगानेसन की रासायनिक गतिविधि में संभावित वृद्धि का कारण एक ऊर्जावान अस्थिरता और अंतिम कब्जे वाले 7p- उप खोल का रेडियल विस्तार है।[3]अधिक सटीक रूप से, 7p इलेक्ट्रॉनों और अक्रिय 7s इलेक्ट्रॉनों के बीच काफी चक्रण-ग्रहपथ अन्तःक्रिया प्रभावी रूप से फ़्लेरोवियम पर दूसरे संयुजता खोल को बंद करने की ओर ले जाता है, और ओगानेसन के बंद खोल के स्थिरीकरण में महत्वपूर्ण कमी आती है।[3]यह भी गणना की गई है कि अन्य महान गैसों के विपरीत, ओगानेसन, एक इलेक्ट्रॉन को ऊर्जा की मुक्ति के साथ बांधता है, या दूसरे शब्दों में, यह सकारात्मक इलेक्ट्रॉन संबंध प्रदर्शित करता है,[76][77] सापेक्ष रूप से स्थिर 8s ऊर्जा स्तर और अस्थिर 7p3/2 स्तर,[78] जबकि कॉपरनिकियम और फ्लोरोवियम की कोई इलेक्ट्रॉन बंधुता नहीं होने की भविष्यवाणी की जाती है।[79][80] पुनःभी, आयनों Og में बंधन को कम करके इस आत्मीयता को कम करने में क्वांटम इलेक्ट्रोडायनामिक सुधारों को आयनों Og - में बंधन को 9% तक कम करके, इस आत्मीयता को कम करने में काफी महत्वपूर्ण दिखाया गया है, इस प्रकार अत्यधिक भारी तत्वों में इन सुधारों के महत्व की पुष्टि करता है।[76]2022 की गणना में ओगानेसन की इलेक्ट्रॉन बंधुता 0.080(6) eV होने की आशा है।[8]

मोंटे कार्लो विधि और आणविक गतिकी का उपयोग करके अत्यधिक सटीक सापेक्षतावादी प्रभाव युग्मित क्लस्टर के खिलाफ मानदण्ड किया गया, यह दिखाया जा सकता है कि ओगानेसन का गलनांक है 325±15 K[5]और का क्वथनांक 450±10 K.[5]इस व्यवहार का अंतर्निहित कारण चक्रण-ग्रहपथ अन्तःक्रिया में पाया जा सकता है। चक्रण-ग्रहपथ सापेक्षतावादी प्रभाव (गैर-सापेक्षतावादी ओर्गनेसन लगभग 220 K पिघल जाएगा)।[5] इस प्रकार ओर्गनेसन सम्भवतः मानक स्थितियों के तहत गैस के बजाय ठोस होगा, हालांकि अभी भी कम गलनांक के साथ।[5]

आशा की जाती है कि ओर्गनेसन के पास अत्यधिक व्यापक ध्रुवीकरण होगा, रेडॉन की तुलना में लगभग दोगुना।[3] इसकी जबरदस्त ध्रुवीकरण क्षमता के कारण, ओगानेसन के पास कैडमियम के समान और इरिडियम, प्लैटिनम , और सोने की तुलना में कम लगभग 860 kJ/mol की असामान्य रूप से कम पहली आयनीकरण ऊर्जा होने की आशा है। यह डार्मस्टेडियम, रेन्टजेनियम और कॉपरनिकियम के लिए अनुमानित मूल्यों से काफी कम है, हालांकि यह फ्लोरोवियम के लिए अनुमानित मूल्यों से अधिक है।[81] इसकी दूसरी आयनीकरण ऊर्जा लगभग 1560 kJ/mol होनी चाहिए।[8]यहां तक ​​कि ओगानेसन के नाभिक और इलेक्ट्रॉन बादल में खोल संरचना भी सापेक्षतावादी प्रभावों से दृढ़ता से प्रभावित होती है: ओगानेसन में संयुजता और मुख्य इलेक्ट्रॉन उपकोशों को कम सापेक्षतावादी रेडॉन और क्सीनन के विपरीत, इलेक्ट्रॉनों की एक सजातीय फर्मी गैस में "स्मियर आउट" होने की आशाहै, जो "कम सापेक्षतावादी" के विपरीत है। "राडोन और क्सीनन (यद्यपि रेडॉन में कुछ प्रारंभिक अस्थानीकरण है), ओगानेसन में 7p कक्षीय के बहुत मजबूत चक्रण-कक्षा विभाजन के कारण।[82] न्यूक्लिऑन, विशेष रूप से न्यूट्रॉन के लिए एक समान प्रभाव, बंद-न्युट्रॉन-खोल नाभिक में प्रारंभिक है 302Og में प्रारंभ होता है और 164 प्रोटॉन और 308 न्यूट्रॉन के साथ काल्पनिक अतिभारी बंद-खोल नाभिक 472164 पर दृढ़ता से लागू होता है।[82] अध्ययनों ने यह भी भविष्यवाणी की है कि स्थिरवैद्युत बलों में वृद्धि के कारण, ओर्गनेसन के पास प्रोटॉन घनत्व में एक अर्ध-बुलबुला संरचना हो सकती है, जिसके नाभिक के केंद्र में कुछ प्रोटॉन होते हैं।[83][84] इसके अलावा, चक्रण-कक्षा प्रभाव के कारण थोक ओर्गनेसन अर्धचालक हो सकता है, जिसमें 1.5±0.6 eV के ऊर्जा अंतराल की भविष्यवाणी की गई है। इसके बजाय सभी हल्की नोबल गैस रोधक (बिजली) हैं: उदाहरण के लिए, थोक रेडॉन का बैंड गैप 7.1±0.5 eV होने की आशाहै।[85]

अनुमानित यौगिक [[File:Square-planar-3D-balls.png|upright=0.6|alt=Skeletal model of a planar molecule with a central atom symmetrically bonded to four peripheral (fluorine) atoms.|thumb|[[xenon tetrafluoride|XeF
4
]] में वर्गाकार समतलीय आणविक ज्यामिति है।]]

Skeletal model of a terahedral molecule with a central atom (oganesson) symmetrically bonded to four peripheral (fluorine) atoms.
OgF
4
चतुष्फलकीय आणविक ज्यामिति होने का अनुमान लगाया गया है।

ओगानेसन 294Og के एकमात्र पुष्ट समस्थानिक का आधा जीवन रासायनिक रूप से प्रयोगात्मक रूप से जांचने के लिए बहुत कम है। इसलिए, ओर्गनेसन के किसी भी यौगिक को अभी तक संश्लेषित नहीं किया गया है।[29] पुनः भी, सैद्धांतिक रसायन विज्ञान पर गणना 1964 से की जा रही है।[11] यह आशा की जाती है कि यदि तत्व की आयनीकरण ऊर्जा पर्याप्त उच्च है, तो इसका ऑक्सीकरण करना मुश्किल होगा और इसलिए, सबसे आम ऑक्सीकरण अवस्था 0 होगी (उत्कृष्ट गैसों के लिए);[86] पुनः भी, ऐसा प्रतीत नहीं होता है।[19]

डायटोमिक अणु Og
2
पर गणना ने Hg2 गणना के बराबर लगभग एक रासायनिक बंधन अन्तःक्रिया दिखाया, और 6 kJ/mol वियोजन ऊर्जा, Rn
2
की लगभग 4 गुना.[3] सबसे खास बात यह है कि इसकी गणना Rn
2
0.16 Å की तुलना में कम बॉन्ड की लंबाई के लिए की गई थी, जो एक महत्वपूर्ण बंधन अंतःक्रिया का संकेत होगा।[3] दूसरी ओर, यौगिक OgH+ वियोजन ऊर्जा प्रदर्शित करता है (दूसरे शब्दों में ओगानेसन की प्रोटॉन बंधुता) जो कि RnH+ से छोटी होती है।[3]

OgH में ओर्गनेसन और हाइड्रोजन के बीच बंधन बहुत कमजोर होने की भविष्यवाणी की जाती है और इसे एक वास्तविक रासायनिक बंधन के बजाय शुद्ध वैन डेर वाल्स इंटरेक्शन के रूप में माना जा सकता है।[6] दूसरी ओर, अत्यधिक विद्युतीय तत्वों के साथ, ओर्गनेसन उदाहरण के लिए कॉपरनिकियम या फ्लोरोवियम की तुलना में अधिक स्थिर यौगिक बनाता है।[6] स्थिर ऑक्सीकरण राज्यों +2 और +4 को फ्लोराइड्स OgF2 और OgF4 में मौजूद होने की भविष्यवाणी की गई है। [87] 7p1/2 उपधारा के मजबूत बंधन के कारण +6 अवस्था कम स्थिर होगी।[19] यह उसी चक्रण-ग्रहपथ अन्तःक्रिया का परिणाम है जो ओर्गनेसन को असामान्य रूप से प्रतिक्रियाशील बनाता है। उदाहरण के लिए, यह दिखाया गया था कि F
2
के साथ ओगानेसन की प्रतिक्रिया यौगिक बनाने के लिए OgF
2
106 kcal/mol की ऊर्जा छोड़ेगा, जिसमें से लगभग 46 kcal/mol इन अंतःक्रियाओं से आती है।[6] तुलना के लिए, समान अणु के लिए चक्रण-ग्रहपथ अन्तःक्रिया RnF
2
49 kcal/mol की निर्माण ऊर्जा में से लगभग 10 kcal/mol है।[6] समान अंतःक्रिया चतुष्फलकीय आण्विक ज्यामिति को स्थिर कर देती है। चतुष्फलकीय टीd के लिए विन्यास OgF
4
, वर्ग समतलीय से भिन्न | वर्ग तलीय D4h क्सीनन टेट्राफ्लोराइड में से एक |XeF
4
, कौन RnF
4
होने की भी आशाहै;[87] ऐसा इसलिए है क्योंकि ओ.एफ4 दो अक्रिय जोड़ी (7s और 7p1/2). इस प्रकार, ओजीएफ6 अनबाउंड होने की आशाहै, +6 ऑक्सीकरण राज्य (आरएनएफ6 इसी तरह xenon hexafluoride|XeF की तुलना में बहुत कम स्थिर होने की आशाहै6).[88][89] ओग-एफ बंधन सहसंयोजक बंधन के बजाय सम्भवतःआयनिक बंधन होगा, जो ओर्गनेसन फ्लोराइड्स को गैर-वाष्पशील प्रदान करता है।[7][90] ओजीएफ2 ओर्गनेसन की उच्च इलेक्ट्रोपोसिटिविटी के कारण आंशिक रूप से आयनिक बंधन होने की भविष्यवाणी की जाती है।[91] ओर्गनेसन को पर्याप्त रूप से विद्युत् धनात्मकता होने की भविष्यवाणी की गई है[91] क्लोरीन के साथ एक Og-Cl बंधन बनाने के लिए।[7]

ओगानेसन और टेनेसाइन का एक यौगिक, OgTs4, रासायनिक रूप से संभावित रूप से स्थिर होने की भविष्यवाणी की गई है।[92]


यह भी देखें

टिप्पणियाँ

  1. The names einsteinium and fermium for elements 99 and 100 were proposed when their namesakes (Albert Einstein and Enrico Fermi respectively) were still alive, but were not made official until Einstein and Fermi had died.[15]
  2. In Russian, Oganessian's name is spelled Оганесян [ˈɐgənʲɪˈsʲan]; the transliteration in accordance with the rules of the English language would be Oganesyan, with one s. Similarly, the Russian name for the element is оганесон, letter-for-letter oganeson. Oganessian is the Russified version of the Armenian last name Hovhannisyan (Armenian: Հովհաննիսյան [hɔvhɑnnisˈjɑn]). It means "son of Hovhannes", i.e., "son of John". It is the most common surname in Armenia.


संदर्भ

  1. Oganesson. The Periodic Table of Videos. University of Nottingham. December 15, 2016.
  2. Ritter, Malcolm (June 9, 2016). "Periodic table elements named for Moscow, Japan, Tennessee". Associated Press. Retrieved December 19, 2017.
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 Nash, Clinton S. (2005). "Atomic and Molecular Properties of Elements 112, 114, and 118". Journal of Physical Chemistry A. 109 (15): 3493–3500. Bibcode:2005JPCA..109.3493N. doi:10.1021/jp050736o. PMID 16833687.
  4. 4.0 4.1 4.2 4.3 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Smits, Odile; Mewes, Jan-Michael; Jerabek, Paul; Schwerdtfeger, Peter (2020). "Oganesson: A Noble Gas Element That Is Neither Noble Nor a Gas". Angew. Chem. Int. Ed. 59 (52): 23636–23640. doi:10.1002/anie.202011976. PMC 7814676. PMID 32959952.
  6. 6.0 6.1 6.2 6.3 6.4 Han, Young-Kyu; Bae, Cheolbeom; Son, Sang-Kil; Lee, Yoon Sup (2000). "Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118)". Journal of Chemical Physics. 112 (6): 2684. Bibcode:2000JChPh.112.2684H. doi:10.1063/1.480842.
  7. 7.0 7.1 7.2 7.3 7.4 Kaldor, Uzi; Wilson, Stephen (2003). Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer. p. 105. ISBN 978-1402013713. Retrieved 2008-01-18.
  8. 8.0 8.1 8.2 8.3 Guo, Yangyang; Pašteka, Lukáš F.; Eliav, Ephraim; Borschevsky, Anastasia (2021). "Chapter 5: Ionization potentials and electron affinity of oganesson with relativistic coupled cluster method". In Musiał, Monika; Hoggan, Philip E. (eds.). Advances in Quantum Chemistry. Vol. 83. pp. 107–123. ISBN 978-0-12-823546-1.
  9. Oganesson, American Elements
  10. Oganesson - Element information, properties and uses, Royal Chemical Society
  11. 11.0 11.1 11.2 Grosse, A. V. (1965). "Some physical and chemical properties of element 118 (Eka-Em) and element 86 (Em)". Journal of Inorganic and Nuclear Chemistry. Elsevier Science Ltd. 27 (3): 509–19. doi:10.1016/0022-1902(65)80255-X.
  12. "IUPAC Announces the Names of the Elements 113, 115, 117, and 118". IUPAC. 30 November 2016. Archived from the original on 30 November 2016. Retrieved 1 December 2016.
  13. St. Fleur, Nicholas (1 December 2016). "तत्वों की आवर्त सारणी में आधिकारिक तौर पर चार नए नाम जोड़े गए". The New York Times. Retrieved 1 December 2016.
  14. 14.0 14.1 14.2 "आईयूपीएसी चार नए तत्वों निहोनियम, मोस्कोवियम, टेनेसाइन और ओगानेसन का नामकरण कर रहा है". IUPAC. 8 June 2016. Archived from the original on 8 June 2016.
  15. Hoffman, Ghiorso & Seaborg 2000, pp. 187–189.
  16. "The Top 6 Physics Stories of 2006". Discover Magazine. 7 January 2007. Archived from the original on 12 October 2007. Retrieved 18 January 2008.
  17. Kragh 2018, p. 6.
  18. Leach, Mark R. "आवर्त सारणी का इंटरनेट डेटाबेस". Retrieved 8 July 2016.
  19. 19.0 19.1 19.2 Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  20. Pitzer, Kenneth (1975). "Are elements 112, 114, and 118 relatively inert gases?". The Journal of Chemical Physics. 2 (63): 1032–1033. doi:10.1063/1.431398.
  21. 21.0 21.1 Smolanczuk, R. (1999). "ठंडे संलयन प्रतिक्रियाओं में अतिभारी नाभिक का उत्पादन तंत्र". Physical Review C. 59 (5): 2634–2639. Bibcode:1999PhRvC..59.2634S. doi:10.1103/PhysRevC.59.2634.
  22. Ninov, Viktor (1999). "Observation of Superheavy Nuclei Produced in the Reaction of 86Kr with 208Pb". Physical Review Letters. 83 (6): 1104–1107. Bibcode:1999PhRvL..83.1104N. doi:10.1103/PhysRevLett.83.1104. (Retracted, see doi:10.1103/PhysRevLett.89.039901)
  23. Service, R. F. (1999). "Berkeley Crew Bags Element 118". Science. 284 (5421): 1751. doi:10.1126/science.284.5421.1751. S2CID 220094113.
  24. "Results of element 118 experiment retracted". Authored by Public Affairs Department. Berkeley Lab. 21 July 2001. Archived from the original on 29 January 2008. Retrieved 18 January 2008.{{cite news}}: CS1 maint: others (link)
  25. Dalton, R. (2002). "Misconduct: The stars who fell to Earth". Nature. 420 (6917): 728–729. Bibcode:2002Natur.420..728D. doi:10.1038/420728a. PMID 12490902. S2CID 4398009.
  26. "Element 118 disappears two years after it was discovered". Physics World (in British English). 2001-08-02. Retrieved 2 April 2012.
  27. Zagrebaev, Karpov & Greiner 2013.
  28. Oganessian, Yu. T.; et al. (2002). "Results from the first 249
    Cf
    [[Category: Templates Vigyan Ready]]+48
    Ca
    [[Category: Templates Vigyan Ready]] experiment"
    (PDF). JINR Communication. Archived from the original (PDF) on 13 December 2004. Retrieved 13 June 2009.
    {{cite journal}}: URL–wikilink conflict (help)
  29. 29.0 29.1 Moody, Ken (30 November 2013). "Synthesis of Superheavy Elements". In Schädel, Matthias; Shaughnessy, Dawn (eds.). अतिभारी तत्वों का रसायन (2nd ed.). Springer Science & Business Media. pp. 24–8. ISBN 9783642374661.
  30. Oganessian, Yu. T.; et al. (2002). "Element 118: results from the first 249
    Cf
    + 48
    Ca
    experiment"
    . Communication of the Joint Institute for Nuclear Research. Archived from the original on 22 July 2011.
  31. "Livermore scientists team with Russia to discover element 118". Livermore press release. 3 December 2006. Archived from the original on 17 October 2011. Retrieved 18 January 2008.
  32. Oganessian, Yu. T. (2006). "अत्यधिक भारी तत्वों का संश्लेषण और क्षय गुण". Pure Appl. Chem. 78 (5): 889–904. doi:10.1351/pac200678050889. S2CID 55782333.
  33. Sanderson, K. (2006). "Heaviest element made – again". Nature News. doi:10.1038/news061016-4. S2CID 121148847.
  34. Schewe, P. & Stein, B. (17 October 2006). "Elements 116 and 118 Are Discovered". Physics News Update. American Institute of Physics. Archived from the original on 1 January 2012. Retrieved 18 January 2008.
  35. Weiss, R. (17 October 2006). "वैज्ञानिकों ने परमाणु तत्व के निर्माण की घोषणा की, जो अब तक का सबसे भारी तत्व है". The Washington Post. Retrieved 18 January 2008.
  36. Barber, Robert C.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure and Applied Chemistry. 83 (7): 1. doi:10.1351/PAC-REP-10-05-01.
  37. "ओगानेसन". WebElements Periodic Table. Retrieved 19 August 2019.
  38. Jacoby, Mitch (17 October 2006). "Element 118 Detected, With Confidence". Chemical & Engineering News. 84 (43): 11. doi:10.1021/cen-v084n043.p011. Retrieved 18 January 2008. मैं कहूंगा कि हम बहुत आश्वस्त हैं।
  39. Discovery and Assignment of Elements with Atomic Numbers 113, 115, 117 and 118. IUPAC (30 December 2015)
  40. Karol, Paul J.; Barber, Robert C.; Sherrill, Bradley M.; Vardaci, Emanuele; Yamazaki, Toshimitsu (29 December 2015). "Discovery of the element with atomic number Z = 118 completing the 7th row of the periodic table (IUPAC Technical Report)". Pure Appl. Chem. 88 (1–2): 155–160. doi:10.1515/pac-2015-0501. S2CID 102228960.
  41. 41.0 41.1 Voinov, A. A.; Oganessian, Yu. Ts; Abdullin, F. Sh.; Brewer, N. T.; Dmitriev, S. N.; Grzywacz, R. K.; Hamilton, J. H.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Rykaczewski, K. P.; Sabelnikov, A. V.; Sagaidak, R. N.; Shriokovsky, I. V.; Shumeiko, M. V.; Stoyer, M. A.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K. (2016). "Results from the Recent Study of the 249–251Cf + 48Ca Reactions". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 219–223. ISBN 9789813226555.
  42. Sychev, Vladimir (8 February 2017). "Юрий Оганесян: мы хотим узнать, где кончается таблица Менделеева" [Yuri Oganessian: we want to know where the Mendeleev table ends]. RIA Novosti (in русский). Retrieved 31 March 2017.
  43. Roberto, J. B. (31 March 2015). "Actinide Targets for Super-Heavy Element Research" (PDF). cyclotron.tamu.edu. Texas A & M University. Retrieved 28 April 2017.
  44. Hauschild, K. (26 June 2019). RIKEN, Dubna, और JYFL में अतिभारी नाभिक (PDF). Conseil Scientifique de l'IN2P3. Retrieved 31 July 2019.
  45. Hauschild, K. (2019). RIKEN, Dubna, और JYFL में भारी नाभिक (PDF). Conseil Scientifique de l'IN2P3. Retrieved 1 August 2019.
  46. Chatt, J. (1979). "100 से बड़ी परमाणु संख्या के तत्वों के नामकरण के लिए अनुशंसाएँ". Pure Appl. Chem. 51 (2): 381–384. doi:10.1351/pac197951020381.
  47. Wieser, M.E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure Appl. Chem. 78 (11): 2051–2066. doi:10.1351/pac200678112051. S2CID 94552853.
  48. "नए तत्वों की खोज पहले पन्ने की खबर बनाती है". Berkeley Lab Research Review Summer 1999. 1999. Retrieved 18 January 2008.
  49. Koppenol, W. H. (2002). "Naming of new elements (IUPAC Recommendations 2002)" (PDF). Pure and Applied Chemistry. 74 (5): 787. doi:10.1351/pac200274050787. S2CID 95859397.
  50. "रूस के साइंस सिटी में नए रासायनिक तत्वों की खोज की गई". 12 February 2007. Retrieved 9 February 2008.
  51. Yemel'yanova, Asya (17 December 2006). "118-й элемент назовут по-русски (118th element will be named in Russian)" (in русский). vesti.ru. Archived from the original on 25 December 2008. Retrieved 18 January 2008.
  52. "Российские физики предложат назвать 116 химический элемент московием (Russian Physicians Will Suggest to Name Element 116 Moscovium)" (in русский). rian.ru. 2011. Retrieved 8 May 2011.
  53. "News: Start of the Name Approval Process for the Elements of Atomic Number 114 and 116". International Union of Pure and Applied Chemistry. Archived from the original on 23 August 2014. Retrieved 2 December 2011.
  54. Koppenol, W. H. (2002). "Naming of new elements (IUPAC Recommendations 2002)" (PDF). Pure and Applied Chemistry. 74 (5): 787–791. doi:10.1351/pac200274050787. S2CID 95859397.
  55. Koppenol, Willem H.; Corish, John; García-Martínez, Javier; Meija, Juris; Reedijk, Jan (2016). "How to name new chemical elements (IUPAC Recommendations 2016)" (PDF). Pure and Applied Chemistry. 88 (4): 401–405. doi:10.1515/pac-2015-0802. hdl:10045/55935. S2CID 102245448.
  56. "एक नया तत्व बनाने में क्या लगता है". Chemistry World. Retrieved 3 December 2016.
  57. 57.0 57.1 Tarasevich, Grigoriy; Lapenko, Igor (2019). "Юрий Оганесян о тайнах ядра, новых элементах и смысле жизни" [Yuri Oganessian about the secret of the nucleus, new elements and the meaning of life]. Kot Shryodingyera (in русский). No. Special. Direktsiya Festivalya Nauki. p. 22.
  58. 58.0 58.1 Gray, Richard (11 April 2017). "Mr Element 118: The only living person on the periodic table". New Scientist. Retrieved 26 April 2017.
  59. Fedorova, Vera (3 March 2017). "डी.आई. की आवर्त सारणी के नए तत्वों के उद्घाटन समारोह में। मेंडलीव". jinr.ru. Joint Institute for Nuclear Research. Retrieved 4 February 2018.
  60. de Marcillac, P.; Coron, N.; Dambier, G.; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  61. Möller, P. (2016). "विखंडन और अल्फा क्षय द्वारा निर्धारित परमाणु चार्ट की सीमाएँ" (PDF). EPJ Web of Conferences. 131: 03002:1–8. Bibcode:2016EPJWC.13103002M. doi:10.1051/epjconf/201613103002.
  62. Considine, G. D.; Kulik, Peter H. (2002). वैन नोस्ट्रैंड का वैज्ञानिक विश्वकोश (9th ed.). Wiley-Interscience. ISBN 978-0-471-33230-5. OCLC 223349096.
  63. Oganessian, Yu. Ts.; Sobiczewski, A.; Ter-Akopian, G. M. (9 January 2017). "Superheavy nuclei: from predictions to discovery". Physica Scripta. 92 (2): 023003–1–21. Bibcode:2017PhyS...92b3003O. doi:10.1088/1402-4896/aa53c1. S2CID 125713877.
  64. "Oganesson - Element information, properties and uses | Periodic Table". www.rsc.org. Retrieved 2023-01-25.
  65. "ओगनेसन - प्रोटॉन - न्यूट्रॉन - इलेक्ट्रॉन - इलेक्ट्रॉन विन्यास". Material Properties (in English). 2020-12-08. Retrieved 2023-01-25.
  66. 66.0 66.1 66.2 66.3 Chowdhury, Roy P.; Samanta, C.; Basu, D. N. (2006). "α decay half-lives of new superheavy elements". Phys. Rev. C. 73 (1): 014612. arXiv:nucl-th/0507054. Bibcode:2006PhRvC..73a4612C. doi:10.1103/PhysRevC.73.014612. S2CID 118739116.
  67. Oganessian, Yu. T. (2007). "Heaviest nuclei from 48Ca-induced reactions". Journal of Physics G: Nuclear and Particle Physics. 34 (4): R165–R242. Bibcode:2007JPhG...34R.165O. doi:10.1088/0954-3899/34/4/R01.
  68. Chowdhury, Roy P.; Samanta, C.; Basu, D. N. (2008). "स्थिरता की घाटी से परे लंबे समय तक रहने वाले सबसे भारी नाभिक की खोज करें". Physical Review C. 77 (4): 044603. arXiv:0802.3837. Bibcode:2008PhRvC..77d4603C. doi:10.1103/PhysRevC.77.044603. S2CID 119207807.
  69. Chowdhury, R. P.; Samanta, C.; Basu, D.N. (2008). "Nuclear half-lives for α -radioactivity of elements with 100 ≤ Z ≤ 130". Atomic Data and Nuclear Data Tables. 94 (6): 781–806. arXiv:0802.4161. Bibcode:2008ADNDT..94..781C. doi:10.1016/j.adt.2008.01.003. S2CID 96718440.
  70. 70.0 70.1 Royer, G.; Zbiri, K.; Bonilla, C. (2004). "प्रवेश चैनल और अल्फा भारी तत्वों के आधे जीवन का क्षय करते हैं". Nuclear Physics A. 730 (3–4): 355–376. arXiv:nucl-th/0410048. Bibcode:2004NuPhA.730..355R. doi:10.1016/j.nuclphysa.2003.11.010.
  71. Duarte, S. B.; Tavares, O. A. P.; Gonçalves, M.; Rodríguez, O.; Guzmán, F.; Barbosa, T. N.; García, F.; Dimarco, A. (2004). "अत्यधिक भारी नाभिक के क्षय मोड के लिए अर्ध-जीवन की भविष्यवाणी" (PDF). Journal of Physics G: Nuclear and Particle Physics. 30 (10): 1487–1494. Bibcode:2004JPhG...30.1487D. CiteSeerX 10.1.1.692.3012. doi:10.1088/0954-3899/30/10/014.
  72. Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S.; Gikal, B. N.; et al. (2004). "Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca" (PDF). Physical Review C. 70 (6): 064609. Bibcode:2004PhRvC..70f4609O. doi:10.1103/PhysRevC.70.064609.
  73. Samanta, C.; Chowdhury, R. P.; Basu, D.N. (2007). "भारी और अत्यधिक भारी तत्वों के अल्फा क्षय की भविष्यवाणी". Nucl. Phys. A. 789 (1–4): 142–154. arXiv:nucl-th/0703086. Bibcode:2007NuPhA.789..142S. doi:10.1016/j.nuclphysa.2007.04.001. S2CID 7496348.
  74. Bader, Richard F.W. "परमाणुओं और अणुओं की इलेक्ट्रॉनिक संरचना का परिचय". McMaster University. Retrieved 18 January 2008.
  75. "Ununoctium (Uuo) – Chemical properties, Health and Environmental effects". Lenntech. Archived from the original on 16 January 2008. Retrieved 18 January 2008.
  76. 76.0 76.1 Goidenko, Igor; Labzowsky, Leonti; Eliav, Ephraim; Kaldor, Uzi; Pyykkö, Pekka (2003). "QED corrections to the binding energy of the eka-radon (Z=118) negative ion". Physical Review A. 67 (2): 020102(R). Bibcode:2003PhRvA..67b0102G. doi:10.1103/PhysRevA.67.020102.
  77. Eliav, Ephraim; Kaldor, Uzi; Ishikawa, Y.; Pyykkö, P. (1996). "Element 118: The First Rare Gas with an Electron Affinity". Physical Review Letters. 77 (27): 5350–5352. Bibcode:1996PhRvL..77.5350E. doi:10.1103/PhysRevLett.77.5350. PMID 10062781.
  78. Landau, Arie; Eliav, Ephraim; Ishikawa, Yasuyuki; Kador, Uzi (25 May 2001). "Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119)". Journal of Chemical Physics. 115 (6): 2389–92. Bibcode:2001JChPh.115.2389L. doi:10.1063/1.1386413. Retrieved 15 September 2015.
  79. Borschevsky, Anastasia; Pershina, Valeria; Kaldor, Uzi; Eliav, Ephraim. "अत्यधिक भारी तत्वों का पूरी तरह से सापेक्षिक अब से अध्ययन" (PDF). www.kernchemie.uni-mainz.de. Johannes Gutenberg University Mainz. Archived from the original (PDF) on 15 January 2018. Retrieved 15 January 2018.
  80. Borschevsky, Anastasia; Pershina, Valeria; Eliav, Ephraim; Kaldor, Uzi (27 August 2009). "Electron affinity of element 114, with comparison to Sn and Pb". Chemical Physics Letters. 480 (1): 49–51. Bibcode:2009CPL...480...49B. doi:10.1016/j.cplett.2009.08.059.
  81. Nash, Clinton S.; Bursten, Bruce E. (1999). "Spin-Orbit Effects, VSEPR Theory, and the Electronic Structures of Heavy and Superheavy Group IVA Hydrides and Group VIIIA Tetrafluorides. A Partial Role Reversal for Elements 114 and 118". Journal of Physical Chemistry A. 1999 (3): 402–410. Bibcode:1999JPCA..103..402N. doi:10.1021/jp982735k. PMID 27676357.
  82. 82.0 82.1 Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold (2018). "Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit". Phys. Rev. Lett. 120 (5): 053001. arXiv:1707.08710. Bibcode:2018PhRvL.120e3001J. doi:10.1103/PhysRevLett.120.053001. PMID 29481184. S2CID 3575243.
  83. Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G. (2017-08-11). "Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach". Physical Review C. 96 (2): 024306. doi:10.1103/PhysRevC.96.024306. S2CID 119510865.
  84. Garisto, Dan (12 February 2018). "5 ways the heaviest element on the periodic table is really bizarre". ScienceNews (in English). Retrieved 2023-02-12.
  85. Mewes, Jan-Michael; Smits, Odile Rosette; Jerabek, Paul; Schwerdtfeger, Peter (25 July 2019). "Oganesson is a Semiconductor: On the Relativistic Band‐Gap Narrowing in the Heaviest Noble‐Gas Solids". Angewandte Chemie. 58 (40): 14260–14264. doi:10.1002/anie.201908327. PMC 6790653. PMID 31343819.
  86. "Oganesson: Compounds Information". WebElements Periodic Table. Retrieved 19 August 2019.
  87. 87.0 87.1 Han, Young-Kyu; Lee, Yoon Sup (1999). "Structures of RgFn (Rg = Xe, Rn, and Element 118. n = 2, 4.) Calculated by Two-component Spin-Orbit Methods. A Spin-Orbit Induced Isomer of (118)F4". Journal of Physical Chemistry A. 103 (8): 1104–1108. Bibcode:1999JPCA..103.1104H. doi:10.1021/jp983665k.
  88. Liebman, Joel F. (1975). "Conceptual Problems in Noble Gas and Fluorine Chemistry, II: The Nonexistence of Radon Tetrafluoride". Inorg. Nucl. Chem. Lett. 11 (10): 683–685. doi:10.1016/0020-1650(75)80185-1.
  89. Seppelt, Konrad (2015). "आणविक हेक्साफ्लोराइड्स". Chemical Reviews. 115 (2): 1296–1306. doi:10.1021/cr5001783. PMID 25418862.
  90. Pitzer, Kenneth S. (1975). "Fluorides of radon and element 118" (PDF). Journal of the Chemical Society, Chemical Communications (18): 760–761. doi:10.1039/C3975000760b.
  91. 91.0 91.1 Seaborg, Glenn Theodore (c. 2006). "ट्रांसयूरेनियम तत्व (रासायनिक तत्व)". Britannica Online. Retrieved 16 March 2010.
  92. Loveland, Walter (1 June 2021). "Relativistic effects for the superheavy reaction Og + 2Ts2 → OgTs4 (Td or D4h): dramatic relativistic effects for atomization energy of superheavy Oganesson tetratennesside OgTs4 and prediction of the existence of tetrahedral OgTs4". Theoretical Chemistry Accounts. 140 (75). doi:10.1007/s00214-021-02777-2. S2CID 235259897. Retrieved 30 June 2021.


ग्रन्थसूची


अग्रिम पठन


बाहरी संबंध