श्मिट ट्रिगर: Difference between revisions

From Vigyanwiki
m (10 revisions imported from alpha:श्मिट_ट्रिगर)
No edit summary
 
Line 177: Line 177:
{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Schmitt Trigger}}[[Category: डिजिटल इलेक्ट्रॉनिक्स]] [[Category: विद्युत सर्किट]] [[Category: हिस्टैरिसीस]]
{{DEFAULTSORT:Schmitt Trigger}}


 
[[Category:All articles with unsourced statements|Schmitt Trigger]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page|Schmitt Trigger]]
[[Category: Machine Translated Page]]
[[Category:Articles with unsourced statements from June 2011|Schmitt Trigger]]
[[Category:Created On 06/04/2023]]
[[Category:Created On 06/04/2023|Schmitt Trigger]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates|Schmitt Trigger]]
[[Category:Machine Translated Page|Schmitt Trigger]]
[[Category:Pages with script errors|Schmitt Trigger]]
[[Category:Short description with empty Wikidata description|Schmitt Trigger]]
[[Category:Templates Vigyan Ready|Schmitt Trigger]]
[[Category:Templates that add a tracking category|Schmitt Trigger]]
[[Category:Templates that generate short descriptions|Schmitt Trigger]]
[[Category:Templates using TemplateData|Schmitt Trigger]]
[[Category:Webarchive template wayback links]]
[[Category:डिजिटल इलेक्ट्रॉनिक्स|Schmitt Trigger]]
[[Category:विद्युत सर्किट|Schmitt Trigger]]
[[Category:हिस्टैरिसीस|Schmitt Trigger]]

Latest revision as of 09:50, 23 August 2023

श्मिट ट्रिगर का स्थानांतरण कार्य। क्षैतिज और ऊर्ध्वाधर अक्ष क्रमशः इनपुट वोल्टेज और आउटपुट वोल्टेज हैं। टी और -टी स्विचिंग थ्रेसहोल्ड हैं, और एम और -एम आउटपुट वोल्टेज स्तर हैं।

इलेक्ट्रानिक्स में, एक श्मिट ट्रिगर के हिस्टैरिसीस साथ एक तुलनित्र परिपथ है जिसमें एक तुलनित्र या अंतर एम्पलीफायर के गैर-इनवर्टिंग इनपुट पर सकारात्मक प्रतिक्रिया लागू करके लागू किया जाता है। यह एक सक्रिय परिपथ है जो एक एनालॉग इनपुट सिग्नल को डिजिटल आउटपुट सिग्नल में परिवर्तित करती है। परिपथ को ट्रिगर नाम दिया गया है क्योंकि आउटपुट तब तक अपना मान बनाए रखता है जब तक कि इनपुट परिवर्तन को ट्रिगर करने के लिए पर्याप्त रूप से नहीं बदल जाता। गैर-इनवर्टिंग कॉन्फ़िगरेशन में, जब इनपुट एक चुनी हुई सीमा से अधिक होता है, तो आउटपुट अधिक होता है। जब इनपुट एक अलग (निचली) चुनी हुई सीमा से नीचे होता है तो आउटपुट कम होता है, और जब इनपुट दो स्तरों के बीच होता है तो आउटपुट अपने मूल्य को बनाए रखता है। इस दोहरी सीमा क्रिया को 'हिस्टैरिसीस' कहा जाता है और इसका तात्पर्य है कि श्मिट ट्रिगर में याद होती है और यह एक द्विस्थिर मल्टीवाइब्रेटर (लैच या फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स) के रूप में कार्य कर सकता है। दो प्रकार के सर्किटों के बीच घनिष्ठ संबंध है: एक श्मिट ट्रिगर को एक कुंडी में परिवर्तित किया जा सकता है और एक कुंडी को एक श्मिट ट्रिगर में परिवर्तित किया जा सकता है।

श्मिट ट्रिगर डिवाइस का उपयोग आमतौर पर संकेत अनुकूलन अनुप्रयोगों में डिजिटल परिपथ में उपयोग किए जाने वाले संकेतों से शोर को दूर करने के लिए किया जाता है, विशेष रूप से स्विच में यांत्रिक संपर्कबाउंस। वे फलन जनक और स्विच-मोड बिजली आपूर्ति में उपयोग किए जाने वाले विश्राम ऑसिलेटर्स को लागू करने के लिए फीडबैक नकारात्मक प्रतिक्रिया कॉन्फ़िगरेशन में भी उपयोग किए जाते हैं।

सिग्नल सिद्धांत में, एक श्मिट ट्रिगर अनिवार्य रूप से एक-बिट क्वांटाइज़र है।

एक सामान्य तुलनित्र (ए) और एक श्मिट ट्रिगर (बी) की शोर एनालॉग इनपुट सिग्नल (यू) पर कार्रवाई की तुलना। हरी बिंदीदार रेखाएँ परिपथ की स्विचिंग थ्रेसहोल्ड हैं। श्मिट ट्रिगर सिग्नल से शोर को दूर करता है।

आविष्कार

श्मिट ट्रिगर का आविष्कार अमेरिकी वैज्ञानिक ओटो श्मिट ने 1934 में किया था, जब वह एक स्नातक छात्र थे[1] बाद में अपने डॉक्टरेट शोध प्रबंध (1937) में एक थर्मिओनिक ट्रिगर के रूप में वर्णित किया गया।[2] यह स्क्विड नसों में तंत्रिका आवेग प्रसार के श्मिट के अध्ययन का प्रत्यक्ष परिणाम था।[2]

कार्यान्वयन

मूलभूत विचार

श्मिट ट्रिगर परिपथ का ब्लॉक आरेख। यह सकारात्मक प्रतिक्रिया वाली एक प्रणाली है जिसमें इनपुट में वापस फीड किए गए आउटपुट सिग्नल के कारण एम्पलीफायर ए तेजी से एक संतृप्त अवस्था से दूसरे में स्विच करता है जब इनपुट एक सीमा को पार कर जाता है।
'A' > 1 एम्पलीफायर लाभ (इलेक्ट्रॉनिक्स)
है 'बी' <1 फीडबैक ट्रांसफर फ़ंक्शन है

हिस्टैरिसीस वाले परिपथ सकारात्मक प्रतिक्रिया पर आधारित होते हैं। किसी भी सक्रिय परिपथ को एक सकारात्मक प्रतिक्रिया लागू करके श्मिट ट्रिगर के रूप में व्यवहार करने के लिए बनाया जा सकता है ताकि लूप का लाभ एक से अधिक हो। इनपुट वोल्टेज में आउटपुट वोल्टेज का एक भाग जोड़कर सकारात्मक प्रतिक्रिया प्रस्तुत की जाती है। इन सर्किटों में एक एटेन्यूएटर (इलेक्ट्रॉनिक्स) (दाईं ओर की आकृति में बी बॉक्स) और एक एडेर (+ अंदर वाला सर्कल) होता है, इसके अतिरिक्त एक एम्पलीफायर एक तुलनित्र के रूप में कार्य करता है। इस सामान्य विचार को लागू करने के लिए तीन विशिष्ट तकनीकें हैं। उनमें से पहले दो सामान्य सकारात्मक प्रतिक्रिया प्रणाली के दोहरे संस्करण (श्रृंखला और समानांतर) हैं। इन विन्यासों में, आउटपुट वोल्टेज तुलनित्र के प्रभावी अंतर इनपुट वोल्टेज को 'सीमा घटाकर' या 'परिपथ इनपुट वोल्टेज बढ़ाकर' बढ़ाता है; सीमा और मेमोरी गुण को एक तत्व में सम्मिलित किया जाता है। तीसरी तकनीक में, थ्रेसहोल्ड और मेमोरी गुण को अलग किया जाता है।

डायनेमिक सीमा (श्रृंखला प्रतिक्रिया): जब इनपुट वोल्टेज किसी दिशा में सीमा को पार करता है तो परिपथ स्वयं अपनी सीमा को विपरीत दिशा में बदल देता है। इस प्रयोजन के लिए, यह अपने आउटपुट वोल्टेज के एक भागों को सीमा से घटाता है (यह इनपुट वोल्टेज में वोल्टेज जोड़ने के समान है)। इस प्रकार आउटपुट सीमा को प्रभावित करता है और इनपुट वोल्टेज पर प्रभाव नहीं डालता है। इन सर्किटों को 'श्रृंखला सकारात्मक प्रतिक्रिया' के साथ एक डिफरेंशियल एम्पलीफायर द्वारा कार्यान्वित किया जाता है, जहां इनपुट इनवर्टिंग इनपुट और आउटपुट - गैर-इनवर्टिंग इनपुट से जुड़ा होता है। इस व्यवस्था में, क्षीणन और योग अलग-अलग होते हैं: एक वोल्टेज विभक्त एक क्षीणक के रूप में कार्य करता है और लूप एक साधारण केवीएल के रूप में कार्य करता है। उदाहरण क्लासिक ट्रांजिस्टर उत्सर्जक-युग्मित श्मिट ट्रिगर, ऑप-एम्प इनवर्टिंग श्मिट ट्रिगर आदि हैं।

संशोधित इनपुट वोल्टेज (समानांतर प्रतिक्रिया): जब इनपुट वोल्टेज किसी दिशा में सीमा को पार करता है तो परिपथ उसी दिशा में अपने इनपुट वोल्टेज को बदलता है (अब यह अपने आउटपुट वोल्टेज का एक भाग सीधे इनपुट वोल्टेज में जोड़ता है)। इस प्रकार आउटपुट इनपुट वोल्टेज को बढ़ाता है और सीमा को प्रभावित नहीं करता है। इन सर्किटों को 'समानांतर सकारात्मक प्रतिक्रिया' के साथ एकल-समाप्त गैर-इनवर्टिंग एम्पलीफायर द्वारा कार्यान्वित किया जा सकता है जहां इनपुट और आउटपुट स्रोत प्रतिरोधों के माध्यम से इनपुट से जुड़े होते हैं। दो प्रतिरोधक एक भारित समानांतर समर बनाते हैं जिसमें क्षीणन और योग दोनों सम्मिलित होते हैं। उदाहरण कम परिचित कलेक्टर-बेस युग्मित श्मिट ट्रिगर, ऑप-एएमपी, गैर-इनवर्टिंग श्मिट ट्रिगर, आदि हैं।

नकारात्मक प्रतिरोध का प्रदर्शित करने वाले कुछ परिपथ और तत्व भी इसी तरह से कार्य कर सकते हैं: नकारात्मक प्रतिबाधा कन्वर्टर्स (एनआईसी), नियॉन लैंप, सुरंग डायोड (उदाहरण के लिए, एन-आकार के करंट-वोल्टेज विशेषता वाला डायोड), आदि। अंतिम मामले में, एक दोलनशील इनपुट डायोड को एन के एक बढ़ते पैर से दूसरे तक ले जाने और फिर से वापस जाने का कारण बनेगा क्योंकि इनपुट बढ़ते और गिरने वाले स्विचिंग थ्रेसहोल्ड को पार करता है।

इस मामले में दो अलग-अलग यूनिडायरेक्शनल थ्रेसहोल्ड को दो अलग-अलग ओपन-लूप तुलनित्र (हिस्टैरिसीस के बिना) को सौंपा गया है, जो एक बिस्टेबल मल्टीवाइब्रेटर (लैच) या फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स) चला रहे हैं। जब इनपुट वोल्टेज उच्च थ्रेसहोल्ड तक नीचे जाता है और इनपुट वोल्टेज कम थ्रेसहोल्ड को पार करता है तो ट्रिगर को उच्च टॉगल किया जाता है। फिर से, एक सकारात्मक प्रतिक्रिया है, लेकिन अब यह केवल मेमोरी सेल में केंद्रित है। उदाहरण 555 टाइमर और स्विच डिबॉन्स परिपथ हैं।[3]

श्मिट ट्रिगर का प्रतीक एक बफर एम्पलीफायर में एम्बेडेड गैर-इनवर्टिंग हिस्टैरिसीस वक्र के साथ दिखाया गया है। श्मिट ट्रिगर्स को इन्वर्टिंग हिस्टैरिसीस कर्व्स के साथ भी दिखाया जा सकता है और लॉजिक गेट्स द्वारा इसका अनुसरण किया जा सकता है। उपयोग किए जा रहे विशेष श्मिट ट्रिगर के लिए प्रलेखन से यह निर्धारित करने के लिए परामर्श किया जाना चाहिए कि क्या उपकरण गैर-इनवर्टिंग है (यानी, जहां सकारात्मक आउटपुट संक्रमण सकारात्मक-जाने वाले इनपुट के कारण होता है) या इनवर्टिंग (यानी, जहां सकारात्मक आउटपुट संक्रमण नकारात्मक के कारण होता है- इनपुट जा रहा है)।

परिपथ आरेखों में श्मिट ट्रिगर्स के लिए प्रतीक एक त्रिकोण है जिसमें इसके आदर्श हिस्टैरिसीस वक्र का प्रतिनिधित्व करने वाला करता है।

ट्रांजिस्टर श्मिट ट्रिगर

क्लासिक उत्सर्जक-युग्मित परिपथ

उत्सर्जक-युग्मित BJTs चरणों द्वारा कार्यान्वित किया गया।

मूल श्मिट ट्रिगर डायनामिक सीमा विचार पर आधारित है जिसेवोल्टेज विभक्त द्वारा स्विचेबल अपर लेग ((कलेक्टर प्रतिरोधक आरसी 1 और आरसी 2) के साथ लागू किया जाता है। क्यू1 एक अंतर इनपुट क्यू1 बेस-उत्सर्जक जंक्शनर ) के साथ एक तुलनित्र के रूप में कार्य करता है जिसमें एक इनवर्टिंग (क्यू1 बेस) और एक गैर-इनवर्टिंग (क्यू1 उत्सर्जक) इनपुट शामिल होते हैं। इनपुट वोल्टेज इन्वर्टिंग इनपुट पर लागू होता है; वोल्टेज विभक्त का आउटपुट वोल्टेज गैर-इनवर्टिंग इनपुट पर लागू होता है और इस प्रकार इसकी सीमा निर्धारित करता है। तुलनित्र आउटपुट वोल्टेज विभाजक आर1-आर2 माध्यम से दूसरे आम कलेक्टर चरण क्यू 2 (एक उत्सर्जक अनुयायी) को चलाता है। उत्सर्जक-युग्मित ट्रांजिस्टर क्यू1 और क्यू2 वास्तव में एक इलेक्ट्रॉनिक स्विच संपर्क शब्दावली बनाते हैं जो वोल्टेज विभाजक के ऊपरी पैरों पर स्विच करता है और सीमा को एक अलग (इनपुट वोल्टेज में) दिशा में बदलता है।

इस कॉन्फ़िगरेशन को इसके गैर-इनवर्टिंग इनपुट (क्यू2 बेस) और आउटपुट (क्यू1 कलेक्टर) के बीच श्रृंखला सकारात्मक प्रतिक्रिया के साथ अंतर प्रवर्धक के रूप में माना जा सकता है जो संक्रमण प्रक्रिया को बल देता है। उत्सर्जक प्रतिरोधक आरई द्वारा शुरू की गई एक छोटी नकारात्मक प्रतिक्रिया भी है। सकारात्मक प्रतिक्रिया को नकारात्मक पर हावी करने के लिए और एक हिस्टैरिसीस प्राप्त करने के लिए, दो संग्राहक प्रतिरोधों के बीच के अनुपात को आरसी 1 > आरसी 2 चुना जाता है। इस प्रकार क्यू1 को चालू किया जाता है तो कम विद्युत धारा प्रवाह होता है और कम वोल्टेज की गिरावट आरई में होती है, जब क्यू2 को चालू किया जाता है। नतीजतन, जमीन के संबंध में परिपथ में दो अलग-अलग थ्रेसहोल्ड हैं (वी- छवि में)।

ऑपरेशन

प्रारंभिक स्थिति. दाईं ओर दिखाए गए एनपीएन ट्रांजिस्टर के लिए, कल्पना करें कि इनपुट वोल्टेज साझा उत्सर्जक वोल्टेज (कंक्रीटनेस के लिए उच्च सीमा) से नीचे है ताकि क्यू1 बेस-उत्सर्जक जंक्शन रिवर्स-बायस्ड हो और क्यू1 आचरण न करे। क्यू2 बेस वोल्टेज उल्लिखित विभाजक द्वारा निर्धारित किया जाता है ताकि क्यू2 का संचालन हो और ट्रिगर आउटपुट निम्न अवस्था में हो। दो प्रतिरोधक आरसी2 और आरई एक और वोल्टेज विभाजक बनाएं जो उच्च सीमा निर्धारित करता है। वीबीई की उपेक्षा करते हुए, उच्च सीमा मान लगभग है।

.

आउटपुट वोल्टेज कम है लेकिन जमीन से ऊपर है। यह लगभग उच्च सीमा के समान है और अगले डिजिटल परिपथ के लिए तार्किक शून्य होने के लिए पर्याप्त कम नहीं हो सकता है। इसके लिए ट्रिगर परिपथ के बाद इसके लिए अतिरिक्त शिफ्टिंग परिपथ की आवश्यकता हो सकती है।

ऊंची सीमा को पार करना. जब इनपुट वोल्टेज (क्यू1 बेस वोल्टेज) उत्सर्जक प्रतिरोधक आरई (उच्च सीमा) के वोल्टेज से थोड़ा ऊपर उठता है, तो क्यू1 संचालन शुरू करता है। इसका संग्राहक वोल्टेज कम हो जाता है और क्यू2 कट-ऑफ होने लगता है, क्योंकि वोल्टेज विभाजक अब कम क्यू2 बेस वोल्टेज प्रदान करता है। सामान्य उत्सर्जक वोल्टेज इस परिवर्तन का अनुसरण करता है और नीचे चला जाता है जिससे क्यू1 अधिक आचरण करता है। करंट परिपथ के दाहिने पैर से बाईं ओर स्टीयरिंग शुरू करता है। यद्यपि क्यू1 अधिक सुचालक है, यह आरई माध्यम से कम धारा पारित करता है (चूंकि आरसी1 > आरसी2); उत्सर्जक वोल्टेज गिरता रहता है और प्रभावी क्यू1 बेस-उत्सर्जक वोल्टेज लगातार बढ़ता रहता है। यह हिमस्खलन जैसी प्रक्रिया तब तक जारी रहती है जब तक क्यू1 पूरी तरह से चालू (संतृप्त) और क्यू2 बंद नहीं हो जाता। ट्रिगर को उच्च अवस्था में स्थानांतरित कर दिया गया है और आउटपुट (क्यू2 कलेक्टर) वोल्टेज वी+ के करीब होता है। अब, दो प्रतिरोधक आरसी1 और आर एक वोल्टेज विभाजक बनाएं जो कम सीमा निर्धारित करता है। इसका मूल्य लगभग है।

.

निचली सीमा को पार करना. ट्रिगर अब उच्च स्थिति में है, यदि इनपुट वोल्टेज पर्याप्त रूप से कम हो जाता है (निम्न सीमा के नीचे), तो क्यू1 कट-ऑफ करना शुरू कर देता है। इसका कलेक्टर करंट कम हो जाता है; नतीजतन, साझा उत्सर्जक वोल्टेज थोड़ा कम होता है और क्यू1 संग्राहक वोल्टेज पर्याप्त बढ़ जाता है। आर1-आर2 वोल्टेज विभाजक इस परिवर्तन को क्यू2 बेस वोल्टेज तक पहुँचाता है और यह संचालन करना शुरू कर देता है। आरई में वोल्टेज बढ़ जाता है, उसी हिमस्खलन की तरह क्यू1 बेस-उत्सर्जक क्षमता कम हो जाती है, और क्यू1 संचालन बंद कर देता है। क्यू2 पूरी तरह से चालू (संतृप्त) हो जाता है और आउटपुट वोल्टेज फिर से कम हो जाता है।

रूपांतर
एक बफर एम्पलीफायर के अंदर एक उल्टे हिस्टैरिसीस वक्र को दिखाते हुए एक उलटा श्मिट ट्रिगर का चित्रण करने वाला प्रतीक। अन्य प्रतीकों में एक हिस्टैरिसीस वक्र (जो उलटा या गैर-उलटा हो सकता है) एक बफर में एम्बेडेड होता है, जिसके बाद एक बुलबुला होता है, जो एक इन्वर्टर (लॉजिक गेट) के लिए पारंपरिक प्रतीक के समान होता है जो एक बुलबुले के बाद एक बफर दिखाता है। सामान्य तौर पर, श्मिट ट्रिगर (इनवर्टिंग या गैर-इनवर्टिंग) की दिशा प्रतीक से स्पष्ट रूप से स्पष्ट नहीं होती है क्योंकि एक ही निर्माता के साथ भी कई सम्मेलनों का उपयोग किया जाता है। ऐसी अस्पष्टता के लिए कई कारक हैं,[nb 1] इन परिस्थितियों में प्रत्येक विशेष श्मिट ट्रिगर के लिए दस्तावेज़ीकरण की गहन जांच की आवश्यकता हो सकती है।

गैर-इनवर्टिंग परिपथ. क्लासिक गैर-इनवर्टिंग श्मिट ट्रिगर को क्यू2 कलेक्टर के बजाय उत्सर्जकों से वीआउट लेकर इनवर्टिंग ट्रिगर में बदला जा सकता है। इस कॉन्फ़िगरेशन में, आउटपुट वोल्टेज डायनेमिक सीमा (साझा उत्सर्जक वोल्टेज) के बराबर है और दोनों आउटपुट स्तर आपूर्ति रेल से दूर रहते हैं। एक और नुकसान यह है कि लोड सीमा को बदलता है, इसलिए इसे पर्याप्त अधिक होना चाहिए। एमिटर वोल्टेज पर क्यू1 बेस-एमिटर जंक्शन के माध्यम से इनपुट वोल्टेज के प्रभाव को रोकने के लिए बेस रेसिस्टर आरबी अनिवार्य है।

प्रत्यक्ष-युग्मित परिपथ. परिपथ को सरल बनाने के लिए, आर1-आर2 वोल्टेज विभाजक को क्यू1 कलेक्टर को सीधे क्यू2 बेस से जोड़कर छोड़ा जा सकता है। आधार प्रतिरोधक आरबी साथ ही छोड़ा जा सकता है ताकि इनपुट वोल्टेज स्रोत सीधे क्यू1 के आधार को चला सके।[4] इस मामले में, सामान्य उत्सर्जक वोल्टेज और क्यू 1 कलेक्टर वोल्टेज आउटपुट के लिए उपयुक्त नहीं हैं। केवल क्यू2 कलेक्टर को आउटपुट के रूप में उपयोग किया जाना चाहिए, जब इनपुट वोल्टेज उच्च सीमा से अधिक हो जाता है और क्यू1 संतृप्त हो जाता है, तो इसका बेस-उत्सर्जक जंक्शन फॉरवर्ड बायस्ड होता है और इनपुट वोल्टेज विविधताओं को सीधे उत्सर्जकों में स्थानांतरित करता है। नतीजतन, आम उत्सर्जक वोल्टेज और क्यू1 कलेक्टर वोल्टेज इनपुट वोल्टेज का पालन करते हैं। यह स्थिति अति-चालित ट्रांजिस्टर डिफरेंशियल एम्पलीफायर लंबी पूंछ वाली एक अच्छी जोड़ी और उत्सर्जक-युग्मित तर्क ईसीएल गेट्स के लिए विशिष्ट है।

समाहर्ता-आधार युग्मित परिपथ

द्विध्रुवी जंक्शन ट्रांजिस्टर बिस्टेबल कलेक्टर-बेस कपल्ड परिपथ को एक अतिरिक्त बेस रेसिस्टर को एक बेस से जोड़कर श्मिट ट्रिगर में बदला जा सकता है

प्रत्येक कुंडी की तरह, मूलभूत संग्राहक-आधार युग्मित कुंडी (इलेक्ट्रॉनिक्स) युग्मित बिस्टेबल परिपथ में एक हिस्टैरिसीस होता है। तो, इसे एक अतिरिक्त आधार प्रतिरोधक R को एक इनपुट (आंकड़ा में क्यू1 आधार) से जोड़कर एक श्मिट ट्रिगर में परिवर्तित किया जा सकता है। दो प्रतिरोधक आर और आर4 एक समानांतर वोल्टेज समर (ऊपर दिए गए ब्लॉक आरेख में वृत्त) बनाता है जो आउटपुट (क्यू2 कलेक्टर) वोल्टेज और इनपुट वोल्टेज का योग करता है, और सिंगल-एंड ट्रांजिस्टर तुलनित्र क्यू1 ड्राइव करता है। जब बेस वोल्टेज सीमा (वीबीई0 ∞ 0.65 वी) को पार कर जाता है किसी दिशा में, क्यू2 के कलेक्टर वोल्टेज का एक भाग उसी दिशा में इनपुट वोल्टेज में जोड़ा जाता है। इस प्रकार आउटपुट संशोधित इनपुट समानांतर सकारात्मक प्रतिक्रिया के माध्यम से इनपुट वोल्टेज और सीमा (बेस-उत्सर्जक वोल्टेज) को प्रभावित नहीं करता है।

उत्सर्जक- और कलेक्टर-युग्मित परिपथ के बीच तुलना

उत्सर्जक-युग्मित संस्करण का लाभ यह है कि इनपुट ट्रांजिस्टर रिवर्स बायस्ड होता है जब इनपुट वोल्टेज उच्च सीमा से पर्याप्त नीचे होता है इसलिए ट्रांजिस्टर निश्चित रूप से कट-ऑफ होता है। यह महत्वपूर्ण था जब परिपथ को लागू करने के लिए जर्मेनियम ट्रांजिस्टर का उपयोग किया गया था और इस लाभ ने इसकी लोकप्रियता को निर्धारित किया है। इनपुट बेस रेसिस्टर को छोड़ा जा सकता है क्योंकि उत्सर्जक रेसिस्टर करंट को सीमित करता है जब इनपुट बेस-उत्सर्जक जंक्शन फॉरवर्ड-बायस्ड होता है।

एक उत्सर्जक-युग्मित श्मिट ट्रिगर तार्किक शून्य आउटपुट स्तर पर्याप्त रूप से कम नहीं हो सकता है और अतिरिक्त आउटपुट शिफ्टिंग परिपथ की आवश्यकता हो सकती है। कलेक्टर-युग्मित श्मिट ट्रिगर में तार्किक शून्य पर बहुत कम (लगभग शून्य) आउटपुट होता है।

ओप-एम्प कार्यान्वयन

श्मिट ट्रिगर आमतौर पर एक परिचालन प्रवर्धक या एक समर्पित तुलनित्र का उपयोग करके कार्यान्वित किया जाता है।[nb 2] एक ओपन-लूप लाभ और तुलनित्र को एनालॉग-डिजिटल डिवाइस के रूप में माना जा सकता है जिसमें एनालॉग इनपुट और एक डिजिटल आउटपुट होता है जो इसके दो इनपुट के बीच वोल्टेज अंतर के साइन समारोह को निकालता है। इसके दो इनपुट के बीच अंतर।[nb 3] सकारात्मक फीडबैक आउटपुट वोल्टेज के एक भागों को श्रृंखला या समानांतर तरह से इनपुट वोल्टेज में जोड़कर लागू किया जाता है। अत्यधिक उच्च ऑप-एम्प लाभ के कारण, लूप लाभ भी पर्याप्त अधिक होता है और हिमस्खलन जैसी प्रक्रिया प्रदान करता है।

गैर-इनवर्टिंग श्मिट ट्रिगर

श्मिट ट्रिगर एक गैर-इनवर्टिंग तुलनित्र द्वारा कार्यान्वित किया गया

इस परिपथ में दो प्रतिरोधक आर1 और आर2 एक समानांतर वोल्टेज समर का बनाते हैं।यह आउटपुट वोल्टेज का एक भाग इनपुट वोल्टेज में जोड़ता है और इस प्रकार स्विचिंग के दौरान और बाद में इसे बढ़ाता है, जो तब होता है जब परिणामी वोल्टेज जमीन के पास होता है। यह समानांतर सकारात्मक प्रतिक्रिया आवश्यक हिस्टैरिसीस बनाती है जिसे आर1 और आर2 के प्रतिरोधी के बीच अनुपात से नियंत्रित किया जाता है। समांतर वोल्टेज समर का उत्पादन एकल-समाप्त होता है (यह जमीन के संबंध में वोल्टेज उत्पन्न करता है) इसलिए परिपथ को अंतर इनपुट के साथ एम्पलीफायर की आवश्यकता नहीं होती है। चूंकि पारंपरिक ऑप-एम्प्स में एक अंतर इनपुट होता है, संदर्भ बिंदु को शून्य वोल्ट बनाने के लिए इन्वर्टिंग इनपुट को आधार बनाया जाता है।

आउटपुट वोल्टेज में हमेशा ऑप-एम्प इनपुट वोल्टेज के समान चिह्न होता है लेकिन इसमें हमेशा परिपथ इनपुट वोल्टेज के समान चिह्न नहीं होता है (दो इनपुट वोल्टेज के संकेत भिन्न हो सकते हैं)। जब परिपथ इनपुट वोल्टेज उच्च थ्रेसहोल्ड से ऊपर या कम थ्रेसहोल्ड से नीचे होता है, तो आउटपुट वोल्टेज में परिपथ इनपुट वोल्टेज (परिपथ गैर-इनवर्टिंग) के समान संकेत होता है। यह एक तुलनित्र की तरह कार्य करता है जो तुलनित्र का आउटपुट उच्च या निम्न के आधार पर एक अलग बिंदु पर स्विच करता है। जब परिपथ इनपुट वोल्टेज थ्रेसहोल्ड के बीच होता है, तो आउटपुट वोल्टेज अपरिभाषित होता है और यह अंतिम स्थिति पर निर्भर करता है (परिपथ एक प्राथमिक कुंडी के रूप में व्यवहार करता है)।

ऊपर दिए गए परिपथ की तरह गैर-इनवर्टिंग श्मिट ट्रिगर का विशिष्ट ट्रांसफर फ़ंक्शन।

उदाहरण के लिए, यदि श्मिट ट्रिगर वर्तमान में उच्च अवस्था में है, तो आउटपुट सकारात्मक विद्युत आपूर्ति रेल (+वीएस) पर होगा। प्रतिरोधी समर का आउटपुट वोल्टेज वी+ सुपरपोजिशन प्रमेय को लागू करके पाया जा सकता है:

V+= 0 होने पर तुलनित्र स्विच हो जाएगा। तब (वही परिणाम वर्तमान संरक्षण सिद्धांत को लागू करके प्राप्त किया जा सकता है)। इसलिए आउटपुट को स्विच करने के लिए को से नीचे छोड़ना होगा। एक बार तुलनित्र आउटपुट -VS पर स्विच हो जाता है, तो सीमा वापस उच्च पर स्विच करने के लिए हो जाता है। इसलिए यह परिपथ शून्य पर केंद्रित एक स्विचिंग बैंड बनाता है, जिसमें ट्रिगर स्तर होता है (इसे इनवर्टिंग इनपुट में बायस वोल्टेज लगाकर बाएं या दाएं स्थानांतरित किया जा सकता है)। इनपुट वोल्टेज बैंड के शीर्ष से ऊपर उठना चाहिए, और फिर बैंड के नीचे से नीचे, आउटपुट स्विच ऑन (प्लस) और फिर बैक ऑफ (माइनस) करने के लिए। यदि आर1 शून्य है या आर2 अनंत है (यानी, एक ओपन परिपथ वोल्टेज ), बैंड शून्य चौड़ाई तक गिर जाता है, और यह एक मानक तुलनित्र के रूप में व्यवहार करता है। स्थानांतरण विशेषता को बाईं ओर चित्र में दिखाया गया है। सीमा टी का मान द्वारा दिया गया है और आउटपुट एम का अधिकतम मूल्य बिजली आपूर्ति रेल है।

सटीक थ्रेसहोल्ड के साथ एक व्यावहारिक श्मिट ट्रिगर कॉन्फ़िगरेशन

समानांतर सकारात्मक प्रतिक्रिया के साथ परिपथ की एक अनूठी संपत्ति इनपुट स्रोत पर प्रभाव है।[citation needed] नकारात्मक समानांतर प्रतिक्रिया के साथ परिपथ (जैसे, एक इन्वर्टिंग एम्पलीफायर) में, इनवर्टिंग इनपुट पर वर्चुअल ग्राउंड इनपुट स्रोत को ऑप-एएमपी आउटपुट से अलग करता है। यहां कोई वर्चुअल ग्राउंड नहीं है, और स्थिर ऑप-एएमपी आउटपुट वोल्टेज को इनपुट स्रोत पर आर 1-आर 2 नेटवर्क के माध्यम से लागू किया जाता है। ऑप-एम्प आउटपुट इनपुट स्रोत के माध्यम से एक विपरीत धारा से गुजरता है (यह इनपुट वोल्टेज के सकारात्मक होने पर स्रोत में करंट इंजेक्ट करता है और यह नकारात्मक होने पर स्रोत से करंट खींचता है)।

सटीक सीमा के साथ एक व्यावहारिक श्मिट ट्रिगर दाईं ओर की आकृति में दिखाया गया है। स्थानांतरण विशेषता में पिछले मूल कॉन्फ़िगरेशन का बिल्कुल समान आकार है, और सीमा मान भी समान हैं। दूसरी ओर, पिछले स्थिति में, आउटपुट वोल्टेज बिजली की आपूर्ति पर निर्भर था, जबकि अब इसे ज़ेनर डायोड द्वारा परिभाषित किया गया है (जिसे सिंगल डबल-एनोड जेनर डायोड से भी बदला जा सकता है)। इस कॉन्फ़िगरेशन में, जेनर डायोड के उपयुक्त विकल्प द्वारा आउटपुट स्तरों को संशोधित किया जा सकता है, और ये स्तर बिजली आपूर्ति में उतार-चढ़ाव के प्रतिरोधी हैं (यानी, वे तुलनित्र के पीएसआरआर को बढ़ाते हैं)। प्रतिरोधक आर3 वहाँ डायोड के माध्यम से वर्तमान को सीमित करने के लिए है, और प्रतिरोधक आर4 तुलनित्र के इनपुट रिसाव धाराओं के कारण होने वाले इनपुट वोल्टेज ऑफसेट को कम करता है (वास्तविक ऑप-एम्प्स की सीमाएं देखें)।

इनवर्टिंग श्मिट ट्रिगर

श्मिट ट्रिगर एक इन्वर्टिंग तुलनित्र द्वारा लागू किया गया

इनवर्टिंग संस्करण में, क्षीणन और योग अलग हो जाते हैं। दो प्रतिरोधक आर1 और आर2 केवल एक शुद्ध क्षीणक (वोल्टेज विभाजक) के रूप में कार्य करें। इनपुट लूप एक केवीएल के रूप में कार्य करता है जो श्रृंखला में आउटपुट वोल्टेज का एक भाग परिपथ इनपुट वोल्टेज में जोड़ता है। यह श्रृंखला सकारात्मक प्रतिक्रिया आवश्यक हिस्टैरिसीस बनाती है जिसे आर1 के प्रतिरोधी के बीच के अनुपात से नियंत्रित किया जाता है और पूरा प्रतिरोध (आर1 और आर2). ऑप-एम्प इनपुट पर लागू प्रभावी वोल्टेज फ्लोटिंग है इसलिए ऑप-एम्प में एक डिफरेंशियल इनपुट होना चाहिए।

परिपथ को इनवर्टिंग नाम दिया गया है क्योंकि आउटपुट वोल्टेज में हमेशा इनपुट वोल्टेज के विपरीत संकेत होता है जब यह हिस्टैरिसीस चक्र से बाहर होता है (जब इनपुट वोल्टेज उच्च सीमा से ऊपर या निम्न सीमा से नीचे होता है)। हालाँकि, यदि इनपुट वोल्टेज हिस्टैरिसीस चक्र (उच्च और निम्न थ्रेसहोल्ड के बीच) के भीतर है, तो परिपथ इनवर्टिंग के साथ-साथ गैर-इनवर्टिंग भी हो सकता है। आउटपुट वोल्टेज अपरिभाषित है और यह अंतिम स्थिति पर निर्भर करता है इसलिए परिपथ एक प्राथमिक कुंडी की तरह व्यवहार करता है।

दो संस्करणों की तुलना करने के लिए, परिपथ ऑपरेशन को ऊपर की तरह ही स्थितियों पर विचार किया जाएगा। यदि श्मिट ट्रिगर वर्तमान में उच्च अवस्था में है, तो आउटपुट सकारात्मक विद्युत आपूर्ति रेल (+वीएस) पर होगा। वोल्टेज विभाजक का आउटपुट वोल्टेज वी+ है:

जब वीइन = वी+ होता है तो तुलनित्र बदल जाएगा। इसलिए आउटपुट को स्विच करने के लिए को इस वोल्टेज से अधिक होना चाहिए। एक बार तुलनित्र आउटपुट -वीएस पर स्विच हो जाता है, तो सीमा हो जाती है। इसलिए यह सर्किट शून्य पर केंद्रित एक स्विचिंग बैंड बनाता है, जिसमें ट्रिगर स्तर (इसे R1 को पूर्वाग्रह वोल्टेज से जोड़कर बाईं या दाईं ओर स्थानांतरित किया जा सकता है)। इनपुट वोल्टेज बैंड के शीर्ष से ऊपर उठना चाहिए, और फिर बैंड के नीचे से नीचे, आउटपुट को स्विच ऑफ (माइनस) और फिर वापस (प्लस) करने के लिए। यदि आर1 शून्य है (यानी, शार्ट परिपथ) या आर2 अनंत है, बैंड शून्य चौड़ाई तक गिर जाता है, और यह एक मानक तुलनित्र के रूप में व्यवहार करता है।

समानांतर संस्करण के विपरीत, यह परिपथ इनपुट स्रोत पर प्रभाव नहीं डालता है क्योंकि स्रोत उच्च ऑप-एम्प इनपुट अंतर प्रतिबाधा द्वारा वोल्टेज विभाजक आउटपुट से अलग होता है।

इन्वर्टिंग एम्पलीफायर वोल्टेज ड्रॉप में प्रतिरोधक (आर 1) इनपुट सिग्नल के साथ तुलना के लिए संदर्भ वोल्टेज यानी ऊपरी थ्रेसहोल्ड वोल्टेज (वी +) और निचले थ्रेसहोल्ड वोल्टेज (वी-) का तय करता है। ये वोल्टेज निश्चित हैं क्योंकि आउटपुट वोल्टेज और प्रतिरोधक मान निश्चित हैं।

इसलिए (आर 1) थ्रेसहोल्ड वोल्टेज में गिरावट को बदलकर विविध किया जा सकता है। प्रतिरोधी (आर 1) ड्रॉप के साथ श्रृंखला में पूर्वाग्रह वोल्टेज जोड़कर इसे अलग किया जा सकता है, जो थ्रेसहोल्ड वोल्टेज को बदल सकता है। अलग-अलग बायस वोल्टेज द्वारा संदर्भ वोल्टेज के वांछित मान प्राप्त किए जा सकते हैं।

उपरोक्त समीकरणों को इस प्रकार संशोधित किया जा सकता है:


अनुप्रयोग

श्मिट ट्रिगर्स का उपयोग आमतौर पर शोर प्रतिरक्षा के लिए ओपन लूप कॉन्फ़िगरेशन और फ़ंक्शन जनरेटर को लागू करने के लिए बंद लूप कॉन्फ़िगरेशन में किया जाता है।

  • एनालॉग-टू-डिजिटल रूपांतरण:   श्मिट ट्रिगर प्रभावी रूप से डिजिटल कनवर्टर का एक बिट एनालॉग है। जब सिग्नल किसी दिए गए स्तर पर पहुंचता है तो यह निम्न से उच्च अवस्था में बदल जाता है।
  • लेवल डिटेक्शन:   श्मिट ट्रिगर परिपथ लेवल डिटेक्शन प्रदान करने में सक्षम है। इस एप्लिकेशन को करते समय, यह आवश्यक है कि हिस्टैरिसीस वोल्टेज को ध्यान में रखा जाए ताकि परिपथ आवश्यक वोल्टेज पर स्विच हो जाए।
  • लाइन रिसेप्शन:   एक डेटा लाइन चलाते समय जो लॉजिक गेट में शोर उठा सकती है, यह सुनिश्चित करना आवश्यक है कि एक लॉजिक आउटपुट स्तर केवल डेटा बदलने के रूप में बदला जाता है और नकली शोर के परिणामस्वरूप नहीं जो उठाया जा सकता है। श्मिट ट्रिगर का उपयोग मोटे तौर पर पीक टू पीक शोर को हिस्टैरिसीस के स्तर तक पहुंचने में सक्षम बनाता है, इससे पहले कि नकली ट्रिगर हो सकता है।

शोर प्रतिरक्षा

श्मिट ट्रिगर का एक अनुप्रयोग एक परिपथ में केवल एक इनपुट सीमा के साथ शोर प्रतिरक्षा को बढ़ाना है। केवल एक इनपुट सीमा के साथ, एक शोर (भौतिकी) इनपुट सिग्नल [nb 4] उस सीमा के पास आउटपुट अकेले शोर से तेजी से आगे और पीछे स्विच करने का कारण बन सकता है। एक सीमा के पास एक शोर श्मिट ट्रिगर इनपुट सिग्नल आउटपुट वैल्यू में केवल एक स्विच का कारण बन सकता है, जिसके बाद इसे दूसरे स्विच के लिए अन्य सीमा से आगे बढ़ना होगा।

उदाहरण के लिए, एक रैखिक प्रवर्धक अवरक्त फोटोडायोड एक विद्युत संकेत उत्पन्न कर सकता है जो अपने पूर्ण न्यूनतम मूल्य और इसके पूर्ण उच्चतम मूल्य के बीच प्रायः स्विच करता है। यह सिग्नल तब लो पास फिल्टर किया जाता है ताकि एक चिकनी सिग्नल बनाया जा सके जो स्विचिंग सिग्नल चालू और बंद होने की सापेक्ष मात्रा के अनुरूप हो जाता है और गिरता है। वह फ़िल्टर किया गया आउटपुट श्मिट ट्रिगर के इनपुट में जाता है। शुद्ध प्रभाव यह है कि श्मिट ट्रिगर का आउटपुट केवल एक प्राप्त इन्फ्रारेड सिग्नल के बाद कुछ ज्ञात अवधि से अधिक समय तक फोटोडायोड को उत्तेजित करने के बाद निम्न से उच्च तक जाता है, और एक बार जब श्मिट ट्रिगर उच्च होता है, तो यह इन्फ्रारेड सिग्नल के बंद होने के बाद ही कम होता है। एक समान ज्ञात अवधि से अधिक समय तक फोटोडायोड को उत्तेजित करें। जबकि फोटोडायोड पर्यावरण से शोर के कारण नकली स्विचिंग के लिए प्रवण होता है, फ़िल्टर और श्मिट ट्रिगर द्वारा जोड़ा गया विलंब सुनिश्चित करता है कि आउटपुट केवल तभी स्विच होता है जब निश्चित रूप से डिवाइस को उत्तेजित करने वाला इनपुट होता है।

श्मिट ट्रिगर कई स्विचिंग परिपथ में समान कारणों से आम हैं (उदाहरण के लिए, स्विच डिबाउंसिंग के लिए)।

List of IC including input Schmitt triggers
फिलिप्स 74एचसीटी14डी, एक हेक्स इनवर्टिंग श्मिट ट्रिगर
निम्नलिखित 7400 श्रृंखला उपकरणों में उनके इनपुट पर एक श्मिट ट्रिगर शामिल है: (7400-श्रृंखला एकीकृत परिपथों की सूची देखें)
  • 7413: डुअल श्मिट ट्रिगर 4-इनपुट NAND गेट
  • 7414: हेक्स श्मिट ट्रिगर इन्वर्टर
  • 7418: डुअल श्मिट ट्रिगर 4-इनपुट NAND गेट
  • 7419: हेक्स श्मिट ट्रिगर इन्वर्टर
  • 74121: श्मिट ट्रिगर इनपुट के साथ मोनोस्टेबल मल्टीवीब्रेटर
  • 74132: क्वाड 2-इनपुट नंद श्मिट ट्रिगर
  • 74221: श्मिट ट्रिगर इनपुट के साथ डुअल मोनोस्टेबल मल्टीवाइब्रेटर
  • 74232: क्वाड नॉर श्मिट ट्रिगर
  • 74310: श्मिट ट्रिगर इनपुट के साथ ऑक्टल बफर
  • 74340: श्मिट ट्रिगर इनपुट्स और तीन-स्टेट इनवर्टेड आउटपुट के साथ ऑक्टल बफर
  • 74341: श्मिट ट्रिगर इनपुट्स और तीन-स्टेट नॉनइनवर्टेड आउटपुट के साथ ऑक्टल बफर
  • 74344: श्मिट ट्रिगर इनपुट्स और तीन-स्टेट नॉनइनवर्टेड आउटपुट के साथ ऑक्टल बफर
  • 74(एचसी/एचसीटी)7541 ऑक्टल बफर श्मिट ट्रिगर इनपुट्स और थ्री-स्टेट नॉनइनवर्टेड आउटपुट के साथ
  • SN74LV8151 3-स्टेट आउटपुट के साथ 10-बिट यूनिवर्सल श्मिट-ट्रिगर बफर है

कई 4000 श्रृंखला उपकरणों में उनके इनपुट पर एक श्मिट ट्रिगर शामिल है: (4000-श्रृंखला एकीकृत सर्किट की सूची देखें)

  • 4017: डिकोडेड आउटपुट के साथ दशक काउंटर
  • 4020: 14-स्टेज बाइनरी रिपल काउंटर
  • 4022: डिकोडेड आउटपुट के साथ ऑक्टल काउंटर
  • 4024: 7-स्टेज बाइनरी रिपल काउंटर
  • 4040: 12-स्टेज बाइनरी रिपल काउंटर
  • 4093: क्वाड 2-इनपुट नंद
  • 4538: डुअल मोनोस्टेबल मल्टीवीब्रेटर
  • 4584: हेक्स इनवर्टिंग श्मिट ट्रिगर
  • 40106: हेक्स इन्वर्टर

श्मिट इनपुट कॉन्फ़िगर करने योग्य सिंगल-गेट चिप्स: (7400-श्रृंखला एकीकृत सर्किट की सूची देखें # एक गेट चिप्स)

  • NC7SZ57 फेयरचाइल्ड
  • NC7SZ58 फेयरचाइल्ड
  • SN74LVC1G57 टेक्सास इंस्ट्रूमेंट्स
  • SN74LVC1G58 टेक्सास इंस्ट्रूमेंट्स

ऑसिलेटर के रूप में प्रयोग करें

तुलनित्र-आधारित विश्राम दोलक के लिए आउटपुट और संधारित्र वेवफॉर्म
रिलैक्सेशन ऑसिलेटर का एक श्मिट ट्रिगर-आधारित कार्यान्वयन

एक श्मिट ट्रिगर एक बिस्टेबल मल्टीवीब्रेटर है, और इसका उपयोग एक अन्य प्रकार के मल्टीवीब्रेटर, रिलैक्सेशन ऑसिलेटर को लागू करने के लिए किया जा सकता है। यह आउटपुट और इनवर्टिंग श्मिट ट्रिगर के इनपुट के बीच एकल आरसी एकीकृत परिपथ को जोड़कर प्राप्त किया जाता है। आउटपुट एक सतत स्क्वेर वेव होगा जिसकी आवृत्ति आर और सी के मानों और श्मिट ट्रिगर के सीमा बिंदुओं पर निर्भर करती है। चूंकि एकाधिक श्मिट ट्रिगर परिपथ एक एकीकृत परिपथ द्वारा प्रदान किए जा सकते हैं (उदाहरण के लिए 4000 श्रृंखला सीएमओएस डिवाइस प्रकार 40106 में उनमें से 6 सम्मिलित हैं), आईसी के एक अतिरिक्त खंड को केवल दो बाहरी के साथ एक सरल और विश्वसनीय ऑसीलेटर के रूप में सेवा में दबाया जा सकता है।

यहाँ, एक तुलनित्र-आधारित श्मिट ट्रिगर का उपयोग इसके इनवर्टिंग कॉन्फ़िगरेशन में किया जाता है। इसके अतिरिक्त, धीमी नकारात्मक प्रतिक्रिया एक एकीकृत आरसी नेटवर्क के साथ जोड़ा जाता है। परिणाम, जो दाईं ओर दिखाया गया है, यह है कि आउटपुट स्वचालित रूप से वीएसएस से बीडीडी तक झूलता है क्योंकि कैपेसिटर एक श्मिट ट्रिगर थ्रेशोल्ड से दूसरे में चार्ज होता है।

यह भी देखें

  • ऑपरेशनल एम्पलीफायर एप्लिकेशन
  • हिस्टैरिसीस के साथ सीमा डिटेक्टर
  • 4000-श्रृंखला एकीकृत परिपथ की सूची - श्मिट ट्रिगर इनपुट के साथ लॉजिक चिप्स सम्मिलित हैं
  • 7400-श्रृंखला एकीकृत परिपथों की सूची - श्मिट ट्रिगर इनपुट के साथ लॉजिक चिप्स सम्मिलित हैं

टिप्पणियाँ

  1. One factor contributing to ambiguity is that one simple transistor-based realization of a Schmitt trigger is naturally inverting, with a non-inverting Schmitt trigger sometimes consisting of such an inverting implementation followed by an inverter. An additional inverter may be added for buffering a stand-alone inverting configuration. Consequently, inverting configurations within an integrated circuit may be naturally inverting, while non-inverting configurations are implemented with a single inverter, and stand-alone inverting configurations may be implemented with two inverters. As a result, symbols that combine inverting bubbles and hysteresis curves may be using the hysteresis curve to describe the entire device or the embedded Schmitt trigger only.
  2. Usually, negative feedback is used in op-amp circuits. Some operational amplifiers are designed to be used only in negative-feedback configurations that enforce a negligible difference between the inverting and non-inverting inputs. They incorporate input-protection circuitry that prevent the inverting and non-inverting inputs from operating far away from each other. For example, clipper circuits made up of two general purpose diodes with opposite bias in parallel [1] or two Zener diodes with opposite bias in series (i.e., a double-anode Zener diode) are sometimes used internally across the two inputs of the operational amplifier. In these cases, the operational amplifiers will fail to function well as comparators. Conversely, comparators are designed under the assumption that the input voltages can differ significantly.
  3. When the non-inverting (+) input is at a higher voltage than the inverting (−) input, the comparator output switches nearly to +VS, which is its high supply voltage. When the non-inverting (+) input is at a lower voltage than the inverting (−) input, the comparator output switches nearly to -VS, which is its low supply voltage.
  4. Where the noise amplitude is assumed to be small compared to the change in Schmitt trigger threshold.


संदर्भ

  1. Schmitt, Otto H. (January 1938). "एक थर्मिओनिक ट्रिगर". Journal of Scientific Instruments. 15 (15): 24–26. Bibcode:1938JScI...15...24S. doi:10.1088/0950-7671/15/1/305.
  2. 2.0 2.1 August 2004 issue of the Pavek Museum of Broadcasting Newsletter http://160.94.102.47/Otto_Images/PavekOHSbio.pdf Archived 2015-10-01 at the Wayback Machine
  3. Debouncing switches with an SR latch
  4. 7414 datasheet


बाहरी संबंध