विभाजक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, एक विभाजक असंयुक्त समुच्चयों के बीच एक [[द्विआधारी संबंध]] है। जो समावेशन द्वारा प्रेरित विहित क्रम में एक [[आदर्श (आदेश सिद्धांत)]] के रूप में स्थिर है। कई गणितीय वस्तुएँ जो भिन्न प्रतीत होती हैं, सेपरॉइड के ढांचे में एक सामान्य सामान्यीकरण प्राप्त करती हैं। उदाहरण के लिए, [[ग्राफ (असतत गणित)]], [[उत्तल सेट|उत्तल समुच्चयों]] का विन्यास, ओरिएन्टेड मैट्रोइड्स और [[ polytopes |पॉलीटोप्स]]। कोई भी गणनीय [[श्रेणी (गणित)]] विभाजक का एक प्रेरित उपश्रेणी है, जब वे [[समरूपता]] से संपन्न होते हैं।<ref>{{cite journal
गणित में, एक '''विभाजक''' असंयुक्त समुच्चयों के बीच एक [[द्विआधारी संबंध]] है। जो समावेशन द्वारा प्रेरित विहित क्रम में एक [[आदर्श (आदेश सिद्धांत)]] के रूप में स्थिर है। कई गणितीय वस्तुएँ जो भिन्न प्रतीत होती हैं, सेपरॉइड के आकृति में एक सामान्य सामान्यीकरण प्राप्त करती हैं। उदाहरण के लिए, [[ग्राफ (असतत गणित)]], [[उत्तल सेट|उत्तल समुच्चयों]] का विन्यास, ओरिएन्टेड मैट्रोइड्स और [[ polytopes |पॉलीटोप्स]]। कोई भी गणनीय [[श्रेणी (गणित)]] '''विभाजक''' का एक प्रेरित उपश्रेणी है, जब वे [[समरूपता]] से संपन्न होते हैं।<ref>{{cite journal
| last1=Strausz | first1=Ricardo
| last1=Strausz | first1=Ricardo
| title=Homomorphisms of separoids
| title=Homomorphisms of separoids
Line 9: Line 9:
| zbl=1291.05036}}</ref> (अर्थात, मैपिंग जो स्थित रेडॉन के प्रमेय को संरक्षित करते हैं।)
| zbl=1291.05036}}</ref> (अर्थात, मैपिंग जो स्थित रेडॉन के प्रमेय को संरक्षित करते हैं।)


इस सामान्य ढांचे में, विभिन्न श्रेणियों के कुछ परिणाम और अपरिवर्तनीय एक ही नियम के विशेष स्थितियां बन जाते हैं। उदाहरण के लिए ग्राफ थ्योरी से स्यूडोएक्रोमैटिक नंबर और कॉम्बिनेटरियल उत्तलता से टेवरबर्ग प्रमेय एक ही नियम के दो प्रकार हैं, अर्थात् विभाजकों का सम्पूर्ण रंग।
इस सामान्य आकृति में, विभिन्न श्रेणियों के कुछ परिणाम और अपरिवर्तनीय एक ही नियम के विशेष स्थितियां बन जाते हैं। उदाहरण के लिए ग्राफ थ्योरी से स्यूडोएक्रोमैटिक नंबर और कॉम्बिनेटरियल उत्तलता से टेवरबर्ग प्रमेय एक ही नियम के दो प्रकार हैं, अर्थात् विभाजकों का सम्पूर्ण रंग।


== सिद्धांत ==
== सिद्धांत ==
Line 21: Line 21:
| issue=2
| issue=2
| pages=79–92
| pages=79–92
| zbl=1090.52005}}</ref> एक समुच्चय (गणित) <math>S</math> एक द्विआधारी संबंध के साथ संपन्न होता है <math>\mid\ \subseteq2^S\times2^S</math> इसके [[ सत्ता स्थापित | घात समुच्चय]] पर, जो <math>A,B\subseteq S</math> के लिये निम्नलिखित सरल गुणों को संतुष्ट करता है :
| zbl=1090.52005}}</ref> एक समुच्चय (गणित) <math>S</math> एक द्विआधारी संबंध के साथ संपन्न होता है <math>\mid\ \subseteq2^S\times2^S</math> इसके [[ सत्ता स्थापित |घात समुच्चय]] पर, जो <math>A,B\subseteq S</math> के लिये निम्नलिखित सरल गुणों को संतुष्ट करता है :


: <math>A\mid B\Leftrightarrow B\mid A,</math>
: <math>A\mid B\Leftrightarrow B\mid A,</math>
Line 73: Line 73:
2. एक ओरिएन्टेड मैट्रोइड<ref name="M-BS"/> ''M'' = (''E'',''T'') दिया गया है, इसके शीर्ष T के संदर्भ में दिया गया है। हम E पर एक विभाजक को यह कहकर परिभाषित कर सकते हैं कि दो उपसमुच्चय अलग हो जाते हैं। यदि वे एक टोपे के विपरीत संकेतों में मिले हुए हैं। दूसरे शब्दों में, एक ओरिएंटेड मैट्रॉइड के शीर्ष एक सेपरॉइड के अधिकतम सेप्रेशन हैं। इसी कारण इस उदाहरण में सभी निर्देशित रेखांकन सम्मिलित किये गये हैं।
2. एक ओरिएन्टेड मैट्रोइड<ref name="M-BS"/> ''M'' = (''E'',''T'') दिया गया है, इसके शीर्ष T के संदर्भ में दिया गया है। हम E पर एक विभाजक को यह कहकर परिभाषित कर सकते हैं कि दो उपसमुच्चय अलग हो जाते हैं। यदि वे एक टोपे के विपरीत संकेतों में मिले हुए हैं। दूसरे शब्दों में, एक ओरिएंटेड मैट्रॉइड के शीर्ष एक सेपरॉइड के अधिकतम सेप्रेशन हैं। इसी कारण इस उदाहरण में सभी निर्देशित रेखांकन सम्मिलित किये गये हैं।


3. [[यूक्लिडियन अंतरिक्ष]] में वस्तुओं के एक परिवार को देखते हुए, हम यह कहकर इसमें एक सेपरॉइड को परिभाषित कर सकते हैं कि यदि कोई [[ hyperplane ]] मौजूद है जो उन्हें अलग करता है तो दो उपसमुच्चय अलग हो जाते हैं; यानी उन्हें इसके दो विपरीत पक्षों में छोड़ देना।
3. [[यूक्लिडियन अंतरिक्ष]] में वस्तुओं के एक फैमली को देखते हुए, हम यह कहकर इसमें एक सेपरॉइड को परिभाषित कर सकते हैं कि यदि कोई [[ hyperplane |हाइपरप्लेन]] उपस्थित है। जो उन्हें दूसरे से अलग करता है। जिससे दो उपसमुच्चय एक-दूसरे से अलग हो जाते हैं। अर्थात् उन्हें इसके दो विपरीत पक्षों में छोड़ देना होता है।


4. एक [[टोपोलॉजिकल स्पेस]] को देखते हुए, हम एक सेपरॉइड को यह कहते हुए परिभाषित कर सकते हैं कि दो उपसमुच्चय अलग हो गए हैं यदि दो अलग-अलग खुले सेट मौजूद हैं जिनमें वे शामिल हैं (उनमें से प्रत्येक के लिए एक)।
4. एक [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल रिक्त स्थान]] को देखते हुए, हम एक सेपरॉइड को यह कहते हुए परिभाषित कर सकते हैं कि दो उपसमुच्चय एक-दूसरे से अलग हो गए हैं। यदि दो अलग-अलग संवृत समुच्चय उपस्थित हैं। जिनमें वे सम्मिलित हैं (उनमें से प्रत्येक के लिए एक)।


== बुनियादी लेम्मा ==
== मूलभूत लेम्मा ==


कुछ यूक्लिडियन अंतरिक्ष में उत्तल सेट के एक परिवार और हाइपरप्लेन द्वारा उनके पृथक्करण के साथ प्रत्येक सेपरॉइड का प्रतिनिधित्व किया जा सकता है।
कुछ यूक्लिडियन अंतरिक्ष में उत्तल समुच्चय के एक फैमली और हाइपरप्लेन द्वारा उनके पृथक्करण के साथ प्रत्येक सेपरॉइड का प्रतिनिधित्व किया जा सकता है।


== संदर्भ ==
== संदर्भ ==
Line 122: Line 122:
| pages=1076–1085
| pages=1076–1085
| doi=10.1016/j.ejc.2007.11.011 | doi-access=free}}
| doi=10.1016/j.ejc.2007.11.011 | doi-access=free}}
[[Category: द्विआधारी संबंध]]


[[Category: Machine Translated Page]]
[[Category:Created On 25/05/2023]]
[[Category:Created On 25/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:द्विआधारी संबंध]]

Latest revision as of 14:23, 15 June 2023

गणित में, एक विभाजक असंयुक्त समुच्चयों के बीच एक द्विआधारी संबंध है। जो समावेशन द्वारा प्रेरित विहित क्रम में एक आदर्श (आदेश सिद्धांत) के रूप में स्थिर है। कई गणितीय वस्तुएँ जो भिन्न प्रतीत होती हैं, सेपरॉइड के आकृति में एक सामान्य सामान्यीकरण प्राप्त करती हैं। उदाहरण के लिए, ग्राफ (असतत गणित), उत्तल समुच्चयों का विन्यास, ओरिएन्टेड मैट्रोइड्स और पॉलीटोप्स। कोई भी गणनीय श्रेणी (गणित) विभाजक का एक प्रेरित उपश्रेणी है, जब वे समरूपता से संपन्न होते हैं।[1] (अर्थात, मैपिंग जो स्थित रेडॉन के प्रमेय को संरक्षित करते हैं।)

इस सामान्य आकृति में, विभिन्न श्रेणियों के कुछ परिणाम और अपरिवर्तनीय एक ही नियम के विशेष स्थितियां बन जाते हैं। उदाहरण के लिए ग्राफ थ्योरी से स्यूडोएक्रोमैटिक नंबर और कॉम्बिनेटरियल उत्तलता से टेवरबर्ग प्रमेय एक ही नियम के दो प्रकार हैं, अर्थात् विभाजकों का सम्पूर्ण रंग।

सिद्धांत

एक सेपरॉइड[2] एक समुच्चय (गणित) एक द्विआधारी संबंध के साथ संपन्न होता है इसके घात समुच्चय पर, जो के लिये निम्नलिखित सरल गुणों को संतुष्ट करता है :

एक संबंधित जोड़ी को एक सेप्रेशन कहा जाता है और हम अधिकांशतः यह कहते हैं कि A, B से पूर्णतय रूप से परिवर्तित है। विभाजक के पुनर्निर्माण के लिए 'अधिकतम' सैप्रेशन को जानना पर्याप्त है।

एक मानचित्र (गणित) , यदि पृथक्करणों की पूर्वकल्पनाएँ पृथक्करण हैं, तो यह विभाजकों का एक रूपवाद स्थित होता है; वह के लिए है-


उदाहरण

विभाजक के उदाहरण गणित की अधिकांशतः प्रत्येक शाखा में पाए जा सकते हैं।[3][4][5] यहां हम कुछ विभाजकोे ही सूचीबद्ध करते हैं।

1. एक ग्राफ (असतत गणित) G=(V,E), जो कि टोप्स T के रूप में दिया गया है। हम V के दो (विच्छेद) उपसमुच्चय कह कर एक विभाजक को उसके शीर्ष पर परिभाषित कर सकते हैं, जो कि A और B अलग हो जाते हैं, जिससे हम इसके शीर्ष (ग्राफ सिद्धांत) पर एक सैप्रेशन को परिभाषित कर सकते हैं। नो एज (ग्राफ सिद्धांत) एक से दूसरे में जा रहा है; अर्थात-

2. एक ओरिएन्टेड मैट्रोइड[5] M = (E,T) दिया गया है, इसके शीर्ष T के संदर्भ में दिया गया है। हम E पर एक विभाजक को यह कहकर परिभाषित कर सकते हैं कि दो उपसमुच्चय अलग हो जाते हैं। यदि वे एक टोपे के विपरीत संकेतों में मिले हुए हैं। दूसरे शब्दों में, एक ओरिएंटेड मैट्रॉइड के शीर्ष एक सेपरॉइड के अधिकतम सेप्रेशन हैं। इसी कारण इस उदाहरण में सभी निर्देशित रेखांकन सम्मिलित किये गये हैं।

3. यूक्लिडियन अंतरिक्ष में वस्तुओं के एक फैमली को देखते हुए, हम यह कहकर इसमें एक सेपरॉइड को परिभाषित कर सकते हैं कि यदि कोई हाइपरप्लेन उपस्थित है। जो उन्हें दूसरे से अलग करता है। जिससे दो उपसमुच्चय एक-दूसरे से अलग हो जाते हैं। अर्थात् उन्हें इसके दो विपरीत पक्षों में छोड़ देना होता है।

4. एक टोपोलॉजिकल रिक्त स्थान को देखते हुए, हम एक सेपरॉइड को यह कहते हुए परिभाषित कर सकते हैं कि दो उपसमुच्चय एक-दूसरे से अलग हो गए हैं। यदि दो अलग-अलग संवृत समुच्चय उपस्थित हैं। जिनमें वे सम्मिलित हैं (उनमें से प्रत्येक के लिए एक)।

मूलभूत लेम्मा

कुछ यूक्लिडियन अंतरिक्ष में उत्तल समुच्चय के एक फैमली और हाइपरप्लेन द्वारा उनके पृथक्करण के साथ प्रत्येक सेपरॉइड का प्रतिनिधित्व किया जा सकता है।

संदर्भ

  1. Strausz, Ricardo (1 March 2007). "Homomorphisms of separoids". Electronic Notes in Discrete Mathematics. 28: 461–468. doi:10.1016/j.endm.2007.01.064. Zbl 1291.05036.
  2. Strausz, Ricardo (2005). "Separoids and a Tverberg-type problem". Geombinatorics. 15 (2): 79–92. Zbl 1090.52005.
  3. Arocha, Jorge Luis; Bracho, Javier; Montejano, Luis; Oliveros, Deborah; Strausz, Ricardo (2002). "Separoids, their categories and a Hadwiger-type theorem for transversals". Discrete and Computational Geometry. 27 (3): 377–385. doi:10.1007/s00454-001-0075-2.
  4. Nešetřil, Jaroslav; Strausz, Ricardo (2006). "Universality of separoids" (PDF). Archivum Mathematicum (Brno). 42 (1): 85–101.
  5. 5.0 5.1 Montellano-Ballesteros, Juan José; Strausz, Ricardo (July 2006). "A characterization of cocircuit graphs of uniform oriented matroids". Journal of Combinatorial Theory. Series B. 96 (4): 445–454. doi:10.1016/j.jctb.2005.09.008. Zbl 1109.52016.


अग्रिम पठन