विद्युत शक्ति संचरण: Difference between revisions

From Vigyanwiki
No edit summary
 
(44 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{short description|Bulk movement of electrical energy from a generating site to an electrical substation}}
[[File:500kV 3-Phase Transmission Lines.png|thumb|[[:hi:ग्रैंड कौली डैम|ग्रैंड कौली डैम]] में पांच सौ किलोवोल्ट (500 केवी) [[:hi:तीन फेज विद्युत शक्ति|तीन-चरण इलेक्ट्रिक पावर]] ट्रांसमिशन लाइन; चार सर्किट दिखाए गए हैं; दो अतिरिक्त सर्किट दूर दाहिनी ओर पेड़ों द्वारा अस्पष्ट हैं; बांध की संपूर्ण 7079 मेगावाट नेमप्लेट उत्पादन क्षमता इन छह सर्किटों द्वारा समायोजित की जाती है। ]]
'''विद्युत शक्ति संचरण''', विद्युत ऊर्जा का एक उत्पादन स्थल, जैसे कि विद्युत संयंत्र, से विद्युत उपकेंद्र तक की थोक गति है। आपस में जुड़ी हुई लाइनें जो इस संचलन को सुगम बनाती हैं,  संचार प्रसार के रूप में जानी जाती हैं। यह  उच्‍च वोल्टता उपकेंद्रों और ग्राहकों के बीच स्थानीय वायरिंग से अलग है, जिसे विशिष्ट रूप से विद्युत् शक्ति वितरण के रूप में जाना जाता है। संयुक्त संचार और वितरण प्रसार, विद्युत् शक्ति वितरण का हिस्सा है, जिसे विद्युत ग्रिड के रूप में जाना जाता है।


[[File:500kV 3-Phase Transmission Lines.png|thumb|पांच सौ किलोवोल्ट (500 केवी) [[ तीन चरण विद्युत शक्ति ]]  [[ ग्रैंड कौली बांध ]] पर ट्रांसमिशन लाइन; चार सर्किट दिखाए गए हैं; दो अतिरिक्त सर्किट दूर दाहिनी ओर पेड़ों द्वारा अस्पष्ट हैं; बांध की संपूर्ण 7079 मेगावाट नेमप्लेट उत्पादन क्षमता इन छह सर्किटों द्वारा समायोजित की जाती है। ]]
विद्युत शक्ति के प्रभावशाली सुदूर संचरण के लिए उच्च वोल्टेज की आवश्यकता होती है। यह भारी प्रवाह से होने वाले नुकसान को कम करता है।  संचरण लाइन ज्यादातर  उच्च वोल्टता AC [हाई-वोल्टेज एसी (अल्टरनेटिंग धारा)] का उपयोग करती हैं, लेकिन संचरण लाइन का एक महत्वपूर्ण वर्ग उच्च वोल्टेज एकदिश धारा का उपयोग करता है। वोल्टेज स्तर को परिणामित्र के साथ बदल दिया जाता है, संचरण के लिए वोल्टेज को बढ़ाया जाता है, फिर स्थानीय वितरण के लिए वोल्टेज को कम किया जाता है, और फिर ग्राहकों द्वारा उपयोग किया जाता है।
विद्युत शक्ति संचरण विद्युत ऊर्जा का एक उत्पादन स्थल, जैसे कि विद्युत संयंत्र, से विद्युत सबस्टेशन तक की थोक गति है। आपस में जुड़ी हुई लाइनें जो इस संचलन को सुगम बनाती हैं, प्रसार नेटवर्क के रूप में जानी जाती हैं। यह  उच्‍च वोल्टता सबस्टेशनों और ग्राहकों के बीच स्थानीय वायरिंग से अलग है, जिसे आमतौर पर बिजली वितरण के रूप में जाना जाता है। संयुक्त पारेषण और वितरण नेटवर्क बिजली वितरण का हिस्सा है, जिसे विद्युत ग्रिड के रूप में जाना जाता है।


विद्युत शक्ति के कुशल लंबी दूरी के संचरण के लिए उच्च वोल्टेज की आवश्यकता होती है। यह भारी प्रवाह से होने वाले नुकसान को कम करता है।  संचरण लाइन ज्यादातर हाई-वोल्टेज एसी (अल्टरनेटिंग करंट) का उपयोग करती हैं, लेकिन संचरण लाइन का एक महत्वपूर्ण वर्ग उच्च वोल्टेज  एकदिश धारा का उपयोग करता है। वोल्टेज स्तर को परिणामित्र के साथ बदल दिया जाता है, संचरण के लिए वोल्टेज को बढ़ाया जाता है, फिर स्थानीय वितरण के लिए वोल्टेज को कम किया जाता है और फिर ग्राहकों द्वारा उपयोग किया जाता है।
एक विस्तृत क्षेत्र समकालिक ग्रिड, जिसे उत्तरी अमेरिका में " अंतःसंयोजन" के रूप में भी जाना जाता है, कई उपभोक्ताओं को समान सापेक्ष आवृत्ति के साथ AC पावर देने वाले कई जनित्र को सीधे जोड़ता है। उदाहरण के लिए, उत्तरी अमेरिका (पश्चिमी  अंतःसंयोजन, पूर्वी अंतःसंयोजन, क्यूबेक अंतःसंयोजन और टेक्सास अंतःसंयोजन) में चार प्रमुख अंतःसंयोजन हैं। यूरोप में एक बड़ा ग्रिड अधिकांश महाद्वीपीय यूरोप को जोड़ता है।
 
एक विस्तृत क्षेत्र समकालिक ग्रिड, जिसे उत्तरी अमेरिका में " अंतःसंयोजन" के रूप में भी जाना जाता है, कई उपभोक्ताओं को समान सापेक्ष आवृत्ति के साथ एसी पावर देने वाले कई जनरेटर को सीधे जोड़ता है। उदाहरण के लिए, उत्तरी अमेरिका (पश्चिमी  अंतःसंयोजन, पूर्वी अंतःसंयोजन, क्यूबेक अंतःसंयोजन और टेक्सास अंतःसंयोजन) में चार प्रमुख अंतःसंयोजन हैं। यूरोप में एक बड़ा ग्रिड अधिकांश महाद्वीपीय यूरोप को जोड़ता है।


ऐतिहासिक रूप से, पारेषण और वितरण लाइनों का स्वामित्व अक्सर एक ही कंपनी के पास होता था, लेकिन 1990 के दशक से शुरू होकर, कई देशों ने बिजली बाजार के नियमन को इस तरह से उदार बना दिया है जिससे वितरण व्यवसाय से बिजली पारेषण व्यवसाय अलग हो गया है।<ref name=femp01>{{cite journal|url=https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-13906.pdf|title=A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets|publisher=[[United States Department of Energy]] [[Federal Energy Management Program]] (FEMP)|date=May 2002|access-date=October 30, 2018}}</ref>
ऐतिहासिक रूप से, पारेषण और वितरण लाइनों का स्वामित्व अक्सर एक ही कंपनी के पास होता था, लेकिन 1990 के दशक से शुरू होकर, कई देशों ने बिजली बाजार के नियमन को इस तरह से उदार बना दिया है जिससे वितरण व्यवसाय से बिजली पारेषण व्यवसाय अलग हो गया है।<ref name=femp01>{{cite journal|url=https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-13906.pdf|title=A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets|publisher=[[United States Department of Energy]] [[Federal Energy Management Program]] (FEMP)|date=May 2002|access-date=October 30, 2018}}</ref>


== प्रणाली ==
== प्रणाली ==
अधिकांश ट्रांसमिशन लाइनें उच्च वोल्टता थ्री-फेज प्रत्यावर्ति धारा (एसी) हैं, हालांकि सिंगल फेज एसी का इस्तेमाल कभी-कभी रेलवे विद्युतीकरण प्रणालियों में किया जाता है। उच्च वोल्टता एकदिश धारा (एचवीडीसी) तकनीक का उपयोग बहुत लंबी दूरी (आमतौर पर सैकड़ों मील) पर अधिक दक्षता के लिए किया जाता है। एचवीडीसी तकनीक का उपयोग पनडुब्बी बिजली केबलों (आमतौर पर 30 मील (50 किमी) से अधिक) में भी किया जाता है, और ग्रिड के बीच बिजली के आदान-प्रदान में जो पारस्परिक रूप से समकालीन नहीं होते हैं। एचवीडीसी लिंक का उपयोग बड़े बिजली वितरण नेटवर्क को स्थिर करने के लिए किया जाता है जहां अचानक नए लोड, या संजाल के एक हिस्से में तिमिरण, अन्यथा समकालिक समस्याओं और  सोपानी अवसर्पण विफलताओं का परिणाम हो सकता है।
अधिकांश संचरण लाइनें उच्च वोल्टता थ्री-फेज प्रत्यावर्ति धारा (AC) हैं, हालांकि सिंगल फेज AC का इस्तेमाल कभी-कभी रेलवे विद्युतीकरण प्रणालियों में किया जाता है। उच्च वोल्टता एकदिश धारा (HVDC) तकनीक का उपयोग बहुत लंबी दूरी (आमतौर पर सैकड़ों मील) पर अधिक दक्षता के लिए किया जाता है। एचवीडीसी तकनीक का उपयोग पनडुब्बी बिजली केबलों (आमतौर पर 30 मील (50 किमी) से अधिक) में भी किया जाता है, और ग्रिड के बीच बिजली के आदान-प्रदान में जो पारस्परिक रूप से समकालीन नहीं होते हैं। एचवीडीसी लिंक का उपयोग बड़े बिजली वितरण प्रसार को स्थिर करने के लिए किया जाता है जहां अचानक नए लोड, या संजाल के एक हिस्से में तिमिरण, अन्यथा समकालिक समस्याओं और सोपानी अवसर्पण विफलताओं का परिणाम हो सकता है।


[[File:Electricity grid simple- North America.svg|thumb|400px|left|एक विद्युत शक्ति प्रणाली का आरेख; ट्रांसमिशन सिस्टम नीले रंग में है ]]
[[File:Electricity grid simple- North America.svg|thumb|400px|left|एक विद्युत शक्ति प्रणाली का आरेख; पारेषण प्रणाली नीले रंग में है ]]


लंबी दूरी के संचरण में होने वाली ऊर्जा हानि को कम करने के लिए उच्च वोल्टेज पर बिजली का संचार किया जाता है। बिजली आमतौर पर उपरिव्यय पावर लाइनों के माध्यम से प्रेषित होती है। भूमिगत बिजली पारेषण की स्थापना लागत काफी अधिक है और परिचालन सीमाएँ अधिक हैं, लेकिन रखरखाव की लागत कम है। कभी-कभी शहरी क्षेत्रों या पर्यावरण की दृष्टि से संवेदनशील स्थानों में भूमिगत संचरण का उपयोग किया जाता है।
लंबी दूरी के संचरण में होने वाली ऊर्जा हानि को कम करने के लिए उच्च वोल्टेज पर बिजली का संचार किया जाता है। बिजली आमतौर पर उपरिव्यय पावर लाइनों के माध्यम से प्रेषित होती है। भूमिगत बिजली पारेषण की स्थापना लागत काफी अधिक है और परिचालन सीमाएँ अधिक हैं, लेकिन रखरखाव की लागत कम है। कभी-कभी शहरी क्षेत्रों या पर्यावरण की दृष्टि से संवेदनशील स्थानों में भूमिगत संचरण का उपयोग किया जाता है।


प्रेषण व्यवस्था में विद्युत ऊर्जा भंडारण सुविधाओं की कमी एक प्रमुख सीमा की ओर ले जाती है। विद्युत ऊर्जा को उसी दर से उत्पन्न किया जाना चाहिए जिस दर पर इसका उपभोग किया जाता है। यह सुनिश्चित करने के लिए एक परिष्कृत नियंत्रण प्रणाली की आवश्यकता है कि बिजली उत्पादन मांग से बहुत निकटता से मेल खाता होना चाहिए। यदि बिजली की मांग आपूर्ति से अधिक हो जाती है, तो असंतुलन से उत्पादन संयंत्र (संयंत्रों) और पारेषण उपकरण क्षति को रोकने के लिए स्वचालित रूप से पृथक या बंद हो सकते हैं। उदाहरणों में 1965, 1977, 2003 के यूएस नॉर्थईस्ट तिमिरण और 1996 और 2011 में अन्य अमेरिकी क्षेत्रों में प्रमुख तिमिरण शामिल हैं। विद्युत् संचार संजाल क्षेत्रीय, राष्ट्रीय और यहां तक ​​​​कि महाद्वीप के व्यापक संजाल से जुड़े हुए हैं ताकि इस तरह की विफलता के जोखिम को कम किया जा सके। बिजली के प्रवाह के लिए कई अनावश्यक, वैकल्पिक मार्ग ऐसे बंद होने चाहिए। संचार कंपनियां प्रत्येक लाइन की अधिकतम विश्वसनीय क्षमता निर्धारित करती हैं (आमतौर पर इसकी भौतिक या थर्मल सीमा से कम) यह सुनिश्चित करने के लिए कि नेटवर्क के दूसरे हिस्से में विफलता की स्थिति में अतिरिक्त क्षमता उपलब्ध है।
प्रेषण व्यवस्था में विद्युत ऊर्जा भंडारण सुविधाओं की कमी एक प्रमुख सीमा की ओर ले जाती है। विद्युत ऊर्जा को उसी दर से उत्पन्न किया जाना चाहिए जिस दर पर इसका उपभोग किया जाता है। यह सुनिश्चित करने के लिए एक परिष्कृत नियंत्रण प्रणाली की आवश्यकता है कि बिजली उत्पादन मांग से बहुत निकटता से मेल खाता होना चाहिए। यदि बिजली की मांग आपूर्ति से अधिक हो जाती है, तो असंतुलन से उत्पादन संयंत्र (संयंत्रों) और पारेषण उपकरण क्षति को रोकने के लिए ,स्वचालित रूप से पृथक या बंद हो सकते हैं। उदाहरणों में 1965, 1977, 2003 के यूएस नॉर्थईस्ट तिमिरण और 1996 और 2011 में अन्य अमेरिकी क्षेत्रों में प्रमुख तिमिरण शामिल हैं। विद्युत् संचार संजाल क्षेत्रीय, राष्ट्रीय और यहां तक ​​​​कि महाद्वीप के व्यापक संजाल से जुड़े हुए हैं ताकि इस तरह की विफलता के जोखिम को कम किया जा सके। बिजली के प्रवाह के लिए कई अनावश्यक, वैकल्पिक मार्ग ऐसे बंद होने चाहिए। संचार कंपनियां प्रत्येक लाइन की अधिकतम विश्वसनीय क्षमता निर्धारित करती हैं (आमतौर पर इसकी भौतिक या थर्मल सीमा से कम) यह सुनिश्चित करने के लिए कि प्रसार के दूसरे हिस्से में विफलता की स्थिति में अतिरिक्त क्षमता उपलब्ध है।


== उपरिव्यय पारेषण ==
== उपरिव्यय संचरण ==
{{multiple image
{{multiple image
  |direction = vertical
  |direction = vertical
Line 29: Line 27:
  |caption2=A typical [[Aluminium-conductor steel-reinforced cable|ACSR]]. The conductor consists of seven strands of steel surrounded by four layers of aluminium.
  |caption2=A typical [[Aluminium-conductor steel-reinforced cable|ACSR]]. The conductor consists of seven strands of steel surrounded by four layers of aluminium.
}}
}}
[[File:High Voltage Lines in Washington State.tif|thumb|upright=0.75|left|वाशिंगटन राज्य में पांच सौ किलोवोल्ट (500 केवी) तीन चरण ट्रांसमिशन टावर, लाइन "बंडल" 3-तरफा है]]
उच्च वोल्टेज शिरोपरि संवाहक ऊष्मा रोधन द्वारा कवर नहीं किए जाते हैं। संवाहक सामग्री लगभग हमेशा एक एल्यूमीनियम मिश्र धातु होती है, जिसे कई स्ट्रैंड्स में बनाया जाता है और संभवतः स्टील स्ट्रैंड्स के साथ प्रबलित किया जाता है। कॉपर का उपयोग कभी-कभी उपरिव्यय पारेषण के लिए किया जाता था, लेकिन एल्युमीनियम हल्का होता है, केवल प्रदर्शन में मामूली कमी आती है और लागत बहुत कम होती है। शिरोपरि संवाहक दुनिया भर में कई कंपनियों द्वारा आपूर्ति की जाने वाली वस्तु है। बेहतर संवाहक सामग्री और आकार नियमित रूप से बढ़ी हुई क्षमता की अनुमति देने और पारेषण परिपथ को आधुनिक बनाने के लिए उपयोग किए जाते हैं। संवाहक का आकार 12 मिमी2 (#6 अमेरिकी वायर गेज) से लेकर 750 मिमी2 (1,590,000 सर्कुलर मिल क्षेत्र) तक होता है, जिसमें अलग-अलग प्रतिरोध और वर्तमान-वहन क्षमता होती है। बिजली आवृत्ति पर बड़े संवाहक (व्यास में कुछ सेंटीमीटर से अधिक) के लिए, त्वचा के प्रभाव के कारण वर्तमान प्रवाह का अधिकांश भाग सतह के पास केंद्रित होता है। संवाहक का मध्य भाग थोड़ा धारा वहन करता है, लेकिन संवाहक को वजन और लागत में योगदान देता है। इस वर्तमान सीमा के कारण, उच्च क्षमता की आवश्यकता होने पर कई समानांतर केबल (बंडल संवाहक कहा जाता है) का उपयोग किया जाता है। कोरोना डिस्चार्ज के कारण होने वाली ऊर्जा हानि को कम करने के लिए बंडल संवाहक का उपयोग उच्च वोल्टेज पर भी किया जाता है।
आज, पारेषण-स्तर के वोल्टेज को आमतौर पर 110 केवी और उससे अधिक माना जाता है। कम वोल्टेज, जैसे कि 66 केवी और 33 केवी, को आमतौर पर सब-पारेषण वोल्टेज माना जाता है, लेकिन कभी-कभी हल्के भार के साथ लंबी लाइनों पर उपयोग किया जाता है। 33 केवी से कम वोल्टेज आमतौर पर वितरण के लिए उपयोग किया जाता है। 765 kV से ऊपर के वोल्टेज को अतिरिक्त उच्च वोल्टेज माना जाता है और कम वोल्टेज पर उपयोग किए जाने वाले उपकरणों की तुलना में विभिन्न अभिकल्पना की आवश्यकता होती है।
चूंकि उपरिव्यय पारेषण तार इन्सुलेशन के लिए हवा पर निर्भर करते हैं, इसलिए इन लाइनों के अभिकल्पना को सुरक्षा बनाए रखने के लिए न्यूनतम मंजूरी की आवश्यकता होती है। प्रतिकूल मौसम की स्थिति, जैसे तेज हवाएं और कम तापमान, बिजली की कटौती का कारण बन सकते हैं। 23 समुद्री मील (43 किमी/घंटा) जितनी कम हवा की गतिपरिचालकों को परिचालन मंजूरी का अतिक्रमण करने की अनुमति दे सकती है, जिसके परिणामस्वरूप फ्लैशओवर और आपूर्ति का नुकसान होता है।<ref>हैंस डाइटर बेट्ज़, उलरिच शुमान, पियरे लारोचे (2009)। [https://books.google.com/books?id=U6lCL0CIolYC&pg=PA187&lpg=PA187&dq=Spatial+Distribution+and+Frequency+of+Thunderstorms+and+Lightning+in+Australia+wind+gust&source=bl&ots=93Eto3YGGHVH =en&ei=DFkLSt2lKJCdlQeTyPjtCw&sa=X&oi=book_result&ct=result&resnum=3#PPA203,M1 लाइटनिंग: सिद्धांत, उपकरण और अनुप्रयोग।] स्प्रिंगर, पीपी। 202–203। {{ISBN|978-1-4020-9078-3}}. 13 मई 2009 को लिया गया</ref>भौतिक रेखा की दोलन गति को दोलन की आवृत्ति और आयाम के आधार परपरिचालक सरपट या स्पंदन कहा जा सकता है।
[[File:String of Electrical Pylons in Webster, Texas.jpg|250px|thumb|left|वेबस्टर, टेक्सास में तीन बराबर बिजली के तोरण ]]


उच्च वोल्टेज ओवरहेड संवाहक ऊष्मा रोधन द्वारा कवर नहीं किए जाते हैं। संवाहक सामग्री लगभग हमेशा एक एल्यूमीनियम मिश्र धातु होती है, जिसे कई स्ट्रैंड्स में बनाया जाता है और संभवतः स्टील स्ट्रैंड्स के साथ प्रबलित किया जाता है। कॉपर का उपयोग कभी-कभी उपरिव्यय पारेषण के लिए किया जाता था, लेकिन एल्युमीनियम हल्का होता है, केवल प्रदर्शन में मामूली कमी आती है और लागत बहुत कम होती है। ओवरहेड संवाहक दुनिया भर में कई कंपनियों द्वारा आपूर्ति की जाने वाली वस्तु है। बेहतर संवाहक सामग्री और आकार नियमित रूप से बढ़ी हुई क्षमता की अनुमति देने और पारेषण परिपथ को आधुनिक बनाने के लिए उपयोग किए जाते हैं। संवाहक का आकार 12 मिमी2 (#6 अमेरिकी वायर गेज) से लेकर 750 मिमी2 (1,590,000 सर्कुलर मिल क्षेत्र) तक होता है, जिसमें अलग-अलग प्रतिरोध और वर्तमान-वहन क्षमता होती है। बिजली आवृत्ति पर बड़े संवाहक (व्यास में कुछ सेंटीमीटर से अधिक) के लिए, त्वचा के प्रभाव के कारण वर्तमान प्रवाह का अधिकांश भाग सतह के पास केंद्रित होता है। संवाहक का मध्य भाग थोड़ा धारा वहन करता है, लेकिन संवाहक को वजन और लागत में योगदान देता है। इस वर्तमान सीमा के कारण, उच्च क्षमता की आवश्यकता होने पर कई समानांतर केबल (बंडल संवाहक कहा जाता है) का उपयोग किया जाता है। कोरोना डिस्चार्ज के कारण होने वाली ऊर्जा हानि को कम करने के लिए बंडल संवाहक का उपयोग उच्च वोल्टेज पर भी किया जाता है।


आज, पारेषण-स्तर के वोल्टेज को आमतौर पर 110 केवी और उससे अधिक माना जाता है। कम वोल्टेज, जैसे कि 66 केवी और 33 केवी, को आमतौर पर सबट्रांसमिशन वोल्टेज माना जाता है, लेकिन कभी-कभी हल्के भार के साथ लंबी लाइनों पर उपयोग किया जाता है। 33 केवी से कम वोल्टेज आमतौर पर वितरण के लिए उपयोग किया जाता है। 765 kV से ऊपर के वोल्टेज को अतिरिक्त उच्च वोल्टेज माना जाता है और कम वोल्टेज पर उपयोग किए जाने वाले उपकरणों की तुलना में विभिन्न अभिकल्पना की आवश्यकता होती है।


चूंकि उपरिव्यय पारेषण तार इन्सुलेशन के लिए हवा पर निर्भर करते हैं, इसलिए इन लाइनों के अभिकल्पना को सुरक्षा बनाए रखने के लिए न्यूनतम मंजूरी की आवश्यकता होती है। प्रतिकूल मौसम की स्थिति, जैसे तेज हवाएं और कम तापमान, बिजली की कटौती का कारण बन सकते हैं। 23 समुद्री मील (43 किमी/घंटा) जितनी कम हवा की गति कंडक्टरों को परिचालन मंजूरी का अतिक्रमण करने की अनुमति दे सकती है, जिसके परिणामस्वरूप फ्लैशओवर और आपूर्ति का नुकसान होता है।<ref>हैंस डाइटर बेट्ज़, उलरिच शुमान, पियरे लारोचे (2009)। [https://books.google.com/books?id=U6lCL0CIolYC&pg=PA187&lpg=PA187&dq=Spatial+Distribution+and+Frequency+of+Thunderstorms+and+Lightning+in+Australia+wind+gust&source=bl&ots=93Eto3YGGHVH =en&ei=DFkLSt2lKJCdlQeTyPjtCw&sa=X&oi=book_result&ct=result&resnum=3#PPA203,M1 लाइटनिंग: सिद्धांत, उपकरण और अनुप्रयोग।] स्प्रिंगर, पीपी। 202–203। {{ISBN|978-1-4020-9078-3}}. 13 मई 2009 को लिया गया</ref>भौतिक रेखा की दोलन गति को दोलन की आवृत्ति और आयाम के आधार पर कंडक्टर सरपट या स्पंदन कहा जा सकता है।


[[File:String of Electrical Pylons in Webster, Texas.jpg|250px|thumb|left|वेबस्टर, टेक्सास में तीन बराबर बिजली के तोरण ]]


== भूमिगत संचरण ==
== भूमिगत संचरण ==
{{Main|Undergrounding}}
शिरोपरि पावर लाइनों के बजाय भूमिगत विद्युत केबलों द्वारा विद्युत शक्ति का संचार भी किया जा सकता है। अंडरग्राउंड केबल शिरोपरि लाइनों की तुलना में कम अधिकृत रास्ता लेते हैं, कम दृश्यता रखते हैं, और खराब मौसम से कम प्रभावित होते हैं। हालांकि, इन्सुलेटेड केबल और उत्खनन की लागत शिरोपरि निर्माण की तुलना में बहुत अधिक है। दबी हुई पारेषण लाइनों में खराबी का पता लगाने और मरम्मत करने में अधिक समय लगता है।
 
कुछ महानगरीय क्षेत्रों में, भूमिगत संचरण केबल धातु के पाइप से घिरे होते हैं और ढांकता हुआ द्रव (आमतौर पर एक तेल) से अछूता रहता है जो या तो स्थिर होता है या पंपों के माध्यम से परिचालित होता है। यदि कोई विद्युत दोष पाइप को नुकसान पहुंचाता है और आसपास की मिट्टी में एक ढांकता हुआ रिसाव पैदा करता है, तो तरल नाइट्रोजन ट्रकों को पाइप के कुछ हिस्सों को जमने के लिए जुटाया जाता है ताकि क्षतिग्रस्त पाइप स्थान की निकासी और मरम्मत को सक्षम किया जा सके। इस प्रकार की भूमिगत पारेषण केबल मरम्मत की अवधि को बढ़ा सकती है और मरम्मत की लागत बढ़ा सकती है। पाइप और मिट्टी के तापमान की आमतौर पर मरम्मत की अवधि के दौरान लगातार निगरानी की जाती है।<ref>{{cite news|url=https://www.nytimes.com/2001/09/16/us/after-attacks-workers-con-edison-crews-improvise-they-rewire-truncated-system.html|title=AFTER THE ATTACKS: THE WORKERS; Con Edison Crews Improvise as They Rewire a Truncated System|first=Neela|last=Banerjee|date=September 16, 2001|via=NYTimes.com}}</ref><ref>{{cite web|url=http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId={5B2369A6-97FC-4613-AD8B-91E23D41AC05} |title=INVESTIGATION OF THE SEPTEMBER 2013 ELECTRIC OUTAGE OF A PORTION OF METRO-NORTH RAILROAD'S NEW HAVEN LINE |publisher=documents.dps.ny.gov |date=2014 |access-date=2019-12-29}}</ref><ref>एनवाईएसपीएससी केस नं। 13-ई-052</ref>
 
भूमिगत लाइनों को उनकी तापीय क्षमता द्वारा सख्ती से सीमित किया जाता है, जो शिरोपरि लाइनों की तुलना में कम ओवरलोड या री-रेटिंग की अनुमति देता है। लंबे भूमिगत एसी केबल्स में महत्वपूर्ण समाई होती है, जो 50 मील (80 किलोमीटर) से अधिक लोड करने के लिए उपयोगी शक्ति प्रदान करने की उनकी क्षमता को कम कर सकती है। डीसी केबल्स उनकी कैपेसिटेंस द्वारा लंबाई में सीमित नहीं हैं, हालांकि, पारेषण  प्रसार से जुड़े होने से पहले उन्हें डीसी से एसी में कनवर्ट करने के लिए लाइन के दोनों सिरों पर एचवीडीसी कनवर्टर स्टेशनों की आवश्यकता होती है।
 
=='''<big>इतिहास</big>'''==
[[File:New York utility lines in 1890.jpg|thumb|1890 में न्यूयॉर्क शहर की सड़कें। टेलीग्राफ लाइनों के अलावा, विभिन्न वोल्टेज ]] वाणिज्यिक विद्युत शक्ति के शुरुआती दिनों में, प्रकाश और यांत्रिक भार द्वारा उपयोग किए जाने वाले समान वोल्टेज पर विद्युत शक्ति के संचरण ने संयंत्र और उपभोक्ताओं के बीच की दूरी को सीमित कर दिया। 1882 में, उत्पादन प्रत्यक्ष धारा (डीसी) के साथ था, जिसे लंबी दूरी के संचरण के लिए वोल्टेज में आसानी से नहीं बढ़ाया जा सकता था। भार के विभिन्न वर्गों (उदाहरण के लिए, प्रकाश व्यवस्था, फिक्स्ड मोटर्स, और ट्रैक्शन/रेलवे प्रणाली) को अलग-अलग वोल्टेज की आवश्यकता होती है, और इसलिए विभिन्न जनित्र और परिपथ का उपयोग किया जाता है।<ref name="hughes">{{cite book |url=https://books.google.com/books?id=g07Q9M4agp4C&q=westinghouse+%22universal+system%22&pg=PA122|pages=119–122|author=Thomas P. Hughes|title=Networks of Power: Electrification in Western Society, 1880–1930|publisher=Johns Hopkins University Press|location=Baltimore|isbn=0-8018-4614-5 |year=1993|author-link=Thomas P. Hughes}}</ref><ref name="guarnieri 7-1">{{Cite journal|last=Guarnieri|first=M.|year=2013|title=The Beginning of Electric Energy Transmission: Part One|journal=IEEE Industrial Electronics Magazine|volume=7|issue=1|pages=57–60|doi=10.1109/MIE.2012.2236484|s2cid=45909123}}</ref>
 
लाइनों के इस विशेषज्ञता के कारण और क्योंकि कम वोल्टेज वाले उच्च-वर्तमान परिपथ के लिए पारेषण अक्षम था, जनित्र को अपने भार के पास होने की आवश्यकता थी। उस समय, ऐसा लग रहा था कि उद्योग विकसित होगा जिसे अब एक वितरित पीढ़ी प्रणाली के रूप में जाना जाता है जिसमें बड़ी संख्या में छोटे जनित्र उनके भार के पास स्थित होते हैं।<ref name=ncep1>{{cite journal|url=https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/primer.pdf|title=Electricity Transmission: A primer|author=National Council on Electricity Policy|access-date=September 17, 2019}}</ref>


ओवरहेड पावर लाइनों के बजाय  [[ हाई-वोल्टेज केबल |  अंडरग्राउंड पावर केबल्स ]] द्वारा इलेक्ट्रिक पावर को भी ट्रांसमिट किया जा सकता है। अंडरग्राउंड केबल ओवरहेड लाइनों की तुलना में कम राइट-ऑफ़-वे लेते हैं, कम दृश्यता रखते हैं, और खराब मौसम से कम प्रभावित होते हैं। हालांकि, इन्सुलेटेड केबल और उत्खनन की लागत ओवरहेड निर्माण की तुलना में बहुत अधिक है। दबी हुई पारेषण लाइनों में खराबी का पता लगाने और मरम्मत करने में अधिक समय लगता है।
1881 में लुसिएन गॉलार्ड और जॉन डिक्सन गिब्स द्वारा निर्मित एक प्रारंभिक परिवर्तक, 1:1 टर्न अनुपात और खुले चुंबकीय परिपथ के साथ प्रदान किया गया एक प्रारंभिक परिवर्तक के निर्माण के बाद बारी-बारी से चालू (एसी) के साथ विद्युत शक्ति का संचरण संभव हो गया था।


कुछ महानगरीय क्षेत्रों में, भूमिगत संचरण केबल धातु के पाइप से घिरे होते हैं और ढांकता हुआ द्रव (आमतौर पर एक तेल) से अछूता रहता है जो या तो स्थिर होता है या पंपों के माध्यम से परिचालित होता है। यदि कोई विद्युत दोष पाइप को नुकसान पहुंचाता है और आसपास की मिट्टी में एक ढांकता हुआ रिसाव पैदा करता है, तो तरल नाइट्रोजन ट्रकों को पाइप के कुछ हिस्सों को जमने के लिए जुटाया जाता है ताकि क्षतिग्रस्त पाइप स्थान की निकासी और मरम्मत को सक्षम किया जा सके। इस प्रकार की भूमिगत ट्रांसमिशन केबल मरम्मत की अवधि को बढ़ा सकती है और मरम्मत की लागत बढ़ा सकती है। पाइप और मिट्टी के तापमान की आमतौर पर मरम्मत की अवधि के दौरान लगातार निगरानी की जाती है<ref>{{cite news|url=https://www.nytimes.com/2001/09/16/us/after-attacks-workers-con-edison-crews-improvise-they-rewire-truncated-system.html|title=AFTER THE ATTACKS: THE WORKERS; Con Edison Crews Improvise as They Rewire a Truncated System|first=Neela|last=Banerjee|date=September 16, 2001|via=NYTimes.com}}</ref><ref>{{cite web|url=http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId={5B2369A6-97FC-4613-AD8B-91E23D41AC05} |title=INVESTIGATION OF THE SEPTEMBER 2013 ELECTRIC OUTAGE OF A PORTION OF METRO-NORTH RAILROAD'S NEW HAVEN LINE |publisher=documents.dps.ny.gov |date=2014 |access-date=2019-12-29}}</ref><ref>एनवाईएसपीएससी केस नं। 13-ई-052</ref>
पहली लंबी दूरी की एसी लाइन 34 किलोमीटर (21 मील) लंबी थी, जिसे 1884 में ट्यूरिन, इटली में बिजली की अंतर्राष्ट्रीय प्रदर्शनी के लिए बनाया गया था। यह 2 केवी, 130 हर्ट्ज सीमेंस और हल्सके अल्टरनेटर द्वारा संचालित था और श्रृंखला में जुड़े उनके प्राथमिक वाइंडिंग के साथ कई गौलार्ड "माध्यमिक जनित्र" ( परिवर्तक) को चित्रित किया, जो गरमागरम लैंप को खिलाते थे। प्रणाली ने लंबी दूरी पर एसी इलेक्ट्रिक शक्ति संचरण की व्यवहार्यता साबित की थी।<ref name="guarnieri 7-1"/>


भूमिगत लाइनें उनकी तापीय क्षमता द्वारा सख्ती से सीमित हैं, जो ओवरहेड लाइनों की तुलना में कम ओवरलोड या री-रेटिंग की अनुमति देती हैं। लंबे भूमिगत एसी केबल्स में महत्वपूर्ण  [[ कैपेसिटेंस ]] है, जो लोड करने के लिए उपयोगी शक्ति प्रदान करने की उनकी क्षमता को कम कर सकता है {{convert|50|mi|abbr=off}}. डीसी केबल्स उनकी कैपेसिटेंस द्वारा लंबाई में सीमित नहीं हैं, हालांकि, ट्रांसमिशन नेटवर्क से जुड़े होने से पहले उन्हें डीसी से एसी में कनवर्ट करने के लिए लाइन के दोनों सिरों पर  [[ एचवीडीसी कनवर्टर स्टेशन ]] एस की आवश्यकता होती है।
संचालित करने वाली पहली एसी वितरण प्रणाली 1885 में सार्वजनिक प्रकाश व्यवस्था के लिए रोम, इटली के वाया देई सेर्ची में सेवा में थी। इसे दो सीमेंस और हल्सके अल्टरनेटर द्वारा संचालित किया गया था, 30 एचपी (22 किलोवाट), 2 केवी 120 हर्ट्ज पर और 19 किमी केबल और 200 समानांतर-जुड़े 2 केवी से 20 वी स्टेप-डाउन परिवर्तक का उपयोग किया गया था, जो एक बंद चुंबकीयपरिपथ के साथ प्रदान किया गया था, कुछ महीने बाद इसके बाद पहला ब्रिटिश एसी प्रणाली आया, जिसे लंदन के ग्रोसवेनर गैलरी में सेवा में लगाया गया था। इसमें सीमेंस अल्टरनेटर और 2.4 केवी से 100 वी अपचायी परिणामित्र - प्रति उपयोगकर्ता एक - शंट-कनेक्टेड प्राइमरी के साथ शामिल हैं।
<ref name="guarnieri 7-2">{{Cite journal|last=Guarnieri|first=M.|year=2013|title=The Beginning of Electric Energy Transmission: Part Two|journal=IEEE Industrial Electronics Magazine|volume=7|issue=2|pages=52–59|doi=10.1109/MIE.2013.2256297|s2cid=42790906}}</ref>


== इतिहास ==
[[File:William-Stanley jr.jpg|thumbnail|left|Working for Westinghouse, William Stanley Jr. spent his time recovering from illness in Great Barrington installing what is considered the world's first practical AC transformer system.]]
{{Main|History of electric power transmission}}
[[File:New York utility lines in 1890.jpg|thumb|1890 में न्यूयॉर्क शहर की सड़कें। टेलीग्राफ लाइनों के अलावा, विभिन्न वोल्टेज ]] की आवश्यकता वाले प्रत्येक वर्ग के उपकरण के लिए कई विद्युत लाइनों की आवश्यकता थी


वाणिज्यिक विद्युत शक्ति के प्रारंभिक दिनों में, प्रकाश और यांत्रिक भार द्वारा उपयोग किए जाने वाले समान वोल्टेज पर विद्युत शक्ति के संचरण ने संयंत्र और उपभोक्ताओं के बीच की दूरी को सीमित कर दिया। 1882 में,  [[ डायरेक्ट करंट ]] (डीसी) के साथ पीढ़ी थी, जिसे लंबी दूरी के संचरण के लिए वोल्टेज में आसानी से नहीं बढ़ाया जा सकता था। भार के विभिन्न वर्गों (उदाहरण के लिए, प्रकाश व्यवस्था, फिक्स्ड मोटर्स, और ट्रैक्शन/रेलवे सिस्टम) को अलग-अलग वोल्टेज की आवश्यकता होती है, और इसलिए विभिन्न जनरेटर और सर्किट का उपयोग किया जाता है<ref name=hughes>{{cite book |url=https://books.google.com/books?id=g07Q9M4agp4C&q=westinghouse+%22universal+system%22&pg=PA122|pages=119–122|author=Thomas P. Hughes|title=Networks of Power: Electrification in Western Society, 1880–1930|publisher=Johns Hopkins University Press|location=Baltimore|isbn=0-8018-4614-5 |year=1993|author-link=Thomas P. Hughes}}</ref><ref name="guarnieri 7-1">{{Cite journal|last=Guarnieri|first=M.|year=2013|title=The Beginning of Electric Energy Transmission: Part One|journal=IEEE Industrial Electronics Magazine|volume=7|issue=1|pages=57–60|doi=10.1109/MIE.2012.2236484|s2cid=45909123}}</ref>


लाइनों के इस विशेषज्ञता के कारण और क्योंकि कम वोल्टेज वाले उच्च-वर्तमान सर्किट के लिए संचरण अक्षम था, जनरेटर को अपने भार के पास होने की आवश्यकता थी। उस समय, ऐसा लग रहा था कि उद्योग विकसित होगा जिसे अब  [[ वितरित पीढ़ी ]] प्रणाली के रूप में जाना जाता है, जिसमें बड़ी संख्या में छोटे जनरेटर उनके भार के पास स्थित होते हैं।<ref name=ncep1>{{cite journal|url=https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/primer.pdf|title=Electricity Transmission: A primer|author=National Council on Electricity Policy|access-date=September 17, 2019}}</ref>
जिसे उन्होंने अव्यवहारिक गॉलार्ड-गिब्स अभिकल्पना माना था, उससे काम करते हुए, इलेक्ट्रिकल इंजीनियर विलियम स्टेनली, जूनियर ने 1885 में पहली व्यावहारिक श्रृंखला एसी परिवर्तक माना जाता है।<ref name="edisontechcenter.org">{{cite web|url=http://edisontechcenter.org/GreatBarrington.html|title=Great Barrington Experiment|website=edisontechcenter.org}}</ref>जॉर्ज वेस्टिंगहाउस के समर्थन से काम करते हुए, 1886 में उन्होंने ग्रेट बैरिंगटन, मैसाचुसेट्स में एक परिवर्तक आधारित  प्रत्यावर्ति धारा लाइटिंग प्रणाली का प्रदर्शन किया। 500 वी सीमेंस जनित्र द्वारा संचालित एक भाप इंजन द्वारा संचालित, 4,000 फीट (1,200 मीटर) से बहुत कम बिजली के नुकसान के साथ मुख्य सड़क के साथ 23 व्यवसायों में गरमागरम लैंप को बिजली देने के लिए नए स्टेनली परिवर्तक का उपयोग करके वोल्टेज को 100 वोल्ट तक नीचे ले जाया गया था।<ref>{{cite web|url=https://ethw.org/William_Stanley|title=William Stanley - Engineering and Technology History Wiki|website=ethw.org}}</ref> परिवर्तक और वैकल्पिक वर्तमान प्रकाश व्यवस्था के इस व्यावहारिक प्रदर्शन ने वेस्टिंगहाउस को उस वर्ष के अंत में एसी आधारित प्रणाली स्थापित करना शुरू कर दिया था।<ref name="edisontechcenter.org" />


[[ प्रत्यावर्ती धारा ]] (एसी) के साथ विद्युत शक्ति का संचरण  [[ लुसिएन गॉलार्ड ]] और  [[ जॉन डिक्सन गिब्स ]] के निर्माण के बाद संभव हो गया, जिसे उन्होंने द्वितीयक जनरेटर कहा, एक प्रारंभिक ट्रांसफार्मर जो 1:1 टर्न अनुपात और खुले चुंबकीय सर्किट के साथ प्रदान किया गया था। 1881.
1888 में एक कार्यात्मक एसी मोटर के लिए अभिकल्पना देखे गए, कुछ ऐसा जो इन प्रणालियों में तब तक नहीं था। ये पॉलीपेज़ धारा पर चलने वाले इंडक्शन मोटर्स थे, जिनका आविष्कार गैलीलियो फेरारिस और निकोला टेस्ला द्वारा स्वतंत्र रूप से किया गया था (यूएस में वेस्टिंगहाउस द्वारा लाइसेंस प्राप्त टेस्ला के अभिकल्पना के साथ)। इस अभिकल्पना को आगे मिखाइल डोलिवो-डोब्रोवोल्स्की और चार्ल्स यूजीन लैंसलॉट ब्राउन द्वारा आधुनिक व्यावहारिक तीन-चरण रूप में विकसित किया गया था।<ref name="books.google.com"> [[ Arnold Heertje ]] , Mark Perlman [https://books.google.com/books?id=qQMOPjUgWHsC&pg=PA138&lpg=PA138&dq=tesla+motors+sparked+induction+motor&source=bl&ots=d0d_SjX8YX&sig=sA8LhTkGdQtgByBPD_ZDalCBwQA&hl=en&sa=X&ei=XoVSUPnfJo7A9gSwiICYCQ&ved= 0CEYQ6AEwBA#v=onepage&q=tesla%20motors%20sparked%20induction%20motor&f=false Evolving Technology and Market structure: Shumpeterian Economics में अध्ययन], पृष्ठ 13</ref> विकास की समस्याओं और उन्हें बिजली देने के लिए आवश्यक पॉली-फेज पावर प्रणाली की कमी से इस प्रकार के मोटर्स के व्यावहारिक उपयोग में कई वर्षों की देरी होती है।<ref>कार्लसन, डब्ल्यू बर्नार्ड (2013)। टेस्ला: विद्युत युग के आविष्कारक। प्रिंसटन यूनिवर्सिटी प्रेस. {{ISBN|1-4008-4655-2}}, पृष्ठ 13</ref><ref>जोन्स, जिल (2004)। एम्पायर ऑफ लाइट: एडिसन, टेस्ला, वेस्टिंगहाउस, और रेस टू इलेक्ट्रिफाई द वर्ल्ड। रैंडम हाउस ट्रेड पेपरबैक। {{ISBN|978-0-375-75884-3}}, पृष्ठ 161</ref>


पहली लंबी दूरी की एसी लाइन थी {{convert|34|km|abbr=off}} लंबा, [[ ट्यूरिन, इटली ]] की 1884 अंतर्राष्ट्रीय प्रदर्शनी के लिए बनाया गया। यह एक 2 kV, 130 Hz  [[ Siemens & Halske ]] अल्टरनेटर द्वारा संचालित था और इसमें कई गॉलार्ड सेकेंडरी जेनरेटर (ट्रांसफॉर्मर) शामिल थे, जिनकी श्रृंखला में जुड़े प्राथमिक वाइंडिंग थे, जो गरमागरम लैंप को खिलाते थे। प्रणाली ने लंबी दूरी पर एसी इलेक्ट्रिक पावर ट्रांसमिशन की व्यवहार्यता साबित की<ref name="guarnieri 7-1"/>
1880 के दशक के अंत और 1890 के दशक की शुरुआत में छोटी इलेक्ट्रिक कंपनियों का वित्तीय विलय यूरोप में गैंज़ और एईजी और यूएस में जनरल इलेक्ट्रिक और वेस्टिंगहाउस इलेक्ट्रिक जैसे कुछ बड़े निगमों में होता है। इन कंपनियों ने एसी प्रणाली विकसित करना जारी रखा लेकिन प्रत्यक्ष और वैकल्पिक मौजूदा प्रणाली के बीच तकनीकी अंतर एक लंबे समय तक तकनीकी विलय का पालन करता है।<ref name="Thomas Parke Hughes 1930, pages 120-121"/>अमेरिका और यूरोप में नवाचार के कारण, लंबी दूरी के संचरण के माध्यम से लोड से जुड़े बहुत बड़े उत्पादन संयंत्रों के साथ पैमाने की वर्तमान अर्थव्यवस्था को धीरे-धीरे आपूर्ति की जाने वाली सभी मौजूदा प्रणालियों के साथ जोड़ने की क्षमता के साथ जोड़ा जा रहा था। इनमें सिंगल फेज एसी प्रणाली, पॉली-फेज एसी प्रणाली, लो वोल्टेज तापदीप्त  प्रकाश, हाई वोल्टेज आर्क लाइटिंग और कारखानों और स्ट्रीट कारों में मौजूदा डीसी मोटर्स शामिल हैं।जो एक सार्वभौमिक प्रणाली बन रही थी, इन तकनीकी अंतरों को अस्थायी रूप से रोटरी कन्वर्टर्स और मोटर-जनित्र के विकास के माध्यम से पाटा जा रहा था जो बड़ी संख्या में विरासत प्रणालियों को एसी ग्रिड से जोड़ने की अनुमति देता है। <ref name="Thomas Parke Hughes 1930, pages 120-121">{{उद्धरण पुस्तक |  प्रथम = थॉमस |  अंतिम = पार्के ह्यूजेस |  शीर्षक = नेटवर्क ऑफ पावर: पश्चिमी समाज में विद्युतीकरण, 1880-1930|  प्रकाशक=जेएचयू प्रेस |  वर्ष=1993 |  पृष्ठ=120-121}</ref><ref name="Raghu Garud 2009, page 249">{{cite book|first1=Raghu|last1=Garud|first2=Arun|last2=Kumaraswamy|first3= Richard|last3= Langlois|title= Managing in the Modular Age: Architectures, Networks, and Organizations|url=https://archive.org/details/managingmodulara00garu|url-access=limited|publisher= John Wiley & Sons |year=2009| page=[https://archive.org/details/managingmodulara00garu/page/n256 249]|isbn=9781405141949}}</ref>इन स्थानपन्न को धीरे-धीरे बदल दिया जाएगा क्योंकि पुराने प्रणाली सेवानिवृत्त या अपग्रेड किए गए थे।


संचालित करने वाली पहली एसी वितरण प्रणाली सार्वजनिक प्रकाश व्यवस्था के लिए 1885 में वाया देई सेर्ची,  [[ रोम, इटली ]] में सेवा में थी। इसे दो सीमेंस और हल्सके अल्टरनेटर द्वारा संचालित किया गया था, 30 एचपी (22 किलोवाट), 2 केवी 120 हर्ट्ज पर और 19 किमी केबल और 200 समानांतर-जुड़े 2 केवी से 20 वी स्टेप-डाउन ट्रांसफार्मर का उपयोग किया गया था, जो एक बंद चुंबकीय सर्किट के साथ प्रदान किया गया था, एक प्रत्येक दीपक के लिए। कुछ महीने बाद इसके बाद पहला ब्रिटिश एसी सिस्टम आया, जिसे  [[ ग्रोसवेनर गैलरी ]], लंदन में सेवा में लगाया गया था। इसमें सीमेंस अल्टरनेटर और 2.4 kV से 100 V स्टेप-डाउन ट्रांसफॉर्मर - प्रति उपयोगकर्ता एक - शंट-कनेक्टेड प्राइमरी के साथ शामिल हैं<ref name="guarnieri 7-2">{{Cite journal|last=Guarnieri|first=M.|year=2013|title=The Beginning of Electric Energy Transmission: Part Two|journal=IEEE Industrial Electronics Magazine|volume=7|issue=2|pages=52–59|doi=10.1109/MIE.2013.2256297|s2cid=42790906}}</ref>
उच्च वोल्टेज का उपयोग करते हुए एकल-चरण प्रत्यावर्ती धारा का पहला संचरण 1890 में ओरेगन में हुआ था जब विलमेट फॉल्स में एक जलविद्युत संयंत्र से 14 मील (23 किमी) डाउनरिवर शहर में बिजली पहुंचाई गई थी। उच्च वोल्टेज का उपयोग करने वाला पहला तीन-चरण प्रत्यावर्ती धारा 1891 में फ्रैंकफर्ट में अंतर्राष्ट्रीय बिजली प्रदर्शनी के दौरान हुआ था। एक 15 केवी पारेषण लाइन, लगभग 175 किमी लंबी, नेकर और फ्रैंकफर्ट पर लॉफेन से जुड़ी हुई है। <ref name="guarnieri 7-2" /><ref>किसलिंग एफ, नेफ्जर पी, नोलास्को जेएफ, केंटज़ीक यू। (2003)। ''ओवरहेड बिजली लाइनें''। स्प्रिंगर, बर्लिन, हीडलबर्ग, न्यूयॉर्क, पृ.</ref>


[[File:William-Stanley jr.jpg|थंबनेल |  छोड़ दिया |  वेस्टिंगहाउस के लिए काम करते हुए, विलियम स्टेनली जूनियर ने अपना समय ग्रेट बैरिंगटन में बीमारी से उबरने में बिताया, जिसे दुनिया का पहला व्यावहारिक एसी ट्रांसफॉर्मर सिस्टम माना जाता है। ]]
20वीं सदी के दौरान विद्युत शक्ति संचरण के लिए उपयोग किए जाने वाले वोल्टेज में वृद्धि हुई। 1914 तक, 70 केवी से अधिक पर काम कर रहे पचास पारेषण प्रणाली सेवा में थे। तब इस्तेमाल किया जाने वाला उच्चतम वोल्टेज 150 केवी था।<ref>ह्यूजेस में पुनर्मुद्रित जनगणना डेटा ब्यूरो, पीपी 282–28</ref>ई उत्पादन संयंत्रों को एक विस्तृत क्षेत्र में आपस में जोड़ने की अनुमति देकर, बिजली उत्पादन लागत कम हो गई थी। दिन के दौरान अलग-अलग भार की आपूर्ति के लिए सबसे कुशल उपलब्ध संयंत्रों का उपयोग किया जा सकता है। विश्वसनीयता में सुधार हुआ और पूंजी निवेश लागत कम हो गई, क्योंकि उद्यत उत्पादन क्षमता को कई और ग्राहकों और व्यापक भौगोलिक क्षेत्र में साझा किया जा सकता था।ऊर्जा के दूरस्थ और कम लागत वाले स्रोत, जैसे कि जलविद्युत शक्ति या माइन-माउथ कोयला, का उपयोग ऊर्जा उत्पादन लागत को कम करने के लिए किया जा सकता है।<ref name="hughes" /><ref name="guarnieri 7-2"/>
वह क्या c . से काम कर रहा हैएक अव्यवहारिक गॉलार्ड-गिब्स डिजाइन पर विचार किया, इलेक्ट्रिकल इंजीनियर  [[ विलियम स्टेनली, जूनियर ]] ने विकसित किया जिसे 1885 में पहली व्यावहारिक श्रृंखला एसी ट्रांसफार्मर माना जाता है।<ref name="edisontechcenter.org">{{cite web|url=http://edisontechcenter.org/GreatBarrington.html|title=Great Barrington Experiment|website=edisontechcenter.org}}</ref> [[ जॉर्ज वेस्टिंगहाउस ]] के समर्थन से काम करते हुए, 1886 में उन्होंने  [[ ग्रेट बैरिंगटन, मैसाचुसेट्स ]] में एक ट्रांसफॉर्मर आधारित अल्टरनेटिंग करंट लाइटिंग सिस्टम का प्रदर्शन किया। स्टीम इंजन द्वारा संचालित 500 वी सीमेंस जनरेटर द्वारा संचालित, मुख्य सड़क के साथ 23 व्यवसायों में गरमागरम लैंप को बिजली देने के लिए नए स्टेनली ट्रांसफार्मर का उपयोग करके वोल्टेज को 100 वोल्ट तक कम कर दिया गया था, जिसमें बहुत कम बिजली की हानि हुई थी {{convert|4000|ft|m}}<ref>{{cite web|url=https://ethw.org/William_Stanley|title=William Stanley - Engineering and Technology History Wiki|website=ethw.org}}</ref> एक ट्रांसफॉर्मर और वैकल्पिक चालू प्रकाश व्यवस्था के इस व्यावहारिक प्रदर्शन से वेस्टिंगहाउस उस वर्ष के अंत में एसी आधारित सिस्टम स्थापित करना शुरू कर देगा<ref name="edisontechcenter.org"/>


1888 में एक कार्यात्मक  [[ एसी मोटर ]] के लिए डिज़ाइन देखे गए, कुछ ऐसा जो इन प्रणालियों में तब तक नहीं था। ये [[ इंडक्शन मोटर ]] एस थे जो  [[ पॉलीफ़ेज़ सिस्टम |  पॉलीफ़ेज़ ]] करंट पर चल रहे थे, स्वतंत्र रूप से  [[ गैलीलियो फेरारीस ]] और  [[ निकोला टेस्ला ]] द्वारा आविष्कार किया गया था (टेस्ला के डिजाइन को यूएस में वेस्टिंगहाउस द्वारा लाइसेंस दिया गया था)। इस डिजाइन को आगे  [[ मिखाइल डोलिवो-डोब्रोवोल्स्की ]] और  [[ चार्ल्स यूजीन लैंसलॉट ब्राउन ]] द्वारा आधुनिक व्यावहारिक  [[ तीन-चरण विद्युत शक्ति |  तीन-चरण ]] रूप में विकसित किया गया था।<ref name="books.google.com"> [[ Arnold Heertje ]] , Mark Perlman [https://books.google.com/books?id=qQMOPjUgWHsC&pg=PA138&lpg=PA138&dq=tesla+motors+sparked+induction+motor&source=bl&ots=d0d_SjX8YX&sig=sA8LhTkGdQtgByBPD_ZDalCBwQA&hl=en&sa=X&ei=XoVSUPnfJo7A9gSwiICYCQ&ved= 0CEYQ6AEwBA#v=onepage&q=tesla%20motors%20sparked%20induction%20motor&f=false Evolving Technology and Market structure: Shumpeterian Economics में अध्ययन], पृष्ठ 13</ref> इस प्रकार के मोटर्स के व्यावहारिक उपयोग में विकास की समस्याओं और उन्हें बिजली देने के लिए आवश्यक पॉली-फेज पावर सिस्टम की कमी के कारण कई वर्षों की देरी होगी।<ref>कार्लसन, डब्ल्यू बर्नार्ड (2013)। टेस्ला: विद्युत युग के आविष्कारक। प्रिंसटन यूनिवर्सिटी प्रेस. {{ISBN|1-4008-4655-2}}, पृष्ठ 13</ref><ref>जोन्स, जिल (2004)। एम्पायर ऑफ लाइट: एडिसन, टेस्ला, वेस्टिंगहाउस, और रेस टू इलेक्ट्रिफाई द वर्ल्ड। रैंडम हाउस ट्रेड पेपरबैक। {{ISBN|978-0-375-75884-3}}, पृष्ठ 161</ref>
20वीं सदी में तीव्र औद्योगीकरण ने अधिकांश औद्योगिक देशों में विद्युत पारेषण लाइनों और ग्रिडों को महत्वपूर्ण बुनियादी ढाँचा बना दिया। स्थानीय उत्पादन संयंत्रों और छोटे वितरण प्रसारों का अंतर्संबंध प्रथम विश्व युद्ध की आवश्यकताओं से प्रेरित था, जिसमें बड़े विद्युत उत्पादन संयंत्र सरकारों द्वारा युद्धपोतों के कारखानों को शक्ति प्रदान करने के लिए बनाए गए थे। बाद में इन उत्पादन संयंत्रों को लंबी दूरी के संचरण के माध्यम से नागरिक भार की आपूर्ति के लिए जोड़ा गया था।<ref>ह्यूजेस, पीपी. 293-29</ref>


1880 के दशक के अंत और 1890 की शुरुआत में छोटी इलेक्ट्रिक कंपनियों का वित्तीय विलय कुछ बड़े निगमों में होगा जैसे कि  [[ गैंज़ वर्क्स |  गैंज़ ]] और  [[ एईजी ]] यूरोप में और  [[ जनरल इलेक्ट्रिक ]] और  [[ वेस्टिंगहाउस इलेक्ट्रिक (1886) |  वेस्टिंगहाउस इलेक्ट्रिक ]] अमेरिका में। इन कंपनियों ने एसी सिस्टम विकसित करना जारी रखा लेकिन प्रत्यक्ष और वैकल्पिक मौजूदा सिस्टम के बीच तकनीकी अंतर एक लंबे समय तक तकनीकी विलय का पालन करेगा<ref name="Thomas Parke Hughes 1930, pages 120-121"/> अमेरिका और यूरोप में नवाचार के कारण, लंबी दूरी के संचरण के माध्यम से लोड से जुड़े बहुत बड़े उत्पादन संयंत्रों के साथ पैमाने की वर्तमान अर्थव्यवस्था को धीरे-धीरे आपूर्ति की जाने वाली सभी मौजूदा प्रणालियों के साथ जोड़ने की क्षमता के साथ जोड़ा जा रहा था। इनमें सिंगल फेज एसी सिस्टम, पॉली-फेज एसी सिस्टम, लो वोल्टेज इनकैंडेसेंट लाइटिंग, हाई वोल्टेज आर्क लाइटिंग और कारखानों और स्ट्रीट कारों में मौजूदा डीसी मोटर्स शामिल हैं। जो 'सार्वभौमिक प्रणाली' बन रहा था, इन तकनीकी अंतरों को अस्थायी रूप से  [[ रोटरी कनवर्टर ]] एस और  [[ मोटर-जनरेटर ]] एस के विकास के माध्यम से पाटा जा रहा था जो बड़ी संख्या में विरासत प्रणालियों को एसी से कनेक्ट करने की अनुमति देगा। जाल<ref name="Thomas Parke Hughes 1930, pages 120-121">{{उद्धरण पुस्तक |  प्रथम = थॉमस |  अंतिम = पार्के ह्यूजेस |  शीर्षक = नेटवर्क ऑफ पावर: पश्चिमी समाज में विद्युतीकरण, 1880-1930|  प्रकाशक=जेएचयू प्रेस |  वर्ष=1993 |  पृष्ठ=120-121}</ref><ref name="Raghu Garud 2009, page 249">{{cite book|first1=Raghu|last1=Garud|first2=Arun|last2=Kumaraswamy|first3= Richard|last3= Langlois|title= Managing in the Modular Age: Architectures, Networks, and Organizations|url=https://archive.org/details/managingmodulara00garu|url-access=limited|publisher= John Wiley & Sons |year=2009| page=[https://archive.org/details/managingmodulara00garu/page/n256 249]|isbn=9781405141949}}</ref> इन स्टॉपगैप को धीरे-धीरे बदल दिया जाएगा क्योंकि पुराने सिस्टम सेवानिवृत्त या अपग्रेड किए गए थे।


[[File:Tesla polyphase AC 500hp generator at 1893 exposition.jpg|thumb|right|वेस्टिंगहाउस बारी-बारी से चालू  [[ पॉलीफ़ेज़ सिस्टम |  पॉलीफ़ेज़ ]] जनरेटर 1893  [[ विश्व के कोलंबियाई प्रदर्शनी |  शिकागो में विश्व मेले में प्रदर्शित किया गया, जो उनके टेस्ला पॉली-फ़ेज़ सिस्टम का हिस्सा है। इस तरह के पॉलीफ़ेज़ नवाचारों ने ट्रांसमिशन ]] . में क्रांति ला दी


उच्च वोल्टेज का उपयोग करते हुए एकल-चरण प्रत्यावर्ती धारा का पहला संचरण 1890 में ओरेगन में हुआ था जब विलमेट फॉल्स में एक जलविद्युत संयंत्र से पोर्टलैंड शहर में बिजली पहुंचाई गई थी। {{convert|14|mi|km}} डाउनरिवर<ref>{{Cite journal|last=Argersinger|first=R.E.|date=1915|title=Electric Transmission of Power|journal=General Electric Review|volume=XVIII|page=454}}</ref> उच्च वोल्टेज का उपयोग करने वाला पहला तीन-चरण प्रत्यावर्ती धारा 1891 में  [[ अंतर्राष्ट्रीय इलेक्ट्रो-तकनीकी प्रदर्शनी के दौरान हुआ -  [[ फ्रैंकफर्ट ]] में 1891 |  अंतर्राष्ट्रीय बिजली प्रदर्शनी ]]। एक 15 केवी ट्रांसमिशन लाइन, लगभग 175 किमी लंबी, नेकर ]] और फ्रैंकफर्ट पर  [[ लॉफ़ेन, बाडेन-वुर्टेमबर्ग |  लॉफ़ेन से जुड़ी<ref name="guarnieri 7-2"/><ref>किसलिंग एफ, नेफ्जर पी, नोलास्को जेएफ, केंटज़ीक यू। (2003)। ''ओवरहेड बिजली लाइनें''। स्प्रिंगर, बर्लिन, हीडलबर्ग, न्यूयॉर्क, पृ.</ref>


20वीं सदी के दौरान विद्युत शक्ति संचरण के लिए उपयोग किए जाने वाले वोल्टेज में वृद्धि हुई। 1914 तक, 70 केवी से अधिक पर काम कर रहे पचास ट्रांसमिशन सिस्टम सेवा में थे। तब इस्तेमाल किया गया उच्चतम वोल्टेज 150 kV . था<ref>ह्यूजेस में पुनर्मुद्रित जनगणना डेटा ब्यूरो, पीपी 282–28</ref>
कई उत्पादन संयंत्रों को एक विस्तृत क्षेत्र में आपस में जोड़ने की अनुमति देकर, बिजली उत्पादन लागत कम हो गई थी। दिन के दौरान अलग-अलग भार की आपूर्ति के लिए सबसे कुशल उपलब्ध संयंत्रों का उपयोग किया जा सकता है। विश्वसनीयता में सुधार हुआ और पूंजी निवेश लागत कम हो गई, क्योंकि स्टैंड-बाय उत्पादन क्षमता कई और ग्राहकों और व्यापक भौगोलिक क्षेत्र में साझा की जा सकती थी। ऊर्जा के दूरस्थ और कम लागत वाले स्रोत, जैसे  [[ हाइड्रोइलेक्ट्रिकिटी |  हाइड्रोइलेक्ट्रिक ]] पावर या माइन-माउथ कोयला, का उपयोग ऊर्जा उत्पादन लागत को कम करने के लिए किया जा सकता है।<ref name="hughes" /><ref name="guarnieri 7-2"/>


20वीं सदी में तीव्र औद्योगीकरण ने अधिकांश औद्योगिक देशों में विद्युत पारेषण लाइनें और ग्रिड  [[ महत्वपूर्ण बुनियादी ढांचे ]] आइटम बनाए।  [[ विश्व युद्ध I ]] की आवश्यकताओं के कारण स्थानीय पीढ़ी के संयंत्रों और छोटे वितरण नेटवर्क का अंतर्संबंध, सरकारों द्वारा निर्मित बड़े विद्युत उत्पादन संयंत्रों के साथ युद्ध कारखानों को बिजली प्रदान करने के लिए प्रेरित किया गया था। बाद में इन उत्पादन संयंत्रों को लंबी दूरी के संचरण के माध्यम से नागरिक भार की आपूर्ति के लिए जोड़ा गया<ref>ह्यूजेस, पीपी. 293-29</ref>{{clear left}}


== बल्क पावर ट्रांसमिशन ==
[[File:Transmissionsubstation.jpg|thumb|एक  [[ विद्युत सबस्टेशन |  ट्रांसमिशन सबस्टेशन ]] आने वाली बिजली के वोल्टेज को कम करता है, जिससे यह लंबी दूरी के उच्च वोल्टेज ट्रांसमिशन से स्थानीय कम वोल्टेज वितरण से जुड़ने की अनुमति देता है। यह स्थानीय बाजारों की सेवा करने वाली अन्य पारेषण लाइनों के लिए भी बिजली का मार्ग बदल देता है। यह  [[ PacifiCorp ]] हेल सबस्टेशन,  [[ ओरेम, यूटा ]], यूएसए ]] है


इंजीनियर ऊर्जा को यथासंभव कुशलता से परिवहन करने के लिए ट्रांसमिशन नेटवर्क डिजाइन करते हैं, साथ ही साथ आर्थिक कारकों, नेटवर्क सुरक्षा और अतिरेक को ध्यान में रखते हुए। ये नेटवर्क बिजली लाइनों, केबल,  [[ सर्किट ब्रेकर ]] एस, स्विच और  [[ ट्रांसफार्मर ]] एस जैसे घटकों का उपयोग करते हैं। ट्रांसमिशन नेटवर्क आमतौर पर एक क्षेत्रीय आधार पर एक इकाई द्वारा प्रशासित किया जाता है जैसे  [[ क्षेत्रीय ट्रांसमिशन संगठन ]] या  [[ ट्रांसमिशन सिस्टम ऑपरेटर ]]<ref>{{cite web|title=Distribution Substations - Michigan Technological University|url=https://pages.mtu.edu/'''avsergue/EET3390/Lectures/CHAPTER6.pdf|access-date=20 April 2019}}</ref>


लाइन कंडक्टरों में वोल्टेज बढ़ाने वाले उपकरणों द्वारा ट्रांसमिशन दक्षता में बहुत सुधार होता है (और इस तरह आनुपातिक रूप से वर्तमान को कम करता है), इस प्रकार स्वीकार्य नुकसान के साथ बिजली को प्रसारित करने की इजाजत देता है। लाइन के माध्यम से बहने वाली कम धारा कंडक्टरों में हीटिंग के नुकसान को कम करती है।  [[ जूल के पहले नियम |  जूल के नियम ]] के अनुसार, ऊर्जा हानि धारा के वर्ग के समानुपाती होती है। इस प्रकार, दो के एक कारक द्वारा वर्तमान को कम करने से कंडक्टर के किसी भी आकार के लिए कंडक्टर प्रतिरोध में चार के कारक से खोई गई ऊर्जा कम हो जाएगी।


किसी दिए गए वोल्टेज और करंट के लिए एक कंडक्टर के इष्टतम आकार का अनुमान  [[ केल्विन के नियम से कंडक्टर आकार ]] के लिए लगाया जा सकता है, जिसमें कहा गया है कि आकार अपने इष्टतम पर है जब प्रतिरोध में बर्बाद ऊर्जा की वार्षिक लागत वार्षिक पूंजी शुल्क के बराबर होती है। कंडक्टर उपलब्ध कराने के संबंध में। कम ब्याज दरों के समय, केल्विन का नियम इंगित करता है कि मोटे तार इष्टतम हैं; जबकि, जब धातुएं महंगी होती हैं, तो पतले कंडक्टर इंगित किए जाते हैं: हालांकि, बिजली लाइनों को दीर्घकालिक उपयोग के लिए डिज़ाइन किया गया है, इसलिए केल्विन के नियम को तांबे और एल्यूमीनियम की कीमत के साथ-साथ ब्याज दरों के दीर्घकालिक अनुमानों के संयोजन के साथ प्रयोग किया जाना चाहिए। पूंजी के लिए।


एसी सर्किट में 'स्टेप-अप  [[ ट्रांसफॉर्मर ]]' का उपयोग करके वोल्टेज में वृद्धि हासिल की जाती है। [[ हाई-वोल्टेज डायरेक्ट करंट एचवीडीसी ]] सिस्टम को अपेक्षाकृत महंगे रूपांतरण उपकरण की आवश्यकता होती है जो कि पनडुब्बी केबल और लंबी दूरी की उच्च क्षमता वाले पॉइंट-टू-पॉइंट ट्रांसमिशन जैसी विशेष परियोजनाओं के लिए आर्थिक रूप से उचित हो सकते हैं। एचवीडीसी उन ग्रिड प्रणालियों के बीच ऊर्जा के आयात और निर्यात के लिए आवश्यक है जो एक दूसरे के साथ सिंक्रनाइज़ नहीं हैं।
== बल्क पावर पारेषण ==
[[File:Transmissionsubstation.jpg|thumb|एक [[ विद्युत सबस्टेशन पारेषण उपकेंद्र]] आने वाली बिजली के वोल्टेज को कम करता है, जिससे यह लंबी दूरी के उच्च वोल्टेज पारेषण से स्थानीय कम वोल्टेज वितरण से जुड़ने की अनुमति देता है। यह स्थानीय बाजारों की सेवा करने वाली अन्य पारेषण लाइनों के लिए भी बिजली का मार्ग बदल देता है। यह  [[ PacifiCorp ]] हेल उपकेंद्र,  [[ ओरेम, यूटा ]], यूएसए ]] इंजीनियर पारेषण  प्रसार को यथासंभव कुशलता से ऊर्जा के परिवहन के लिए अभिकल्पना करते हैं, साथ ही साथ आर्थिक कारकों, प्रसार सुरक्षा और अतिरेक को भी ध्यान में रखते हैं। ये  प्रसार  बिजली लाइन, केबल, परिपथ वियोजक, स्विच और परिवर्तक जैसे घटकों का उपयोग करते हैं। पारेषण  प्रसार आमतौर पर एक क्षेत्रीय आधार पर एक क्षेत्रीय पारेषण संगठन या पारेषण प्रणाली ऑपरेटर जैसी इकाई द्वारा प्रशासित किया जाता है।<ref>{{cite web|title=Distribution Substations - Michigan Technological University|url=https://pages.mtu.edu/'''avsergue/EET3390/Lectures/CHAPTER6.pdf|access-date=20 April 2019}}</ref>


एक ट्रांसमिशन ग्रिड [[ पावर स्टेशन ]] एस, ट्रांसमिशन लाइन और [[ इलेक्ट्रिकल सबस्टेशन |  सबस्टेशन ]] का नेटवर्क है। ऊर्जा आमतौर पर [[ तीन-चरण विद्युत शक्ति |  तीन-चरण ]]  [[ बारी-बारी से चालू |  एसी ]] के साथ एक ग्रिड के भीतर प्रेषित होती है। सिंगल-फेज एसी का उपयोग केवल अंतिम उपयोगकर्ताओं को वितरण के लिए किया जाता है क्योंकि यह बड़े पॉलीफ़ेज़ [[ इंडक्शन मोटर ]] एस के लिए उपयोग करने योग्य नहीं है। 19वीं शताब्दी में, दो-चरण संचरण का उपयोग किया गया था, लेकिन इसके लिए चार तारों या असमान धाराओं वाले तीन तारों की आवश्यकता थी। उच्च क्रम चरण प्रणालियों के लिए तीन से अधिक तारों की आवश्यकता होती है, लेकिन बहुत कम या कोई लाभ नहीं देते हैं।
लाइनपरिचालकों में वोल्टेज बढ़ाने वाले उपकरणों द्वारा पारेषण दक्षता में काफी सुधार होता है (और इस तरह आनुपातिक रूप से वर्तमान को कम करता है), इस प्रकार स्वीकार्य नुकसान के साथ बिजली को प्रसारित करने की इजाजत देता है। लाइन के माध्यम से बहने वाली कम  परिचालकों में ताप के नुकसान को कम करती है। जूल के नियम के अनुसार, ऊर्जा हानि धारा के वर्ग के समानुपाती होती है। इस प्रकार, दो के एक कारक द्वारा वर्तमान को कम करने से परिचालक के किसी भी आकार के लिएपरिचालक प्रतिरोध में चार के कारक द्वारा खोई गई ऊर्जा कम हो जाएगी।
 
किसी दिए गए वोल्टेज और धारा के लिए एकपरिचालक के इष्टतम आकार का अनुमानपरिचालक के आकार के लिए केल्विन के नियम द्वारा लगाया जा सकता है, जिसमें कहा गया है कि आकार अपने इष्टतम पर है जब प्रतिरोध में बर्बाद होने वाली ऊर्जा की वार्षिक लागत प्रदान करने वालेपरिचालक की वार्षिक पूंजी शुल्क के बराबर होती है। कम ब्याज दरों के समय, केल्विन का नियम इंगित करता है कि मोटे तार इष्टतम हैं जबकि, जब धातुएं महंगी होती हैं, तो पतलेपरिचालक इंगित किए जाते हैं: हालांकि, बिजली लाइनों को दीर्घकालिक उपयोग के लिए अभिकल्पना किया गया है, इसलिए केल्विन के नियम को तांबे और एल्यूमीनियम की कीमत के साथ-साथ ब्याज दरों के दीर्घकालिक अनुमानों के पूंजी के लिए संयोजन के साथ प्रयोग किया जाना चाहिए।
 
एक स्टेप-अप  परिवर्तक का उपयोग करके एसीपरिपथ में वोल्टेज में वृद्धि हासिल की जाती है। एचवीडीसी प्रणाली को अपेक्षाकृत महंगे रूपांतरण उपकरण की आवश्यकता होती है जो विशेष परियोजनाओं जैसे पनडुब्बी केबल और लंबी दूरी की उच्च क्षमता वाले पॉइंट-टू-पॉइंट पारेषण के लिए आर्थिक रूप से उचित हो सकते हैं। एचवीडीसी उन ग्रिड प्रणालियों के बीच ऊर्जा के आयात और निर्यात के लिए आवश्यक है जो एक दूसरे के साथ  समकालिक नहीं हैं।
 
पारेषण ग्रिड पावर स्टेशनों, पारेषण लाइनों और उपकेंद्रों का एक नेटवर्क है। ऊर्जा आमतौर पर तीन-चरण एसी वाले ग्रिड के भीतर संचारित होती है। सिंगल-फ़ेज़ एसी का उपयोग केवल अंतिम उपयोगकर्ताओं को वितरण के लिए किया जाता है क्योंकि यह बड़े पॉलीफ़ेज़ इंडक्शन मोटर्स के लिए उपयोग करने योग्य नहीं है। 19वीं शताब्दी में, दो-चरण संचरण का उपयोग किया गया था, लेकिन इसके लिए चार तारों या असमान धाराओं वाले तीन तारों की आवश्यकता थी। उच्च क्रम चरण प्रणालियों के लिए तीन से अधिक तारों की आवश्यकता होती है, लेकिन बहुत कम या कोई लाभ नहीं देते हैं।


[[File:ElectricityUCTE.svg|thumb|left| [[ चौड़ा क्षेत्र सिंक्रोनस ग्रिड |  सिंक्रोनस ग्रिड ]] यूरोप का ]]
[[File:ElectricityUCTE.svg|thumb|left| [[ चौड़ा क्षेत्र सिंक्रोनस ग्रिड |  सिंक्रोनस ग्रिड ]] यूरोप का ]]


इलेक्ट्रिक पावर स्टेशन की क्षमता की कीमत अधिक है, और बिजली की मांग परिवर्तनशील है, इसलिए स्थानीय स्तर पर इसे उत्पन्न करने की तुलना में आवश्यक बिजली के कुछ हिस्से को आयात करना अक्सर सस्ता होता है। क्योंकि लोड अक्सर क्षेत्रीय रूप से सहसंबद्ध होते हैं (अमेरिका के दक्षिण-पश्चिम हिस्से में गर्म मौसम के कारण कई लोग एयर कंडीशनर का उपयोग कर सकते हैं), बिजली अक्सर दूर के स्रोतों से आती है। क्षेत्रों के बीच भार साझा करने के आर्थिक लाभों के कारण, [[ चौड़ा क्षेत्र तुल्यकालिक ग्रिड |  wआइडिया एरिया ट्रांसमिशन ग्रिड ]] अब देशों और यहां तक ​​कि महाद्वीपों तक फैला हुआ है। बिजली उत्पादकों और उपभोक्ताओं के बीच अंतर्संबंधों का जाल बिजली को प्रवाहित करने में सक्षम होना चाहिए, भले ही कुछ लिंक निष्क्रिय हों।
इलेक्ट्रिक पावर स्टेशन की क्षमता की कीमत अधिक है, और बिजली की मांग परिवर्तनशील है, इसलिए स्थानीय स्तर पर इसे उत्पन्न करने की तुलना में आवश्यक बिजली के कुछ हिस्से को आयात करना अक्सर सस्ता होता है। क्योंकि लोड अक्सर क्षेत्रीय रूप से सहसंबद्ध होते हैं (अमेरिका के दक्षिण-पश्चिम हिस्से में गर्म मौसम के कारण कई लोग एयर कंडीशनर का उपयोग कर सकते हैं), बिजली अक्सर दूर के स्रोतों से आती है। क्षेत्रों के बीच लोड शेयरिंग के आर्थिक लाभों के कारण, वाइड एरिया पारेषण ग्रिड अब देशों और यहां तक ​​कि महाद्वीपों तक फैले हुए हैं। बिजली उत्पादकों और उपभोक्ताओं के बीच अंतर्संबंधों का जाल बिजली को प्रवाहित करने में सक्षम होना चाहिए, भले ही कुछ लिंक निष्क्रिय होंना चाहिए।
 
बिजली की मांग के अपरिवर्तनीय (या धीरे-धीरे कई घंटों में अलग-अलग) हिस्से को '' [[ बेस लोड पावर प्लांट |  बेस लोड ]]'' के रूप में जाना जाता है और आम तौर पर बड़ी सुविधाओं (जो पैमाने की अर्थव्यवस्थाओं के कारण अधिक कुशल होते हैं) द्वारा परोसा जाता है। ईंधन और संचालन के लिए निश्चित लागत के साथ। ऐसी सुविधाएं परमाणु, कोयले से चलने वाली या जलविद्युत हैं, जबकि अन्य ऊर्जा स्रोत जैसे  [[ सौर तापीय ऊर्जा |  केंद्रित सौर तापीय ]] और  [[ भू-तापीय ऊर्जा ]] में बेस लोड पावर प्रदान करने की क्षमता है। अक्षय ऊर्जा स्रोत, जैसे कि सौर फोटोवोल्टिक, पवन, लहर और ज्वार, उनकी आंतरायिकता के कारण, आधार भार की आपूर्ति के रूप में नहीं माना जाता है, लेकिन फिर भी ग्रिड में बिजली जोड़ देगा। शेष या 'पीक' बिजली की मांग,  [[ पीकिंग पावर प्लांट ]] एस द्वारा आपूर्ति की जाती है, जो आम तौर पर छोटे, तेजी से प्रतिक्रिया देने वाले और उच्च लागत वाले स्रोत होते हैं, जैसे प्राकृतिक गैस द्वारा ईंधन वाले संयुक्त चक्र या दहन टरबाइन संयंत्र।


US''0.005–0.02 प्रति kWh (वार्षिक औसत बड़ी उत्पादक लागत US''0.01–0.025 प्रति kWh की तुलना में, US''0.10 प्रति kWh से अधिक की खुदरा दरों की तुलना में, बिजली का लंबी दूरी का संचरण (सैकड़ों किलोमीटर) सस्ता और कुशल है, जिसकी लागत US''0.005–0.02 प्रति kWh है। और अप्रत्याशित उच्चतम मांग क्षणों पर तात्कालिक आपूर्तिकर्ताओं के लिए खुदरा के गुणक)<ref name="limits-of-very-long-distance"/> इस प्रकार दूर के आपूर्तिकर्ता स्थानीय स्रोतों से सस्ते हो सकते हैं (उदाहरण के लिए, न्यूयॉर्क अक्सर कनाडा से 1000 मेगावाट से अधिक बिजली खरीदता है)<ref>{{cite web|title=NYISO Zone Maps|url=http://www.nyiso.com/public/markets_operations/market_data/maps/index.jsp|publisher=New York Independent System Operator|access-date=10 January 2014|archive-date=December 2, 2018|archive-url=https://web.archive.org/web/20181202015308/http://www.nyiso.com/public/markets_operations/market_data/maps/index.jsp|url-status=dead}}</ref>  एकाधिक ''' स्थानीय स्रोत ''' (भले ही अधिक महंगे और अक्सर उपयोग किए जाते हों) ट्रांसमिशन ग्रिड को मौसम और अन्य आपदाओं के प्रति अधिक दोष सहिष्णु बना सकते हैं जो दूर के आपूर्तिकर्ताओं को डिस्कनेक्ट कर सकते हैं।
बिजली की मांग के अपरिवर्तनीय (या धीरे-धीरे कई घंटों में अलग-अलग) हिस्से को बेस लोड के रूप में जाना जाता है और आम तौर पर ईंधन और संचालन के लिए निश्चित लागत के साथ बड़ी सुविधाओं (जो पैमाने की अर्थव्यवस्थाओं के कारण अधिक कुशल होते हैं) द्वारा परोसा जाता है। ऐसी सुविधाएं परमाणु, कोयले से चलने वाली या जलविद्युत हैं, जबकि अन्य ऊर्जा स्रोत जैसे कि केंद्रित सौर तापीय और भूतापीय ऊर्जा में आधार भार शक्ति प्रदान करने की क्षमता है। अक्षय ऊर्जा स्रोत, जैसे कि सौर फोटोवोल्टिक, पवन, लहर और ज्वार-भाटा, उनकी आंतरायिकता के कारण, "बेस लोड" की आपूर्ति के रूप में नहीं माना जाता है, लेकिन फिर भी ग्रिड में बिजली जोड़ देगा। शेष या 'पीक' बिजली की मांग, बिजली संयंत्रों को चोटी से आपूर्ति की जाती है, जो आम तौर पर छोटे, तेजी से प्रतिक्रिया देने वाले और उच्च लागत वाले स्रोत जैसे प्राकृतिक गैस द्वारा ईंधन वाले संयुक्त चक्र या दहन टरबाइन संयंत्र होते हैं।


[[File:Electicaltransmissionlines3800ppx.JPG|thumb|एक हाई-पावर इलेक्ट्रिकल ट्रांसमिशन टावर, 230 kV, डबल-सर्किट, डबल-बंडल ]] भी
US$0.005–0.02 प्रति kWh (वार्षिक औसत बड़ी उत्पादक लागत US$0.01–0.025 प्रति kWh की तुलना में, US$0.10 प्रति kWh से ऊपर की खुदरा दरों की तुलना में, बिजली का लंबी दूरी का संचरण (सैकड़ों किलोमीटर) सस्ता और कुशल है, जिसकी लागत US$0.005–0.02 प्रति kWh है। और अप्रत्याशित उच्चतम मांग क्षणों पर तात्कालिक आपूर्तिकर्ताओं के लिए खुदरा के गुणक)।<ref name="limits-of-very-long-distance"/> इस प्रकार दूर के आपूर्तिकर्ता स्थानीय स्रोतों से सस्ते हो सकते हैं (उदाहरण के लिए, न्यूयॉर्क अक्सर कनाडा से 1000 मेगावाट से अधिक बिजली खरीदता है)।<ref>{{cite web|title=NYISO Zone Maps|url=http://www.nyiso.com/public/markets_operations/market_data/maps/index.jsp|publisher=New York Independent System Operator|access-date=10 January 2014|archive-date=December 2, 2018|archive-url=https://web.archive.org/web/20181202015308/http://www.nyiso.com/public/markets_operations/market_data/maps/index.jsp|url-status=dead}}</ref>कई स्थानीय स्रोत (भले ही अधिक महंगे और कम उपयोग किए गए हों) पारेषण ग्रिड को मौसम और अन्य आपदाओं के प्रति अधिक दोष सहिष्णु बना सकते हैं जो दूर के आपूर्तिकर्ताओं को बंद कर सकते हैं।


लंबी दूरी के प्रसारण से जीवाश्म ईंधन की खपत को विस्थापित करने के लिए दूरस्थ नवीकरणीय ऊर्जा संसाधनों का उपयोग किया जा सकता है। जल और पवन स्रोतों को आबादी वाले शहरों के करीब नहीं ले जाया जा सकता है, और दूरदराज के इलाकों में सौर लागत सबसे कम है जहां स्थानीय बिजली की जरूरत न्यूनतम है। अकेले कनेक्शन की लागत यह निर्धारित कर सकती है कि कोई विशेष अक्षय विकल्प आर्थिक रूप से समझदार है या नहीं। ट्रांसमिशन लाइनों के लिए लागत निषेधात्मक हो सकती है, लेकिन उच्च क्षमता, बहुत लंबी दूरी के [[ सुपर ग्रिड ]] ट्रांसमिशन नेटवर्क में बड़े पैमाने पर बुनियादी ढांचे के निवेश के विभिन्न प्रस्तावों को मामूली उपयोग शुल्क के साथ वसूल किया जा सकता है।
[[File:Electicaltransmissionlines3800ppx.JPG|thumb|एक हाई-पावर इलेक्ट्रिकल पारेषण टावर, 230 kV, डबल- परिपथ, डबल-बंडल ]] लंबी दूरी के प्रसारण से जीवाश्म ईंधन की खपत को विस्थापित करने के लिए दूरस्थ नवीकरणीय ऊर्जा संसाधनों का उपयोग किया जा सकता है। जल और पवन स्रोतों को आबादी वाले शहरों के करीब नहीं ले जाया जा सकता है, और दूरदराज के इलाकों में सौर लागत सबसे कम है जहां स्थानीय बिजली की जरूरत न्यूनतम है। अकेले कनेक्शन की लागत यह निर्धारित कर सकती है कि कोई विशेष अक्षय विकल्प आर्थिक रूप से समझदार है या नहीं है। पारेषण लाइनों के लिए लागत निषेधात्मक हो सकती है, लेकिन उच्च क्षमता, बहुत लंबी दूरी के सुपर ग्रिड पारेषण नेटवर्क में बड़े पैमाने पर बुनियादी ढांचे के निवेश के विभिन्न प्रस्तावों को मामूली उपयोग शुल्क के साथ वसूल किया जा सकता है।


=== ग्रिड इनपुट ===
=== ग्रिड इनपुट ===
[[ पावर स्टेशन ]] एस पर, यूनिट के आकार के आधार पर, बिजली का उत्पादन लगभग 2.3 केवी और 30 केवी के बीच अपेक्षाकृत कम वोल्टेज पर होता है। जनरेटर टर्मिनल वोल्टेज को पावर स्टेशन [[ ट्रांसफॉर्मर ]] द्वारा उच्च [[ वोल्टेज ]] (115 केवी से 765 केवी एसी, ट्रांसमिशन सिस्टम और देश के अनुसार अलग-अलग) द्वारा लंबी दूरी पर ट्रांसमिशन के लिए बढ़ाया जाता है।
पावर स्टेशनों पर, यूनिट के आकार के आधार पर लगभग 2.3 केवी और 30 केवी के बीच अपेक्षाकृत कम वोल्टेज पर बिजली का उत्पादन किया जाता है। लंबी दूरी पर पारेषण के लिए जनित्र टर्मिनल वोल्टेज को पावर स्टेशन ट्रांसफॉर्मर द्वारा एक उच्च वोल्टेज (115 केवी से 765 केवी एसी, पारेषण प्रणाली और देश द्वारा अलग-अलग) तक बढ़ाया जाता है।


संयुक्त राज्य अमेरिका में, बिजली पारेषण 230 kV से 500 kV है, जिसमें 230 kV से कम या 500 kV से अधिक स्थानीय अपवाद हैं।
संयुक्त राज्य अमेरिका में, बिजली पारेषण 230 केवी से 500 केवी है, जिसमें 230 केवी से कम या 500 केवी से अधिक स्थानीय अपवाद हैं।


उदाहरण के लिए,  [[ वेस्टर्न इंटरकनेक्शन ]] में दो प्राथमिक इंटरकनेक्शन वोल्टेज हैं: 60 हर्ट्ज पर 500 केवी एसी, और ± 500 केवी (1,000 केवी नेट) डीसी उत्तर से दक्षिण ( [[ कोलंबिया नदी ]] से [[ दक्षिणी कैलिफोर्निया ]] ) और पूर्वोत्तर से दक्षिण पश्चिम (यूटा से दक्षिणी कैलिफोर्निया)287.5 kV ( [[ हूवर डैम ]] से [[ लॉस एंजिल्स ]] लाइन,  [[ Victorville ]] के माध्यम से) और 345 kV ( [[ एरिज़ोना पब्लिक सर्विस ]] (APS) लाइन) स्थानीय मानक हैं, दोनों को 500 kV के व्यावहारिक होने से पहले लागू किया गया था, और इसके बाद लंबी दूरी की एसी पावर ट्रांसमिशन के लिए वेस्टर्न इंटरकनेक्शन मानक।
उदाहरण के लिए, वेस्टर्न  अंतःसंबंध में दो प्राथमिक अंतःसंबंध  वोल्टेज हैं: 60 हर्ट्ज पर 500 केवी एसी, और ± 500 केवी (1,000 केवी नेट) डीसी उत्तर से दक्षिण (कोलंबिया नदी से दक्षिणी कैलिफोर्निया) और पूर्वोत्तर से दक्षिण पश्चिम (यूटा से दक्षिणी कैलिफोर्निया) . 287.5 केवी (विक्टोरविले के माध्यम से लॉस एंजिल्स लाइन के लिए हूवर बांध) और 345 केवी (एरिजोना पब्लिक सर्विस (एपीएस) लाइन) स्थानीय मानक हैं, जिनमें से दोनों को 500 केवी से पहले लागू किया गया था, और उसके बाद लंबी दूरी के लिए पश्चिमी  अंतःसंबंध  मानक एसी पावर पारेषण लागू किया गया था।


=== नुकसान ===
=== नुकसान ===
उच्च वोल्टेज पर बिजली का संचारण  [[ जूल हीटिंग |  प्रतिरोध ]] तक खोई हुई ऊर्जा का अंश कम कर देता है, जो विशिष्ट कंडक्टरों, वर्तमान प्रवाह और ट्रांसमिशन लाइन की लंबाई के आधार पर भिन्न होता है। उदाहरण के लिए, ए {{convert|100|mile|abbr=on}} 765 kV पर 1000 मेगावाट बिजली ले जाने पर 1.1% से 0.5% की हानि हो सकती है। समान भार को समान दूरी पर ले जाने वाली 345 kV लाइन में 4.2% की हानि होती है<ref>अमेरिकन इलेक्ट्रिक पावर, ट्रांसमिशन फैक्ट्स, पेज 4: https://web.archive.org/web/20110604181007/https://www.aep.com/about/transmission/docs/transmission-facts.pd</ref> दी गई शक्ति के लिए, एक उच्च वोल्टेज वर्तमान को कम कर देता है और इस प्रकार कंडक्टर में [[ प्रतिरोधक हानि ]] es। उदाहरण के लिए, वोल्टेज को 10 के एक कारक द्वारा बढ़ाने से करंट 10 के संबंधित कारक से कम हो जाता है और इसलिए <math>I^2 R</math> losses by a factor of 100, provided the same sized conductors are used in both cases. Even if the conductor size (cross-sectional area) is decreased ten-fold to match the lower current, the <math>I^2 R</math> घाटा अभी भी दस गुना कम है। लंबी दूरी की ट्रांसमिशन आमतौर पर 115 से 1,200 kV के वोल्टेज पर ओवरहेड लाइनों के साथ किया जाता है। अत्यधिक उच्च वोल्टेज पर, जहां कंडक्टर और ग्राउंड के बीच 2,000 kV से अधिक मौजूद है, [[ कोरोना डिस्चार्ज ]] नुकसान इतने बड़े हैं कि वे लाइन कंडक्टर में कम प्रतिरोधक नुकसान की भरपाई कर सकते हैं। कोरोना के नुकसान को कम करने के उपायों में बड़े व्यास वाले कंडक्टर शामिल हैं; वजन बचाने के लिए अक्सर खोखला<ref>[http://www.cpuc.ca.gov/environment/info/aspen/deltasub/pea/16_corona_and_induced_currents.pdf कैलिफोर्निया पब्लिक यूटिलिटीज कमीशन] कोरोना और प्रेरित करंट</ref> या दो या दो से अधिक कंडक्टरों के बंडल।
उच्च वोल्टेज पर बिजली संचारित करने से प्रतिरोध में खोई हुई ऊर्जा का अंश कम हो जाता है, जो विशिष्टपरिचालकों, वर्तमान प्रवाह और पारेषण लाइन की लंबाई के आधार पर भिन्न होता है। उदाहरण के लिए, 765 केवी पर 100 मील (160 किमी) की अवधि में 1000 मेगावाट बिजली ले जाने पर 1.1% से 0.5% की हानि हो सकती है। समान दूरी पर समान भार ले जाने वाली 345 केवी लाइन में 4.2% की हानि होती है।<ref>अमेरिकन इलेक्ट्रिक पावर, ट्रांसमिशन फैक्ट्स, पेज 4: https://web.archive.org/web/20110604181007/https://www.aep.com/about/transmission/docs/transmission-facts.pd</ref>दी गई शक्ति की मात्रा के लिए, एक उच्च वोल्टेज वर्तमान को कम करता है और इस प्रकारपरिचालक में प्रतिरोधक नुकसान होता है। उदाहरण के लिए, वोल्टेज को 10 के एक कारक द्वारा बढ़ाने से करंट 10 के संबंधित कारक से कम हो जाता है और इसलिए <math>I^2 R</math> नुकसान 100 के कारक से होता है, बशर्ते दोनों मामलों में एक ही आकार केपरिचालक का उपयोग किया जाता है। भले हीपरिचालक का आकार (क्रॉस-सेक्शनल एरिया) निचले करंट से मेल खाने के लिए दस गुना कम हो, <math>I^2 R</math> नुकसान अभी भी दस गुना कम हो गया है . लंबी दूरी की पारेषण आमतौर पर 115 से 1,200 केवी के वोल्टेज पर शिरोपरि लाइनों के साथ किया जाता है। अत्यधिक उच्च वोल्टेज पर, जहांपरिचालक और ग्राउंड के बीच 2,000 केवी से अधिक मौजूद है, कोरोना डिस्चार्ज नुकसान इतने बड़े हैं कि कि वे लाइनपरिचालक में कम प्रतिरोधक नुकसान की भरपाई कर सकते हैं। कोरोना के नुकसान को कम करने के उपायों में बड़े व्यास वालेपरिचालक,  वजन बचाने के लिए अक्सर खोखला,<ref>[http://www.cpuc.ca.gov/environment/info/aspen/deltasub/pea/16_corona_and_induced_currents.pdf कैलिफोर्निया पब्लिक यूटिलिटीज कमीशन] कोरोना और प्रेरित करंट</ref> या दो या दो से अधिकपरिचालकों के बंडल शामिल हैं।


ट्रांसमिशन और वितरण लाइनों में उपयोग किए जाने वाले कंडक्टरों के प्रतिरोध और इस प्रकार नुकसान को प्रभावित करने वाले कारकों में तापमान, सर्पिलिंग और [[ त्वचा प्रभाव ]] शामिल हैं। किसी चालक का प्रतिरोध उसके ताप के साथ बढ़ता है। विद्युत विद्युत लाइनों में तापमान परिवर्तन का लाइन में बिजली के नुकसान पर महत्वपूर्ण प्रभाव पड़ सकता है। सर्पिलिंग, जो केंद्र के बारे में फंसे कंडक्टरों के सर्पिल के तरीके को संदर्भित करता है, कंडक्टर प्रतिरोध में वृद्धि में भी योगदान देता है। त्वचा प्रभाव उच्च प्रत्यावर्ती धारा आवृत्तियों पर कंडक्टर के प्रभावी प्रतिरोध को बढ़ाने का कारण बनता है। गणितीय मॉडल का उपयोग करके कोरोना और प्रतिरोधक नुकसान का अनुमान लगाया जा सकता है<ref>{{cite web |title=AC Transmission Line Losses |author=Curt Harting |date=October 24, 2010 |publisher=[[Stanford University]] |url=http://large.stanford.edu/courses/2010/ph240/harting1/ |access-date=June 10, 2019}}</ref>
संचरण और वितरण लाइनों में उपयोग किए जाने वालेपरिचालकों के प्रतिरोध और इस प्रकार नुकसान को प्रभावित करने वाले कारकों में तापमान, सर्पिलिंग और त्वचा प्रभाव शामिल हैं। किसी चालक का प्रतिरोध उसके ताप के साथ बढ़ता है। विद्युत विद्युत लाइनों में तापमान परिवर्तन का लाइन में बिजली के नुकसान पर महत्वपूर्ण प्रभाव पड़ सकता है। सर्पिलिंग, जो केंद्र के बारे में फंसेपरिचालकों के सर्पिल के तरीके को संदर्भित करता है,परिचालक प्रतिरोध में वृद्धि में भी योगदान देता है। त्वचा प्रभाव उच्च प्रत्यावर्ती धारा आवृत्तियों परपरिचालक के प्रभावी प्रतिरोध को बढ़ाने का कारण बनता है। एक गणितीय मॉडल का उपयोग करके कोरोना और प्रतिरोधक नुकसान का अनुमान लगाया जा सकता है।<ref>{{cite web |title=AC Transmission Line Losses |author=Curt Harting |date=October 24, 2010 |publisher=[[Stanford University]] |url=http://large.stanford.edu/courses/2010/ph240/harting1/ |access-date=June 10, 2019}}</ref>


1997 में संयुक्त राज्य अमेरिका में संचरण और वितरण हानि 6.6% होने का अनुमान लगाया गया था<ref name="tonto.eia.doe.gov">{{cite web |url=http://tonto.eia.doe.gov/tools/faqs/faq.cfm?id=105&t=3 |archive-url=https://archive.today/20121212061118/http://tonto.eia.doe.gov/tools/faqs/faq.cfm?id=105&t=3 |url-status=dead |archive-date=12 December 2012 |title=Where can I find data on electricity transmission and distribution losses? |date=19 November 2009 |work=Frequently Asked Questions – Electricity |publisher=[[U.S. Energy Information Administration]] |access-date=29 March 2011 }}</ref> 200 . में 6.5%<ref name="tonto.eia.doe.gov"/> और 2013 से 2019 तक 5%<ref name="eia.gov">{{cite web |url=https://www.eia.gov/tools/faqs/faq.php?id=105&t=3|title=How much electricity is lost in electricity transmission and distribution in the United States? |date=9 January 2019 |work=Frequently Asked Questions – Electricity |publisher=[[U.S. Energy Information Administration]] |access-date=27 February 2019}}</ref> सामान्य तौर पर, उत्पादित बिजली (जैसा कि बिजली संयंत्रों द्वारा रिपोर्ट किया गया है) और अंतिम ग्राहकों को बेची गई बिजली के बीच विसंगति से नुकसान का अनुमान लगाया जाता है; जो उत्पादित किया जाता है और जो उपभोग किया जाता है, उसके बीच का अंतर संचरण और वितरण हानियों का गठन करता है,यह मानते हुए कि कोई उपयोगिता चोरी नहीं होती है।
1997 में संयुक्त राज्य अमेरिका में संचरण और वितरण हानि 6.6% होने का अनुमान लगाया गया था<ref name="tonto.eia.doe.gov">{{cite web |url=http://tonto.eia.doe.gov/tools/faqs/faq.cfm?id=105&t=3 |archive-url=https://archive.today/20121212061118/http://tonto.eia.doe.gov/tools/faqs/faq.cfm?id=105&t=3 |url-status=dead |archive-date=12 December 2012 |title=Where can I find data on electricity transmission and distribution losses? |date=19 November 2009 |work=Frequently Asked Questions – Electricity |publisher=[[U.S. Energy Information Administration]] |access-date=29 March 2011 }}</ref> 200 . में 6.5%<ref name="tonto.eia.doe.gov"/> और 2013 से 2019 तक 5%<ref name="eia.gov">{{cite web |url=https://www.eia.gov/tools/faqs/faq.php?id=105&t=3|title=How much electricity is lost in electricity transmission and distribution in the United States? |date=9 January 2019 |work=Frequently Asked Questions – Electricity |publisher=[[U.S. Energy Information Administration]] |access-date=27 February 2019}}</ref> सामान्य तौर पर, उत्पादित बिजली (जैसा कि बिजली संयंत्रों द्वारा रिपोर्ट किया गया है) और अंतिम ग्राहकों को बेची गई बिजली के बीच विसंगति से नुकसान का अनुमान लगाया जाता है, जो उत्पादित किया जाता है और जो उपभोग किया जाता है, उसके बीच का अंतर संचरण और वितरण हानियों का गठन करता है,यह मानते हुए कि कोई उपयोगिता चोरी नहीं होती है।


1980 तक, [[ प्रत्यक्ष वर्तमान |  प्रत्यक्ष-वर्तमान ]] संचरण के लिए सबसे लंबी लागत प्रभावी दूरी निर्धारित की गई थी {{convert|7000|km|mi|abbr=off}}.  [[ प्रत्यावर्ती धारा ]] के लिए यह था {{convert|4000|km|mi|abbr=off}}, हालांकि आज उपयोग में आने वाली सभी पारेषण लाइनें इससे काफी छोटी हैं<ref name="limits-of-very-long-distance">{{cite web |url=http://www.geni.org/globalenergy/library/technical-articles/transmission/cigre/present-limits-of-very-long-distance-transmission-systems/index.shtml |title=Present Limits of Very Long Distance Transmission Systems | first1 = L. | last1 = Paris | first2 = G. | last2 = Zini | first3 = M. | last3 = Valtorta | first4 = G. | last4 = Manzoni | first5 = A. | last5 = Invernizzi | first6 = N. | last6 = De Franco | first7 = A. | last7 = Vian |year=1984 |work=[[CIGRE]] International Conference on Large High Voltage Electric Systems, 1984 Session, 29&nbsp;August &ndash; 6&nbsp;September |publisher=[[Global Energy Network Institute]] |access-date=29 March 2011 |format=PDF}} 4.98 एम</ref>
1980 तक, प्रत्यक्ष-वर्तमान संचरण के लिए सबसे लंबी लागत प्रभावी दूरी 7,000 किलोमीटर (4,300 मील) निर्धारित की गई थी। प्रत्यावर्ती धारा के लिए यह 4,000 किलोमीटर (2,500 मील) था, हालांकि आज उपयोग में आने वाली सभी पारेषण लाइनें इससे काफी कम हैं।<ref name="limits-of-very-long-distance">{{cite web |url=http://www.geni.org/globalenergy/library/technical-articles/transmission/cigre/present-limits-of-very-long-distance-transmission-systems/index.shtml |title=Present Limits of Very Long Distance Transmission Systems | first1 = L. | last1 = Paris | first2 = G. | last2 = Zini | first3 = M. | last3 = Valtorta | first4 = G. | last4 = Manzoni | first5 = A. | last5 = Invernizzi | first6 = N. | last6 = De Franco | first7 = A. | last7 = Vian |year=1984 |work=[[CIGRE]] International Conference on Large High Voltage Electric Systems, 1984 Session, 29&nbsp;August &ndash; 6&nbsp;September |publisher=[[Global Energy Network Institute]] |access-date=29 March 2011 |format=PDF}} 4.98 एम</ref>


किसी भी प्रत्यावर्ती धारा संचरण लाइन में, [[ अधिष्ठापन ]] और कंडक्टरों की धारिता महत्वपूर्ण हो सकती है। धाराएं जो सर्किट के इन गुणों के लिए पूरी तरह से 'प्रतिक्रिया' में प्रवाहित होती हैं, (जो [[ विद्युत प्रतिरोध |  प्रतिरोध ]] के साथ [[ विद्युत प्रतिबाधा |  प्रतिबाधा ]] को परिभाषित करती हैं) [[ प्रतिक्रियाशील शक्ति ]] प्रवाह का गठन करती हैं, जो कि कोई 'वास्तविक' शक्ति संचारित नहीं करती है। भार। हालाँकि, ये प्रतिक्रियाशील धाराएँ बहुत वास्तविक हैं और ट्रांसमिशन सर्किट में अतिरिक्त हीटिंग नुकसान का कारण बनती हैं। 'वास्तविक' शक्ति (लोड को प्रेषित) का 'स्पष्ट' शक्ति (एक सर्किट के वोल्टेज और वर्तमान का उत्पाद, चरण कोण के संदर्भ के बिना) का अनुपात [[ पावर फैक्टर ]] है। जैसे-जैसे प्रतिक्रियाशील धारा बढ़ती है, प्रतिक्रियाशील शक्ति बढ़ती है और शक्ति कारक घटता है। कम पावर फैक्टर वाले ट्रांसमिशन सिस्टम के लिए, हाई पावर फैक्टर वाले सिस्टम की तुलना में नुकसान अधिक होता है। उपयोगिताएँ संधारित्र बैंकों, रिएक्टरों और अन्य घटकों (जैसे [[ क्वाड्रेचर बूस्टर |  फेज़-शिफ्टर ]] एस;  [[ स्थिर वीएआर कम्पेसाटर ]] एस; और [[ लचीला एसी ट्रांसमिशन सिस्टम ]] एस, फैक्ट्स) को पूरे सिस्टम में प्रतिक्रियाशील शक्ति की भरपाई करने में मदद करती हैं। प्रवाह, बिजली पारेषण में नुकसान को कम करना और सिस्टम वोल्टेज को स्थिर करना। इन उपायों को सामूहिक रूप से 'प्रतिक्रियाशील समर्थन' कहा जाता है।
किसी भी प्रत्यावर्ती धारा संचरण लाइन में,परिचालकों का अधिष्ठापन और समाई महत्वपूर्ण हो सकता है। धाराएं जो परिपथ के इन गुणों के लिए पूरी तरह से 'प्रतिक्रिया' में प्रवाहित होती हैं, (जो प्रतिरोध के साथ प्रतिबाधा को परिभाषित करती हैं) प्रतिक्रियाशील शक्ति प्रवाह का गठन करती हैं, जो भार को कोई 'वास्तविक' शक्ति नहीं पहुंचाती है। हालाँकि, ये प्रतिक्रियाशील धाराएँ बहुत वास्तविक हैं और पारेषण परिपथ में अतिरिक्त हीटिंग नुकसान का कारण बनती हैं। 'वास्तविक' शक्ति (लोड को प्रेषित) का 'स्पष्ट' शक्ति (एक परिपथ के वोल्टेज और वर्तमान का उत्पाद, चरण कोण के संदर्भ के बिना) का अनुपात शक्ति कारक है। जैसे-जैसे प्रतिक्रियाशील धारा बढ़ती है, प्रतिक्रियाशील शक्ति बढ़ती है और शक्ति कारक घटता है। उपयोगिताएँ पूरे प्रणाली में कैपेसिटर बैंक, रिएक्टर और अन्य घटकों (जैसे चरण-शिफ्टर्स, स्थिर वीएआर कम्पेसाटर, और लचीली एसी पारेषण प्रणाली,) जोड़ती हैं, प्रतिक्रियाशील शक्ति प्रवाह की भरपाई करने, बिजली संचरण में नुकसान को कम करने और प्रणाली वोल्टेज को स्थिर करने में मदद करती हैं। . इन उपायों को सामूहिक रूप से 'प्रतिक्रियाशील समर्थन' कहा जाता है।


=== स्थानान्तरण ===
=== स्थानान्तरण ===
ट्रांसमिशन लाइनों के माध्यम से बहने वाली धारा एक चुंबकीय क्षेत्र को प्रेरित करती है जो प्रत्येक चरण की रेखाओं को घेर लेती है और अन्य चरणों के आसपास के कंडक्टरों के [[ अधिष्ठापन ]] को प्रभावित करती है। कंडक्टरों का पारस्परिक अधिष्ठापन आंशिक रूप से एक दूसरे के संबंध में रेखाओं के भौतिक अभिविन्यास पर निर्भर करता है। तीन-चरण विद्युत पारेषण लाइनें पारंपरिक रूप से अलग-अलग ऊर्ध्वाधर स्तरों पर अलग-अलग चरणों के साथ जुड़ी हुई हैं। अन्य दो चरणों के बीच में चरण के एक कंडक्टर द्वारा देखा जाने वाला पारस्परिक अधिष्ठापन ऊपर या नीचे कंडक्टरों द्वारा देखे जाने वाले अधिष्ठापन से अलग होगा। तीन कंडक्टरों के बीच एक असंतुलित अधिष्ठापन समस्याग्रस्त है क्योंकि इसके परिणामस्वरूप मध्य रेखा में कुल संचरित शक्ति की अनुपातहीन मात्रा हो सकती है। इसी तरह, एक असंतुलित भार तब हो सकता है जब एक लाइन लगातार जमीन के सबसे करीब हो और कम प्रतिबाधा पर काम कर रही हो। इस घटना के कारण, कंडक्टरों को समय-समय पर ट्रांसमिशन लाइन की लंबाई के साथ स्थानांतरित किया जाना चाहिए ताकि प्रत्येक चरण तीनों चरणों द्वारा देखे गए पारस्परिक अधिष्ठापन को संतुलित करने के लिए प्रत्येक सापेक्ष स्थिति में समान समय देखे। इसे पूरा करने के लिए, विभिन्न [[ ट्रांसपोज़िशन (दूरसंचार) | ट्रांसपोज़िशन स्कीम ]] में ट्रांसमिशन लाइन की लंबाई के साथ-साथ नियमित अंतराल पर विशेष रूप से डिज़ाइन किए गए [[ ट्रांसपोज़िशन टॉवर ]] एस पर लाइन की स्थिति की अदला-बदली की जाती है।
पारेषण लाइनों के माध्यम से बहने वाली धारा एक चुंबकीय क्षेत्र को प्रेरित करती है जो प्रत्येक चरण की रेखाओं को घेर लेती है और अन्य चरणों के आसपास के परिचालकों के [[ अधिष्ठापन |अधिष्ठापन]] को प्रभावित करती है। परिचालकों का पारस्परिक अधिष्ठापन आंशिक रूप से एक दूसरे के संबंध में रेखाओं के भौतिक अभिविन्यास पर निर्भर करता है। तीन-चरण विद्युत पारेषण लाइनें पारंपरिक रूप से अलग-अलग ऊर्ध्वाधर स्तरों पर अलग-अलग चरणों के साथ जुड़ी हुई हैं। अन्य दो चरणों के बीच में चरण के एक परिचालक द्वारा देखा जाने वाला पारस्परिक अधिष्ठापन ऊपर या नीचे परिचालकों द्वारा देखे जाने वाले अधिष्ठापन से अलग होता है। तीन परिचालकों के बीच एक असंतुलित अधिष्ठापन समस्याग्रस्त है क्योंकि इसके परिणामस्वरूप मध्य रेखा में कुल संचरित शक्ति की अनुपातहीन मात्रा हो सकती है। इसी तरह, एक असंतुलित भार तब हो सकता है जब एक लाइन लगातार जमीन के सबसे करीब हो और कम प्रतिबाधा पर काम कर रही हो। इस घटना के कारण,परिचालकों को समय-समय पर पारेषण लाइन की लंबाई के साथ स्थानांतरित किया जाना चाहिए ताकि प्रत्येक चरण तीनों चरणों द्वारा देखे गए पारस्परिक अधिष्ठापन को संतुलित करने के लिए प्रत्येक सापेक्ष स्थिति में समान समय देखे। इसे पूरा करने के लिए, विभिन्न [[ ट्रांसपोज़िशन (दूरसंचार) |प्रतिस्थापन स्कीम]] में पारेषण लाइन की लंबाई के साथ-साथ नियमित अंतराल पर विशेष रूप से अभिकल्पना किए गए [[ ट्रांसपोज़िशन टॉवर |प्रतिस्थापन टॉवर]] एस पर लाइन की स्थिति की अदला-बदली की जाती है।
 
=== सब-पारेषण ===
[[File:Cavite, Batangas jf0557 11.jpg|thumb|175px|
[[फिलीपींस]] में एक 115; केवी सबट्रांसमिशन लाइन, 20; केवी [[विद्युत बिजली वितरण | वितरण]] लाइनों और एक [[स्ट्रीट लाइट]] के साथ, सभी एक लकड़ी में जोड़ा हुआ [[यूटिलिटी पोल | सबट्रांसमिशन पोल]]]]]
[[File:Wood Pole Structure.JPG|thumb|173px|115 केवी एच-फ्रेम पारेषण टावर ]]
 
'''सब-पारेषण''' एक इलेक्ट्रिक पावर पारेषण प्रणाली का हिस्सा है जो अपेक्षाकृत कम वोल्टेज पर चलता है। सभी[[ इलेक्ट्रिकल सबस्टेशन | वितरण उपकेंद्र]] एस को हाई मेन पारेषण वोल्टेज से जोड़ना आर्थिक नहीं है, क्योंकि उपकरण बड़ा और अधिक महंगा है। आमतौर पर, केवल बड़े उपकेंद्र इस उच्च वोल्टेज से जुड़ते हैं। इसे नीचे उतारा जाता है और कस्बों और आस-पड़ोस के छोटे उपकेंद्रों में भेजा जाता है। सब पारेषण परिपथ को आमतौर पर लूप में व्यवस्थित किया जाता है ताकि एक लाइन की विफलता कई ग्राहकों को थोड़े समय से अधिक समय तक सेवा में कटौती न करे। लूप को सामान्य रूप से बंद किया जा सकता है, जहां एक परिपथ के नुकसान के परिणामस्वरूप कोई रुकावट नहीं होनी चाहिए, या सामान्य रूप से खुले जहां उपकेंद्र बैकअप आपूर्ति पर स्विच कर सकते हैं। जबकि सब पारेषण परिपथ आमतौर पर [[ ओवरहेड पावर लाइन |शिरोपरि लाइन]] पर किए जाते हैं, शहरी क्षेत्रों में दफन केबल का उपयोग किया जा सकता है। लो-वोल्टेज सब पारेषण लाइनें कम अधिकृत रास्ता और सरल संरचनाओं का उपयोग करती हैं, जहां आवश्यक हो, उन्हें भूमिगत रखना कहीं अधिक संभव है। उच्च-वोल्टेज लाइनों को अधिक स्थान की आवश्यकता होती है और आमतौर पर जमीन के ऊपर होती हैं क्योंकि उन्हें भूमिगत रखना बहुत महंगा होता है।
 
सब पारेषण [[ इलेक्ट्रिक पावर डिस्ट्रीब्यूशन |वितरण]] के बीच कोई निश्चित कटऑफ नहीं है। वोल्टेज पर्वतमाला कुछ हद तक ओवरलैप होती है। 69 केवी, 115 केवी, और 138 केवी के वोल्टेज अक्सर उत्तरी अमेरिका में सब पारेषण के लिए उपयोग किए जाते हैं। जैसे-जैसे पावर प्रणाली विकसित हुआ, पहले पारेषण के लिए इस्तेमाल किए जाने वाले वोल्टेज का इस्तेमाल सब-पारेषण के लिए किया जाता था, और सब-पारेषण वोल्टेज वितरण वोल्टेज बन जाते थे। पारेषण की तरह, सब-पारेषण अपेक्षाकृत बड़ी मात्रा में बिजली ले जाता है, और वितरण की तरह, सब-पारेषण सिर्फ स्थल से स्थल के बजाय एक क्षेत्र को कवर करता है<ref>डोनाल्ड जी. फिंक और एच. वेन बीटी। (2007), ''इलेक्ट्रिकल इंजीनियर्स के लिए मानक हैंडबुक (15वां संस्करण)''। मैकग्रा-हिल। {{ISBN|978-0-07-144146-9}} खंड 18.</ref>
 
'''<big>पारेषण ग्रिड से बाहर निकलें</big>'''
 
[[ विद्युत सबस्टेशन |  उपकेंद्र]] पर,  परिवर्तक[[ इलेक्ट्रिक पावर वितरण | वितरण]] के लिए वाणिज्यिक और आवासीय उपयोगकर्ताओं के लिए वोल्टेज को निचले स्तर तक कम कर देता है। यह वितरण सब-पारेषण (33 से 132 केवी) और वितरण (3.3 से 25 केवी) के संयोजन के साथ पूरा किया जाता है। अंत में, उपयोग के बिंदु पर, ऊर्जा कम वोल्टेज में बदल जाती है (देश और ग्राहकों की आवश्यकताओं के अनुसार अलग-अलग देश में[[ मेन्स बिजली | मेन्स बिजली]] देखें)।
 
 
 
 
 


=== सबट्रांसमिशन ===
[[File:Cavite, Batangas jf0557 11.jpg|thumb|175px| [[ फिलीपींस ]] में एक 115 केवी सबट्रांसमिशन लाइन, 20 केवी  [[ इलेक्ट्रिक पावर वितरण |  वितरण ]] लाइनों और  [[ स्ट्रीट लाइट ]] के साथ, सभी एक लकड़ी  [[ यूटिलिटी पोल |  सबट्रांसमिशन पोल ]] ]] में घुड़सवार
[[File:Wood Pole Structure.JPG|thumb|173px|115 केवी एच-फ्रेम ट्रांसमिशन टावर ]]


'''सबट्रांसमिशन''' एक इलेक्ट्रिक पावर ट्रांसमिशन सिस्टम का हिस्सा है जो अपेक्षाकृत कम वोल्टेज पर चलता है। सभी  [[ इलेक्ट्रिकल सबस्टेशन |  डिस्ट्रीब्यूशन सबस्टेशन ]] एस को हाई मेन ट्रांसमिशन वोल्टेज से जोड़ना आर्थिक नहीं है, क्योंकि उपकरण बड़ा और अधिक महंगा है। आमतौर पर, केवल बड़े सबस्टेशन इस उच्च वोल्टेज से जुड़ते हैं। इसे नीचे उतारा जाता है और कस्बों और आस-पड़ोस के छोटे सबस्टेशनों में भेजा जाता है। सबट्रांसमिशन सर्किट को आमतौर पर लूप में व्यवस्थित किया जाता है ताकि एक लाइन की विफलता कई ग्राहकों को थोड़े समय से अधिक समय तक सेवा में कटौती न करे। लूप को सामान्य रूप से बंद किया जा सकता है, जहां एक सर्किट के नुकसान के परिणामस्वरूप कोई रुकावट नहीं होनी चाहिए, या सामान्य रूप से खुले जहां सबस्टेशन बैकअप आपूर्ति पर स्विच कर सकते हैं। जबकि सबट्रांसमिशन सर्किट आमतौर पर  [[ ओवरहेड पावर लाइन |  ओवरहेड लाइन ]] पर किए जाते हैं, शहरी क्षेत्रों में दफन केबल का उपयोग किया जा सकता है। लो-वोल्टेज सबट्रांसमिशन लाइनें कम राइट-ऑफ-वे और सरल संरचनाओं का उपयोग करती हैं; जहां आवश्यक हो, उन्हें भूमिगत रखना कहीं अधिक संभव है। उच्च-वोल्टेज लाइनों को अधिक स्थान की आवश्यकता होती है और आमतौर पर जमीन के ऊपर होती हैं क्योंकि उन्हें भूमिगत रखना बहुत महंगा होता है।


सबट्रांसमिशन और ट्रांसमिशन, या सबट्रांसमिशन और  [[ इलेक्ट्रिक पावर डिस्ट्रीब्यूशन |  डिस्ट्रीब्यूशन ]] के बीच कोई निश्चित कटऑफ नहीं है। वोल्टेज पर्वतमाला कुछ हद तक ओवरलैप होती है। 69 केवी, 115 केवी, और 138 केवी के वोल्टेज अक्सर उत्तरी अमेरिका में सबट्रांसमिशन के लिए उपयोग किए जाते हैं। जैसे-जैसे पावर सिस्टम विकसित हुआ, पहले ट्रांसमिशन के लिए इस्तेमाल किए जाने वाले वोल्टेज का इस्तेमाल सबट्रांसमिशन के लिए किया जाता था, और सबट्रांसमिशन वोल्टेज डिस्ट्रीब्यूशन वोल्टेज बन जाते थे। ट्रांसमिशन की तरह, सबट्रांसमिशन अपेक्षाकृत बड़ी मात्रा में बिजली ले जाता है, और वितरण की तरह, सबट्रांसमिशन सिर्फ पॉइंट-टू-पॉइंट के बजाय एक क्षेत्र को कवर करता है<ref>डोनाल्ड जी. फिंक और एच. वेन बीटी। (2007), ''इलेक्ट्रिकल इंजीनियर्स के लिए मानक हैंडबुक (15वां संस्करण)''। मैकग्रा-हिल। {{ISBN|978-0-07-144146-9}} खंड 18.</ref>


=== ट्रांसमिशन ग्रिड से बाहर निकलें ===
[[ विद्युत सबस्टेशन |  सबस्टेशन ]] पर, ट्रांसफार्मर  [[ इलेक्ट्रिक पावर वितरण |  वितरण ]] के लिए वाणिज्यिक और आवासीय उपयोगकर्ताओं के लिए वोल्टेज को निचले स्तर तक कम कर देता है। यह वितरण सब-ट्रांसमिशन (33 से 132 केवी) और वितरण (3.3 से 25 केवी) के संयोजन के साथ पूरा किया जाता है। अंत में, उपयोग के बिंदु पर, ऊर्जा कम वोल्टेज में बदल जाती है (देश और ग्राहकों की आवश्यकताओं के अनुसार अलग-अलग - देश में  [[ मेन्स बिजली ]] देखें)।


== हाई-वोल्टेज पावर ट्रांसमिशन का लाभ ==
== हाई-वोल्टेज पावर पारेषण का लाभ ==
{{See also|Ideal transformer}}
{{See also|Ideal transformer}}
हाई-वोल्टेज पावर ट्रांसमिशन वायरिंग में लंबी दूरी पर कम प्रतिरोधक नुकसान की अनुमति देता है। उच्च वोल्टेज संचरण की यह दक्षता सबस्टेशनों को उत्पन्न बिजली के बड़े अनुपात के संचरण की अनुमति देती है और बदले में परिचालन लागत बचत में अनुवाद करती है।
हाई-वोल्टेज पावर पारेषण वायरिंग में लंबी दूरी पर कम प्रतिरोधक नुकसान की अनुमति देता है। उच्च वोल्टेज संचरण की यह दक्षता उपकेंद्रों को उत्पन्न बिजली के बड़े अनुपात के संचरण की अनुमति देती है और बदले में परिचालन लागत बचत में अनुवाद करती है।


[[File:Power split two resistances.svg|thumb|बिना ट्रांसफार्मर के विद्युत ग्रिड। ]]
[[File:Power split two resistances.svg|thumb|बिना परिवर्तक के विद्युत ग्रिड। ]]
[[File:Transformer power split.svg|thumb|ट्रांसफार्मर के साथ विद्युत ग्रिड। ]]
[[File:Transformer power split.svg|thumb|परिवर्तक के साथ विद्युत ग्रिड। ]]
एक सरलीकृत मॉडल में, मान लें कि [[ विद्युत ग्रिड ]] एक जनरेटर से बिजली वितरित करता है (वोल्टेज के साथ [[ आदर्श वोल्टेज स्रोत ]] के रूप में प्रतिरूपित) <math>V</math>, delivering a power <math>P_V</math>) to a single point of consumption, modelled by a pure resistance <math>R</math>, when the wires are long enough to have a significant resistance <math>R_C</math>.
सरलीकृत मॉडल में, मान लें कि[[ विद्युत ग्रिड | विद्युत ग्रिड]] एक जनित्र से बिजली वितरित करता है (वोल्टेज के साथ [[ आदर्श वोल्टेज स्रोत |आदर्श वोल्टेज स्रोत]] के रूप में प्रतिरूपित) <math>V</math>, एक शक्ति प्रदान करता है <math>P_V</math>) खपत के एक बिंदु तक, एक शुद्ध प्रतिरोध  <math>R</math>, द्वारा मॉडलिंग की जाती है, जब तार काफी लंबे होते हैं ताकि एक महत्वपूर्ण प्रतिरोध <math>R_C</math>हो सके।


यदि उनके बीच किसी भी ट्रांसफार्मर के बिना श्रृंखला ]] में प्रतिरोध केवल  [[ है, तो सर्किट  [[ वोल्टेज विभक्त ]] के रूप में कार्य करता है, क्योंकि वही वर्तमान <math>I=\frac{V}{R+R_C}</math> तार प्रतिरोध और संचालित डिवाइस के माध्यम से चलता है। परिणामस्वरूप, उपयोगी शक्ति (खपत के बिंदु पर प्रयुक्त) है:<math>P_R= V_2\times I = V\frac{R}{R+R_C}\times\frac{V}{R+R_C} = \frac{R}{R+R_C}\times\frac{V^2}{R+R_C} = \frac{R}{R+R_C} P_V</math>
यदि उनके बीच किसी भी परिवर्तक के बिना श्रृंखला ]] में प्रतिरोध केवल  [[ है, तोपरिपथ [[ वोल्टेज विभक्त |वोल्टेज विभक्त]] के रूप में कार्य करता है, क्योंकि वही वर्तमान <math>I=\frac{V}{R+R_C}</math> तार प्रतिरोध और संचालित उपकरण के माध्यम से चलता है। परिणामस्वरूप, उपयोगी शक्ति (खपत के बिंदु पर प्रयुक्त) है:<math>P_R= V_2\times I = V\frac{R}{R+R_C}\times\frac{V}{R+R_C} = \frac{R}{R+R_C}\times\frac{V^2}{R+R_C} = \frac{R}{R+R_C} P_V</math>
अब मान लें कि एक ट्रांसफॉर्मर खपत बिंदु पर उपयोग के लिए तारों द्वारा ले जाने वाली उच्च-वोल्टेज, कम-वर्तमान बिजली को कम-वोल्टेज, उच्च-वर्तमान बिजली में परिवर्तित करता है। अगर हम मान लें कि यह एक  [[ आदर्श ट्रांसफार्मर ]] है जिसका वोल्टेज अनुपात है <math>a</math> (i.e., the voltage is divided by <math>a</math> and the current is multiplied by <math>a</math> in the secondary branch, compared to the primary branch), then the circuit is again equivalent to a voltage divider, but the transmission wires now have apparent resistance of only <math>R_C/a^2</math>. तब उपयोगी शक्ति है:<math>P_R= V_2\times I_2 = \frac{a^2R\times V^2}{(a^2 R+R_C)^2} = \frac{a^2 R}{a^2 R+R_C} P_V = \frac{R}{R+R_C/a^2} P_V</math>


के लिए <math>a>1</math> (यानी खपत बिंदु के पास उच्च वोल्टेज का कम वोल्टेज में रूपांतरण), जनरेटर की शक्ति का एक बड़ा अंश खपत बिंदु पर प्रेषित होता है और एक कम अंश  [[ जूल हीटिंग ]] में खो जाता है।
अब मान लें कि एक ट्रांसफॉर्मर खपत बिंदु पर उपयोग के लिए तारों द्वारा ले जाने वाली उच्च-वोल्टेज, कम-वर्तमान बिजली को कम-वोल्टेज, उच्च-वर्तमान बिजली में परिवर्तित करता है। अगर हम मान लें कि यह एक [[ आदर्श ट्रांसफार्मर |आदर्श परिवर्तक]] है जिसका वोल्टेज अनुपात है <math>a</math> (यानी, वोल्टेज को <math>a</math>  से विभाजित किया जाता है और करंट को प्राथमिक शाखा की तुलना में सेकेंडरी ब्रांच में <math>a</math> से गुणा किया जाता है), फिर  परिपथ फिर से वोल्टेज डिवाइडर के बराबर होता है, लेकिन पारेषण तारों में अब केवल <math>R_C/a^2</math> का स्पष्ट प्रतिरोध है। तब उपयोगी शक्ति है:<math>P_R= V_2\times I_2 = \frac{a^2R\times V^2}{(a^2 R+R_C)^2} = \frac{a^2 R}{a^2 R+R_C} P_V = \frac{R}{R+R_C/a^2} P_V</math>


== मॉडलिंग और ट्रांसमिशन मैट्रिक्स ==
के लिए <math>a>1</math> (यानी खपत बिंदु के पास उच्च वोल्टेज का कम वोल्टेज में रूपांतरण), जनित्र की शक्ति का एक बड़ा अंश खपत बिंदु पर प्रेषित होता है और एक कम अंश [[ जूल हीटिंग |जूल हीटिंग]] में खो जाता है।
{{Main|Performance and modelling of AC transmission}}


[[File:Transmission Line Black Box.JPG|thumb|upright=1.6|ट्रांसमिशन लाइन ]] के लिए ब्लैक बॉक्स मॉडल अक्सर, हम केवल ट्रांसमिशन लाइन की टर्मिनल विशेषताओं में रुचि रखते हैं, जो कि भेजने (एस) और रिसीविंग (आर) सिरों पर वोल्टेज और करंट होते हैं। ट्रांसमिशन लाइन को तब ब्लैक बॉक्स के रूप में तैयार किया जाता है और इसके व्यवहार को मॉडल करने के लिए 2 बाय 2 ट्रांसमिशन मैट्रिक्स का उपयोग किया जाता है, जो निम्नानुसार है:
== मॉडलिंग और पारेषण मैट्रिक्स ==
[[File:Transmission Line Black Box.JPG|thumb|upright=1.6|पारेषण लाइन ]] अक्सर, हम केवल संचरण लाइन की टर्मिनल विशेषताओं में रुचि रखते हैं, जो कि भेजने (एस) और प्राप्त करने (आर) सिरों पर वोल्टेज और करंट होते हैं। पारेषण लाइन को तब "ब्लैक बॉक्स" के रूप में तैयार किया जाता है और इसके व्यवहार को मॉडल करने के लिए 2 बाय 2 पारेषण मैट्रिक्स का उपयोग किया जाता है:


:<गणित>
<math>\begin{bmatrix} Vs \\ Is \end{bmatrix} =\begin{bmatrix} A & B \\ C & D \end{bmatrix}\begin{bmatrix} Vr \\ Ir \end{bmatrix}</math>
\शुरू{बीमैट्रिक्स}
वी_\गणित{एस}\\
मैं_\गणित{एस}\\
\अंत{बीमैट्रिक्स}
=
\शुरू{बीमैट्रिक्स}
ए और बी\\
सी एंड डी\\
\अंत{बीमैट्रिक्स}
\शुरू{बीमैट्रिक्स}
वी_\गणित{आर}\\
मैं_\गणित{आर}\\
\अंत{बीमैट्रिक्स}
</गणित>


लाइन को एक पारस्परिक, सममित नेटवर्क माना जाता है, जिसका अर्थ है कि प्राप्त करने और भेजने वाले लेबल को बिना किसी परिणाम के स्विच किया जा सकता है। ट्रांसमिशन मैट्रिक्स ''' टी ''' में निम्नलिखित गुण भी हैं:
लाइन को एक पारस्परिक, सममित प्रसार माना जाता है, जिसका अर्थ है कि प्राप्त करने और भेजने वाले लेबल को बिना किसी परिणाम के स्विच किया जा सकता है। पारेषण मैट्रिक्स T में निम्नलिखित गुण भी हैं:
* <math>\det(T) = AD - BC = 1</math>
* <math>\det(T) = AD - BC = 1</math>
* <math>A = D</math>
* <math>A = D</math>


पैरामीटर ''ए'', ''बी'', ''सी'', और ''डी'' इस बात पर निर्भर करता है कि वांछित मॉडल लाइन के [[ विद्युत प्रतिरोध और चालन | प्रतिरोध ]] (''आर'') को कैसे संभालता है। ), [[ अधिष्ठापन ]] (''L''), [[ समाई ]] (''C''), और शंट (समानांतर, रिसाव) [[ विद्युत चालकता | चालकता ]] ''G''चार मुख्य मॉडल लघु रेखा सन्निकटन, मध्यम रेखा सन्निकटन, लंबी रेखा सन्निकटन (वितरित मापदंडों के साथ), और दोषरहित रेखा हैं। वर्णित सभी मॉडलों में, एक बड़े अक्षर जैसे ''R'' का अर्थ है रेखा के ऊपर कुल योग राशि और 'c' जैसे लोअरकेस अक्षर प्रति-इकाई-लंबाई मात्रा को संदर्भित करता है।
पैरामीटर A, B, C और D इस बात पर निर्भर करता है कि वांछित मॉडल लाइन के [[ विद्युत प्रतिरोध और चालन |प्रतिरोध]] (R), [[ अधिष्ठापन |अधिष्ठापन]] (''L''), [[ समाई |समाई]] (''C''), और शंट (समानांतर, रिसाव) [[ विद्युत चालकता |चालकता]] ''G'' को कैसे संभालता है। चार मुख्य मॉडल लघु रेखा सन्निकटन, मध्यम रेखा सन्निकटन, लंबी रेखा सन्निकटन (वितरित मापदंडों के साथ), और दोषरहित रेखा हैं। वर्णित सभी मॉडलों में, एक बड़े अक्षर जैसे ''R'' का अर्थ है रेखा के ऊपर कुल योग राशि और 'c' जैसे लोअरकेस अक्षर प्रति-इकाई-लंबाई मात्रा को संदर्भित करता है।


=== दोषरहित रेखा ===
=== दोषरहित रेखा ===
''' दोषरहित रेखा ''' सन्निकटन सबसे कम सटीक मॉडल है; इसका उपयोग अक्सर छोटी लाइनों पर किया जाता है जब लाइन का इंडक्शन उसके प्रतिरोध से बहुत अधिक होता है। इस सन्निकटन के लिए, भेजने और प्राप्त करने वाले सिरों पर वोल्टेज और करंट समान हैं।
[[File:Losslessline.jpg|thumb|दोषरहित लाइन के लिए भेजने और प्राप्त करने पर वोल्टेज]]
[[File:Losslessline.jpg|thumb|दोषरहित लाइन ]] . के लिए भेजने और प्राप्त करने पर वोल्टेज
दोषरहित लाइन सन्निकटन कम से कम सटीक मॉडल है, इसका उपयोग अक्सर छोटी लाइनों पर किया जाता है जब लाइन का इंडक्शन इसके प्रतिरोध से बहुत अधिक होता है। इस सन्निकटन के लिए, वोल्टेज और करंट भेजने और प्राप्त करने के सिरों पर समान होते हैं।
विशेषता प्रतिबाधा शुद्ध वास्तविक है, जिसका अर्थ है कि प्रतिबाधा के लिए प्रतिरोधी, और इसे अक्सर दोषरहित रेखा के लिए ''' वृद्धि प्रतिबाधा ''' कहा जाता है। जब दोषरहित लाइन को सर्ज प्रतिबाधा द्वारा समाप्त किया जाता है, तो कोई वोल्टेज ड्रॉप नहीं होता है। हालांकि वोल्टेज और करंट के चरण कोण घुमाए जाते हैं, वोल्टेज और करंट का परिमाण लाइन की लंबाई के साथ स्थिर रहता है। लोड के लिए> एसआईएल, भेजने के अंत से वोल्टेज कम हो जाएगा और लाइन VARs की खपत करेगी। लोड के लिए < एसआईएल, भेजने के अंत से वोल्टेज बढ़ेगा, और लाइन VARs उत्पन्न करेगी।
 
विशेषता प्रतिबाधा शुद्ध वास्तविक है, जिसका अर्थ है उस प्रतिबाधा के लिए प्रतिरोधक, और इसे अक्सर दोषरहित रेखा के लिए वृद्धि प्रतिबाधा कहा जाता है। जब दोषरहित लाइन को सर्ज प्रतिबाधा द्वारा समाप्त किया जाता है, तो कोई वोल्टेज ड्रॉप नहीं होता है। हालांकि वोल्टेज और धारा के फेज एंगल घुमाए जाते हैं, वोल्टेज और धारा का परिमाण लाइन की लंबाई के साथ स्थिर रहता है। लोड> एसआईएल के लिए, वोल्टेज अंत भेजने से गिर जाएगा और लाइन वीएआर का "उपभोग" करती है। लोड <एसआईएल के लिए, वोल्टेज अंत भेजने से बढ़ेगा, और लाइन वीएआर "उत्पन्न" करती है।
 
 
 
 
 
 
 
 
 


=== छोटी लाइन ===
=== छोटी लाइन ===
'''शॉर्ट लाइन''' सन्निकटन आमतौर पर . से कम लाइनों के लिए उपयोग किया जाता है {{cvt|80|km}} लंबा। एक छोटी लाइन के लिए, केवल एक श्रृंखला प्रतिबाधा ''Z'' पर विचार किया जाता है, जबकि ''C'' और ''G'' को अनदेखा किया जाता है। अंतिम परिणाम यह है कि '''A = D = 1 प्रति यूनिट''', '''B = Z Ohms''', और '''C = 0'''। इस सन्निकटन के लिए संबद्ध संक्रमण मैट्रिक्स इसलिए है:
'''शॉर्ट लाइन''' सन्निकटन आमतौर पर {{cvt|80|km}} लंबा से कम लाइनों के लिए उपयोग किया जाता है। एक छोटी लाइन के लिए, केवल एक श्रृंखला प्रतिबाधा ''Z'' पर विचार किया जाता है, जबकि ''C'' और ''G'' को अनदेखा किया जाता है। अंतिम परिणाम यह है कि '''A = D = 1 प्रति यूनिट''', '''B = Z Ohms''', और '''C = 0'''। इस सन्निकटन के लिए संबद्ध संक्रमण मैट्रिक्स इसलिए है:
:<गणित>
 
\शुरू{बीमैट्रिक्स}
<math>\begin{bmatrix} Vs \\ Is \end{bmatrix} =\begin{bmatrix} A & B \\ C & D \end{bmatrix}\begin{bmatrix} Vr \\ Ir \end{bmatrix}</math>
वी_\गणित{एस}\\
मैं_\गणित{एस}\\
\अंत{बीमैट्रिक्स}
=
\शुरू{बीमैट्रिक्स}
1 और जेड\\
0 और 1\\
\अंत{बीमैट्रिक्स}
\शुरू{बीमैट्रिक्स}
वी_\गणित{आर}\\
मैं_\गणित{आर}\\
\अंत{बीमैट्रिक्स}
</गणित>


=== मध्यम रेखा ===
=== मध्यम रेखा ===
'''मध्यम रेखा''' सन्निकटन का उपयोग . के बीच की रेखाओं के लिए किया जाता है {{cvt|80 and 250|km}} लंबा। इस मॉडल में, श्रृंखला प्रतिबाधा और शंट (वर्तमान रिसाव) चालन पर विचार किया जाता है, जिसमें शंट चालन का आधा भाग लाइन के प्रत्येक छोर पर रखा जाता है। इस सर्किट को अक्सर नाममात्र  [[ पाई (अक्षर) | ''π'' (पीआई) ]] सर्किट के रूप में संदर्भित किया जाता है क्योंकि आकार (''π'') को तब लिया जाता है जब रिसाव चालन को दोनों तरफ रखा जाता है। सर्किट आरेख। मध्यम रेखा का विश्लेषण निम्नलिखित परिणाम में से एक लाता है:
'''मध्यम रेखा''' सन्निकटन का उपयोग {{cvt|80 and 250|km}} लंबा के बीच की रेखाओं के लिए किया जाता है। इस मॉडल में, श्रृंखला प्रतिबाधा और शंट (वर्तमान रिसाव) चालन पर विचार किया जाता है, जिसमें शंट चालन का आधा भाग लाइन के प्रत्येक छोर पर रखा जाता है। इस परिपथ को अक्सर [[ पाई (अक्षर) |''π'' (पीआई)]] परिपथ के रूप में संदर्भित किया जाता है क्योंकि आकार (π) को तब लिया जाता है जब परिपथ आरेख के दोनों किनारों पर रिसाव चालन रखा जाता है। मध्यम रेखा का विश्लेषण निम्नलिखित परिणामों में से एक लाता है:


:<गणित>
<math>A= D= 1+\tfrac{GZ}{2} per unit</math>
\शुरू{संरेखण}
A &= D = 1 + \frac{G Z}{2} \text{ प्रति यूनिट}\\
बी &= जेड\ओमेगा\\
सी और = जी \बिग(1 + \frac{जी जेड}{4}\बिग)एस
\अंत{संरेखण}
</गणित>


मध्यम-लंबाई की संचरण लाइनों के प्रति-सहज व्यवहार:
<math>B= Z \Omega</math>


* बिना लोड या छोटे करंट पर वोल्टेज बढ़ना ( [[ फेरांति प्रभाव ]])
<math>C=G\biggl(1+\tfrac{GZ}{4}\Biggr)S</math>
* रिसीविंग-एंड करंट सेंडिंग-एंड करंट से अधिक हो सकता है


=== लंबी लाइन ===
मध्यम-लंबाई की संचरण लाइनों के प्रति-सहज व्यवहार:
'''लॉन्ग लाइन''' मॉडल का उपयोग तब किया जाता है जब उच्च स्तर की सटीकता की आवश्यकता होती है या जब विचाराधीन लाइन से अधिक होती है {{cvt|250|km}} लंबा। श्रृंखला प्रतिरोध और शंट चालन को वितरित पैरामीटर के रूप में माना जाता है, जिसका अर्थ है कि रेखा की प्रत्येक अंतर लंबाई में एक समान अंतर श्रृंखला प्रतिबाधा और शंट प्रवेश है। निम्नलिखित परिणाम ट्रांसमिशन लाइन के साथ किसी भी बिंदु पर लागू किया जा सकता है, जहां <math>\gamma</math>  [[ प्रसार स्थिरांक ]] है।
:<गणित>
\शुरू{संरेखण}
A &= D = \cosh(\gamma x) \text{ प्रति यूनिट}\\[3mm]
B &= Z_c \sinh(\gamma x) \Omega\\[2mm]
सी &= \frac{1}{Z_c} \sinh(\gamma x) S
\अंत{संरेखण}
</गणित>


लंबी लाइन के अंत में वोल्टेज और करंट ज्ञात करने के लिए, <math>x</math> should be replaced with <math>l</math> (लाइन की लंबाई) ट्रांसमिशन मैट्रिक्स के सभी मापदंडों में।
* बिना लोड या छोटे धारा पर वोल्टेज बढ़ना ([[ फेरांति प्रभाव |फेरांति प्रभाव]])
* रिसीविंग-एंड धारा सेंडिंग-एंड धारा से अधिक हो सकता है।


(इस मॉडल के पूर्ण विकास के लिए, [[ टेलीग्राफर के समीकरण ]] देखें।)
=== लंबी लाइन<math>x</math> ===
'''लॉन्ग लाइन''' मॉडल का उपयोग तब किया जाता है जब उच्च स्तर की सटीकता की आवश्यकता होती है या जब विचाराधीन लाइन {{cvt|250|km}} लंबा से अधिक होती है। श्रृंखला प्रतिरोध और शंट चालन को वितरित पैरामीटर के रूप में माना जाता है, जिसका अर्थ है कि रेखा की प्रत्येक अंतर लंबाई में एक समान अंतर श्रृंखला प्रतिबाधा और शंट प्रवेश है। निम्नलिखित परिणाम पारेषण लाइन के साथ किसी भी बिंदु पर लागू किया जा सकता है, जहां <math>\gamma</math> [[ प्रसार स्थिरांक |प्रसार स्थिरांक]] है।
:''<math>A=D=\cosh(\gamma x)  per unit</math>''
:<math>B=Zc \sinh (\gamma x)  \Omega</math>
:<math>C=\frac{1}{Zc} \sinh (\gamma x)  S</math>
लंबी लाइन के अंत में वोल्टेज और करंट को खोजने के लिए, पारेषण मैट्रिक्स के सभी मापदंडों में  को <math>l</math> (लाइन की लंबाई) से बदला जाना चाहिए।


== हाई-वोल्टेज डायरेक्ट करंट ==
(इस मॉडल के पूर्ण विकास के लिए, टेलीग्राफर के समीकरण देखें।)
{{Main|High-voltage direct current}}


हाई-वोल्टेज डायरेक्ट करंट (HVDC) का उपयोग लंबी दूरी पर या एसिंक्रोनस ग्रिड के बीच इंटरकनेक्शन के लिए बड़ी मात्रा में बिजली संचारित करने के लिए किया जाता है। जब विद्युत ऊर्जा को बहुत लंबी दूरी पर प्रसारित करना होता है, तो एसी ट्रांसमिशन में खोई हुई शक्ति सराहनीय हो जाती है और [[ प्रत्यावर्ती धारा ]] के बजाय [[ प्रत्यक्ष धारा ]] का उपयोग करना कम खर्चीला होता है। एक बहुत लंबी ट्रांसमिशन लाइन के लिए, ये कम नुकसान (और डीसी लाइन की कम निर्माण लागत) प्रत्येक छोर पर आवश्यक कनवर्टर स्टेशनों की अतिरिक्त लागत को ऑफसेट कर सकते हैं।
== '''हाई-वोल्टेज डायरेक्ट धारा''' ==
हाई-वोल्टेज डायरेक्ट करंट (एचवीडीसी) का उपयोग लंबी दूरी पर या एसिंक्रोनस ग्रिड के बीच अंतःसंबंध  के लिए बड़ी मात्रा में बिजली संचारित करने के लिए किया जाता है। जब विद्युत ऊर्जा को बहुत लंबी दूरी पर प्रसारित करना होता है, तो एसी पारेषण में खोई हुई शक्ति प्रशंसनीय हो जाती है और [[ प्रत्यावर्ती धारा |प्रत्यावर्ती धारा]] के बजाय [[ प्रत्यक्ष धारा |प्रत्यक्ष धारा]] का उपयोग करना कम खर्चीला होता है। बहुत लंबी पारेषण लाइन के लिए, ये कम नुकसान (और डीसी लाइन की कम निर्माण लागत) प्रत्येक छोर पर आवश्यक कनवर्टर स्टेशनों की अतिरिक्त लागत को ऑफसेट कर सकते हैं।


[[ हाई-वोल्टेज डायरेक्ट करंट |  एचवीडीसी ]] का उपयोग लंबे  [[ सबमरीन पावर केबल | सबमरीन केबल ]] के लिए भी किया जाता है जहाँ केबल कैपेसिटेंस के कारण एसी का उपयोग नहीं किया जा सकता है<ref>डोनाल्ड जी. फिंक, एच. वेन बीट्टी, ''स्टैण्डर्ड हैंडबुक फॉर इलेक्ट्रिकल इंजीनियर्स 11वां संस्करण'', मैकग्रा हिल, 1978, {{ISBN|0-07-020974-X}}, पृष्ठ 15-57 और 15-5</ref> इन मामलों में डीसी के लिए विशेष [[ हाई-वोल्टेज केबल ]] एस का उपयोग किया जाता है। पनडुब्बी एचवीडीसी सिस्टम का उपयोग अक्सर द्वीपों के बिजली ग्रिड को जोड़ने के लिए किया जाता है, उदाहरण के लिए, [[ ग्रेट ब्रिटेन ]] और [[ महाद्वीपीय यूरोप ]] के बीच, ग्रेट ब्रिटेन और आयरलैंड के बीच, [[ तस्मानिया ]] और ऑस्ट्रेलियाई मुख्य भूमि के बीच, उत्तर और दक्षिण द्वीपों के बीच। न्यूज़ीलैंड, [[ न्यू जर्सी ]] और [[ के बीच न्यू यॉर्क सिटी ]], और न्यू जर्सी और [[ लॉन्ग आईलैंड ]] के बीच। पनडुब्बी कनेक्शन अप करने के लिए {{convert|600|km}} लंबाई में वर्तमान में उपयोग में हैं<ref name="guarnieri 7-3">{{Cite journal|last=Guarnieri|first=M.|year=2013|title=The Alternating Evolution of DC Power Transmission|journal=IEEE Industrial Electronics Magazine|volume=7|issue=3|pages=60–63|doi=10.1109/MIE.2013.2272238|s2cid=23610440}}</ref>
[[ हाई-वोल्टेज डायरेक्ट करंट |  एचवीडीसी]] का उपयोग लंबे  [[ सबमरीन पावर केबल |पनडुब्बी केबल]] के लिए भी किया जाता है जहाँ केबल कैपेसिटेंस के कारण एसी का उपयोग नहीं किया जा सकता है<ref>डोनाल्ड जी. फिंक, एच. वेन बीट्टी, ''स्टैण्डर्ड हैंडबुक फॉर इलेक्ट्रिकल इंजीनियर्स 11वां संस्करण'', मैकग्रा हिल, 1978, {{ISBN|0-07-020974-X}}, पृष्ठ 15-57 और 15-5</ref> इन मामलों में डीसी के लिए विशेष [[ हाई-वोल्टेज केबल |हाई-वोल्टेज केबल]] एस का उपयोग किया जाता है। पनडुब्बी एचवीडीसी प्रणाली का उपयोग अक्सर द्वीपों के बिजली ग्रिड को जोड़ने के लिए किया जाता है, उदाहरण के लिए, [[ ग्रेट ब्रिटेन |ग्रेट ब्रिटेन]] और[[ महाद्वीपीय यूरोप | महाद्वीपीय यूरोप]] के बीच, ग्रेट ब्रिटेन और आयरलैंड के बीच,[[ तस्मानिया | तस्मानिया]] और ऑस्ट्रेलियाई मुख्य भूमि के बीच, उत्तर और दक्षिण द्वीपों के बीच न्यूज़ीलैंड, [[ न्यू जर्सी |न्यू जर्सी]] और[[ के बीच न्यू यॉर्क सिटी | के बीच न्यू यॉर्क सिटी,]] और न्यू जर्सी और [[ लॉन्ग आईलैंड |लॉन्ग आईलैंड]] के बीच  600 किलोमीटर (370 मील) तक के पनडुब्बी कनेक्शन वर्तमान में उपयोग में हैं।<ref name="guarnieri 7-3">{{Cite journal|last=Guarnieri|first=M.|year=2013|title=The Alternating Evolution of DC Power Transmission|journal=IEEE Industrial Electronics Magazine|volume=7|issue=3|pages=60–63|doi=10.1109/MIE.2013.2272238|s2cid=23610440}}</ref>


एसी बिजली प्रवाह के साथ ग्रिड में समस्याओं को नियंत्रित करने के लिए एचवीडीसी लिंक का उपयोग किया जा सकता है। [[ इलेक्ट्रिक पावर के रूप में एक एसी लाइन द्वारा प्रेषित शक्ति बढ़ जाती है # स्रोत अंत वोल्टेज और गंतव्य छोर के बीच वर्तमान |  चरण कोण ]] को बदलना, लेकिन बहुत बड़ा चरण कोण सिस्टम को लाइन के दोनों छोर पर चरण से बाहर गिरने की अनुमति देगा . चूंकि डीसी लिंक में बिजली प्रवाह लिंक के दोनों छोर पर एसी नेटवर्क के चरणों से स्वतंत्र रूप से नियंत्रित होता है, इसलिए यह चरण कोण सीमा मौजूद नहीं है, और एक डीसी लिंक हमेशा अपनी पूर्ण रेटेड शक्ति को स्थानांतरित करने में सक्षम होता है। एक डीसी लिंक इसलिए एसी ग्रिड को किसी भी छोर पर स्थिर करता है, क्योंकि बिजली प्रवाह और चरण कोण को स्वतंत्र रूप से नियंत्रित किया जा सकता है।
एसी बिजली प्रवाह के साथ ग्रिड में समस्याओं को नियंत्रित करने के लिए एचवीडीसी लिंक का उपयोग किया जा सकता है। स्रोत अंत वोल्टेज और गंतव्य छोर के बीच चरण कोण बढ़ने पर एसी लाइन द्वारा प्रेषित शक्ति बढ़ जाती है, लेकिन बहुत बड़ा चरण कोण प्रणाली को लाइन के दोनों छोर पर चरण से बाहर गिरने की अनुमति देता है। चूंकि डीसी लिंक में बिजली का प्रवाह लिंक के दोनों छोर पर एसी नेटवर्क के चरणों से स्वतंत्र रूप से नियंत्रित होता है, इसलिए यह चरण कोण सीमा मौजूद नहीं है, और एक डीसी लिंक हमेशा अपनी पूर्ण रेटेड शक्ति को स्थानांतरित करने में सक्षम होता है। एक डीसी लिंक इसलिए एसी ग्रिड को किसी भी छोर पर स्थिर करता है, क्योंकि बिजली प्रवाह और चरण कोण को स्वतंत्र रूप से नियंत्रित किया जा सकता है।


एक उदाहरण के रूप में, [[ सिएटल ]] और [[ बोस्टन ]] के बीच एक काल्पनिक रेखा पर एसी बिजली के प्रवाह को समायोजित करने के लिए दो क्षेत्रीय विद्युत ग्रिड के सापेक्ष चरण के समायोजन की आवश्यकता होगी। यह एसी सिस्टम में एक दैनिक घटना है, लेकिन एसी सिस्टम के घटकों के विफल होने और शेष कार्यशील ग्रिड सिस्टम पर अप्रत्याशित भार डालने पर बाधित हो सकता है। इसके बजाय एक एचवीडीसी लाइन के साथ, ऐसा इंटरकनेक्शन होगा:
एक उदाहरण के रूप में,[[ सिएटल | सिएटल]] और [[ बोस्टन |बोस्टन]] के बीच एक काल्पनिक रेखा पर एसी बिजली के प्रवाह को समायोजित करने के लिए दो क्षेत्रीय विद्युत ग्रिड के सापेक्ष चरण के समायोजन की आवश्यकता होगी। यह एसी प्रणाली में एक दैनिक घटना है, लेकिन एसी प्रणाली के घटकों के विफल होने और शेष कार्यशील ग्रिड प्रणाली पर अप्रत्याशित भार डालने पर बाधित हो सकता है। इसके बजाय एक एचवीडीसी लाइन के साथ, ऐसा अंतःसंबंध  होगा:
# सिएटल में एसी को एचवीडीसी में बदलें;
# सिएटल में एसी को एचवीडीसी में बदलें,
# एचवीडीसी का प्रयोग करें {{convert|3000|mi|km}} क्रॉस-कंट्री ट्रांसमिशन; और
# एचवीडीसी का प्रयोग करें {{convert|3000|mi|km}} क्रॉस-कंट्री पारेषण, और
# बोस्टन में एचवीडीसी को स्थानीय रूप से सिंक्रोनाइज्ड एसी में बदलें,
# बोस्टन में एचवीडीसी को स्थानीय रूप से सिंक्रोनाइज्ड एसी में बदलें,
(और संभवतः संचरण मार्ग के साथ अन्य सहयोगी शहरों में)। इस तरह की प्रणाली के विफल होने की संभावना कम हो सकती है यदि इसके कुछ हिस्सों को अचानक बंद कर दिया जाए। एक लंबी डीसी ट्रांसमिशन लाइन का एक उदाहरण पश्चिमी संयुक्त राज्य में स्थित [[ पैसिफिक डीसी इंटरटी ]] है।
(और संभवतः संचरण मार्ग के साथ अन्य सहयोगी शहरों में)। इस तरह की प्रणाली के विफल होने की संभावना कम हो सकती है यदि इसके कुछ हिस्सों को अचानक बंद कर दिया जाए। एक लंबी डीसी पारेषण लाइन का एक उदाहरण पश्चिमी संयुक्त राज्य में स्थित [[ पैसिफिक डीसी इंटरटी |पैसिफिक डीसी इंटरटी]] है।


== क्षमता ==
== '''क्षमता''' ==
<!-- पवन ऊर्जा से जुड़ा हुआ है। ->
पारेषण लाइन पर भेजी जा सकने वाली शक्ति की मात्रा सीमित है। सीमा की उत्पत्ति रेखा की लंबाई के आधार पर भिन्न होती है। एक छोटी लाइन के लिए, लाइन लॉस के कारण परिचालकों का ताप एक थर्मल सीमा निर्धारित करता है। यदि बहुत अधिक धारा खींची जाती है, तो परिचालक जमीन के बहुत करीब झुक सकते हैं, या अधिक गर्म होने से परिचालक और उपकरण क्षतिग्रस्त हो सकते हैं। 100 किलोमीटर (62 मील) के क्रम में मध्यवर्ती-लंबाई वाली लाइनों के लिए, लाइन में वोल्टेज ड्रॉप द्वारा सीमा निर्धारित की जाती है। लंबी एसी लाइनों के लिए, प्रणाली स्थिरता उस शक्ति की सीमा निर्धारित करती है जिसे स्थानांतरित किया जा सकता है। लगभग, एक एसी लाइन पर बहने वाली शक्ति वोल्टेज के चरण कोण के कोसाइन के समानुपाती होती है और प्राप्त करने और संचारित करने वाले सिरों पर होती है। यह कोण प्रणाली लोडिंग और पीढ़ी के आधार पर भिन्न होता है। कोण के लिए 90 डिग्री तक पहुंचना अवांछनीय है, क्योंकि बिजली का प्रवाह कम हो जाता है लेकिन प्रतिरोधक नुकसान बना रहता है। लगभग, लाइन की लंबाई और अधिकतम भार का स्वीकार्य उत्पाद प्रणाली वोल्टेज के वर्ग के समानुपाती होता है। स्थिरता में सुधार के लिए लंबी लाइनों पर श्रृंखला कैपेसिटर या चरण-स्थानांतरण ट्रांसफार्मर का उपयोग किया जाता है। उच्च-वोल्टता डीसी पारेषण केवल थर्मल और वोल्टेज ड्रॉप सीमा द्वारा प्रतिबंधित हैं, क्योंकि चरण कोण उनके संचालन के लिए सामग्री नहीं है।
ट्रांसमिशन लाइन पर भेजी जा सकने वाली बिजली की मात्रा सीमित है। सीमा की उत्पत्ति रेखा की लंबाई के आधार पर भिन्न होती है। एक छोटी लाइन के लिए, लाइन लॉस के कारण कंडक्टरों का ताप एक थर्मल सीमा निर्धारित करता है। यदि बहुत अधिक धारा खींची जाती है, तो कंडक्टर जमीन के बहुत करीब झुक सकते हैं, या अधिक गर्म होने से कंडक्टर और उपकरण क्षतिग्रस्त हो सकते हैं। के क्रम में मध्यवर्ती-लंबाई वाली रेखाओं के लिए {{convert|100|km|mi|abbr=off}}, सीमा लाइन में [[ वोल्टेज ड्रॉप ]] द्वारा निर्धारित की जाती है। लंबी एसी लाइनों के लिए, [[ पावर सिस्टम स्थिरता |  सिस्टम स्थिरता ]] उस शक्ति की सीमा निर्धारित करती है जिसे स्थानांतरित किया जा सकता है। लगभग, एक एसी लाइन पर बहने वाली शक्ति वोल्टेज के चरण कोण के कोसाइन के समानुपाती होती है और प्राप्त करने और संचारित करने वाले सिरों पर होती है। यह कोण सिस्टम लोडिंग और पीढ़ी के आधार पर भिन्न होता है। कोण के लिए 90 डिग्री तक पहुंचना अवांछनीय है, क्योंकि बिजली का प्रवाह कम हो जाता है लेकिन प्रतिरोधक नुकसान बना रहता है। लगभग, लाइन की लंबाई और अधिकतम भार का स्वीकार्य उत्पाद सिस्टम वोल्टेज के वर्ग के समानुपाती होता है। स्थिरता में सुधार के लिए लंबी लाइनों पर श्रृंखला कैपेसिटर या चरण-स्थानांतरण ट्रांसफार्मर का उपयोग किया जाता है। [[ उच्च-वोल्टेज प्रत्यक्ष वर्तमान ]] लाइनें केवल थर्मल और वोल्टेज ड्रॉप सीमा द्वारा प्रतिबंधित हैं, क्योंकि चरण कोण उनके संचालन के लिए महत्वपूर्ण नहीं है।


अब तक, केबल मार्ग के साथ तापमान वितरण की भविष्यवाणी करना लगभग असंभव हो गया है, ताकि अधिकतम लागू वर्तमान भार आमतौर पर संचालन की स्थिति और जोखिम को कम करने की समझ के बीच एक समझौता के रूप में निर्धारित किया गया हो। औद्योगिक  [[ डिस्ट्रिब्यूटेड टेम्परेचर सेंसिंग ]] (डीटीएस) सिस्टम की उपलब्धता, जो पूरे केबल में वास्तविक समय के तापमान को मापते हैं, ट्रांसमिशन सिस्टम क्षमता की निगरानी में पहला कदम है। यह निगरानी समाधान तापमान सेंसर के रूप में निष्क्रिय ऑप्टिकल फाइबर का उपयोग करने पर आधारित है, या तो सीधे एक उच्च वोल्टेज केबल के अंदर एकीकृत होता है या केबल इन्सुलेशन पर बाहरी रूप से लगाया जाता है। ओवरहेड लाइनों का समाधान भी उपलब्ध है। इस मामले में ऑप्टिकल फाइबर ओवरहेड ट्रांसमिशन लाइनों (ओपीपीसी) के एक चरण तार के मूल में एकीकृत होता है। एकीकृत डायनेमिक केबल रेटिंग (डीसीआर) या जिसे रीयल टाइम थर्मल रेटिंग (आरटीटीआर) समाधान भी कहा जाता है, न केवल वास्तविक समय में एक उच्च वोल्टेज केबल सर्किट के तापमान की निरंतर निगरानी करने में सक्षम बनाता है, बल्कि मौजूदा नेटवर्क क्षमता को अधिकतम तक सुरक्षित रूप से उपयोग करने में सक्षम बनाता है। इसके अलावा, यह ऑपरेटर को इसकी प्रारंभिक परिचालन स्थितियों में किए गए बड़े बदलावों पर ट्रांसमिशन सिस्टम के व्यवहार की भविष्यवाणी करने की क्षमता प्रदान करता है।
अब तक, केबल मार्ग के साथ तापमान वितरण की भविष्यवाणी करना लगभग असंभव हो गया है, ताकि अधिकतम लागू वर्तमान भार आमतौर पर संचालन की स्थिति और जोखिम को कम करने की समझ के बीच एक समझौता के रूप में निर्धारित किया गया हो। इंडस्ट्रियल डिस्ट्रिब्यूटेड टेम्परेचर सेंसिंग (डीटीएस) प्रणाली की उपलब्धता जो पूरे केबल के साथ रियल टाइम तापमान में मापती है, दोलक प्रणाली क्षमता की निगरानी में पहला कदम है। यह निगरानी समाधान तापमान सेंसर के रूप में निष्क्रिय ऑप्टिकल फाइबर का उपयोग करने पर आधारित है, या तो सीधे एक उच्च वोल्टेज केबल के अंदर एकीकृत होता है या केबल इन्सुलेशन पर बाहरी रूप से लगाया जाता है। ओवरहेड लाइनों का समाधान भी उपलब्ध है। इस मामले में ऑप्टिकल फाइबर ओवरहेड दोलक लाइनों (ओपीपीसी) के एक चरण तार के मूल में एकीकृत होता है। एकीकृत डायनेमिक केबल रेटिंग (डीसीआर) या जिसे रीयल टाइम थर्मल रेटिंग (आरटीटीआर) समाधान भी कहा जाता है, न केवल वास्तविक समय में एक उच्च वोल्टेज केबल परिपथ के तापमान की निरंतर निगरानी करने में सक्षम बनाता है, बल्कि मौजूदा नेटवर्क क्षमता को अधिकतम तक सुरक्षित रूप से उपयोग करने में सक्षम बनाता है। इसके अलावा, यह ऑपरेटर को इसकी प्रारंभिक परिचालन स्थितियों में किए गए बड़े बदलावों पर दोलक प्रणाली के व्यवहार की भविष्यवाणी करने की क्षमता प्रदान करता है।


== नियंत्रण ==
== '''नियंत्रण''' ==
सुरक्षित और पूर्वानुमेय संचालन सुनिश्चित करने के लिए, ट्रांसमिशन सिस्टम के घटकों को जनरेटर, स्विच, सर्किट ब्रेकर और लोड के साथ नियंत्रित किया जाता है। ट्रांसमिशन सिस्टम की वोल्टेज, पावर, फ्रीक्वेंसी, लोड फैक्टर और विश्वसनीयता क्षमताओं को ग्राहकों के लिए लागत प्रभावी प्रदर्शन प्रदान करने के लिए डिज़ाइन किया गया है।
सुरक्षित और पूर्वानुमेय संचालन सुनिश्चित करने के लिए, दोलक प्रणाली के घटकों को जनित्र, स्विच, परिपथ ब्रेकर और लोड के साथ नियंत्रित किया जाता है। दोलक प्रणाली की वोल्टेज, पावर, फ्रीक्वेंसी, लोड फैक्टर और विश्वसनीयता क्षमताओं को ग्राहकों के लिए लागत प्रभावी प्रदर्शन प्रदान करने के लिए अभिकल्पना किया गया है।


=== लोड संतुलन ===
=== भार संतुलन ===
ट्रांसमिशन सिस्टम सुरक्षा और दोष सहिष्णुता मार्जिन के साथ बेस लोड और [[ पीकिंग पावर प्लांट |  पीक लोड क्षमता ]] प्रदान करता है। बड़े पैमाने पर उद्योग मिश्रण के कारण क्षेत्र के अनुसार पीक लोड समय अलग-अलग होता है। बहुत गर्म और बहुत ठंडी जलवायु में घरेलू एयर कंडीशनिंग और हीटिंग लोड का समग्र भार पर प्रभाव पड़ता है। वे आम तौर पर वर्ष के सबसे गर्म भाग में देर से दोपहर में और वर्ष के सबसे ठंडे हिस्से में मध्य-सुबह और मध्य-शाम में सबसे अधिक होते हैं। इससे बिजली की आवश्यकताएं मौसम और दिन के समय के अनुसार बदलती रहती हैं। वितरण प्रणाली के डिजाइन हमेशा बेस लोड और पीक लोड को ध्यान में रखते हैं।
दोलक प्रणाली सुरक्षा और दोष सहिष्णुता मार्जिन के साथ बेस लोड और पीक लोड क्षमता प्रदान करता है। बड़े पैमाने पर उद्योग मिश्रण के कारण क्षेत्र के अनुसार पीक लोड समय अलग-अलग होता है। बहुत गर्म और बहुत ठंडी जलवायु में घरेलू एयर कंडीशनिंग और हीटिंग लोड का समग्र भार पर प्रभाव पड़ता है। वे आम तौर पर वर्ष के सबसे गर्म भाग में देर से दोपहर में और वर्ष के सबसे ठंडे हिस्से में मध्य-सुबह और मध्य-शाम में सबसे अधिक होते हैं। इससे बिजली की आवश्यकताएं मौसम और दिन के समय के अनुसार बदलती रहती हैं। वितरण प्रणाली के अभिकल्पना हमेशा बेस लोड और पीक लोड को ध्यान में रखते हैं।


ट्रांसमिशन सिस्टम में आमतौर पर पीढ़ी के साथ लोड से मेल खाने के लिए बड़ी बफरिंग क्षमता नहीं होती है। इस प्रकार पीढ़ी के उपकरणों की ओवरलोडिंग विफलताओं को रोकने के लिए, उत्पादन को लोड से मिलान किया जाना चाहिए।
दोलक प्रणाली में आमतौर पर पीढ़ी के साथ लोड का मिलान करने के लिए बड़ी बफरिंग क्षमता नहीं होती है। इस प्रकार पीढ़ी के उपकरणों की ओवरलोडिंग विफलताओं को रोकने के लिए, उत्पादन को लोड से मिलान किया जाना चाहिए।


कई स्रोतों और भारों को पारेषण प्रणाली से जोड़ा जा सकता है और शक्ति के व्यवस्थित हस्तांतरण को प्रदान करने के लिए उन्हें नियंत्रित किया जाना चाहिए। केंद्रीकृत बिजली उत्पादन में, उत्पादन का केवल स्थानीय नियंत्रण आवश्यक है, और इसमें [[ अल्टरनेटर सिंक्रोनाइज़ेशन | जेनरेशन यूनिट्स ]] का सिंक्रोनाइज़ेशन शामिल है, ताकि बड़े ट्रांसिएंट और ओवरलोड की स्थिति को रोका जा सके।
कई स्रोतों और भारों को पारेषण प्रणाली से जोड़ा जा सकता है और बिजली के व्यवस्थित हस्तांतरण को प्रदान करने के लिए उन्हें नियंत्रित किया जाना चाहिए। केंद्रीकृत बिजली उत्पादन में, उत्पादन का केवल स्थानीय नियंत्रण आवश्यक है, और इसमें बड़े ट्रांजिस्टर और अधिभार की स्थिति को रोकने [[:hi:तुल्यकालन (प्रत्यावर्ती धारा)|के लिए उत्पादन इकाइयों का सिंक्रनाइज़ेशन]] शामिल है।


[[ वितरित उत्पादन में |  वितरित बिजली उत्पादन ]] जनरेटर भौगोलिक रूप से वितरित किए जाते हैं और उन्हें ऑनलाइन और ऑफलाइन लाने की प्रक्रिया को सावधानीपूर्वक नियंत्रित किया जाना चाहिए। लोड नियंत्रण संकेतों को या तो अलग लाइनों पर या स्वयं बिजली लाइनों पर भेजा जा सकता है। भार को संतुलित करने के लिए वोल्टेज और आवृत्ति का उपयोग सिग्नलिंग तंत्र के रूप में किया जा सकता है।
वितरित बिजली उत्पादन में जनित्र भौगोलिक रूप से वितरित किए जाते हैं और उन्हें ऑनलाइन और ऑफलाइन लाने की प्रक्रिया को सावधानीपूर्वक नियंत्रित किया जाना चाहिए। लोड नियंत्रण संकेतों को या तो अलग लाइनों पर या स्वयं बिजली लाइनों पर भेजा जा सकता है। भार को संतुलित करने के लिए वोल्टेज और आवृत्ति का उपयोग सिग्नलिंग तंत्र के रूप में किया जा सकता है।


वोल्टेज सिग्नलिंग में, वोल्टेज की भिन्नता का उपयोग पीढ़ी बढ़ाने के लिए किया जाता है। लाइन वोल्टेज कम होने पर किसी भी सिस्टम द्वारा जोड़ी गई शक्ति बढ़ जाती है। यह व्यवस्था सैद्धांतिक रूप से स्थिर है। वोल्टेज-आधारित विनियमन जाल नेटवर्क में उपयोग करने के लिए जटिल है, क्योंकि व्यक्तिगत घटकों और सेटपॉइंट्स को हर बार जाल में एक नया जनरेटर जोड़ने पर पुन: कॉन्फ़िगर करने की आवश्यकता होगी।
वोल्टेज सिग्नलिंग में, वोल्टेज की भिन्नता का उपयोग पीढ़ी बढ़ाने के लिए किया जाता है। लाइन वोल्टेज कम होने पर किसी भी प्रणाली द्वारा जोड़ी गई शक्ति बढ़ जाती है। यह व्यवस्था सैद्धांतिक रूप से स्थिर है। वोल्टेज-आधारित विनियमन जाल नेटवर्क में उपयोग करने के लिए जटिल है, क्योंकि व्यक्तिगत घटकों और निर्दिष्ट बिंदू को हर बार जाल में एक नया जनित्र जोड़ने पर पुन: समनुरूप करने की आवश्यकता होती है।


आवृत्ति संकेतन में, उत्पादन इकाइयाँ विद्युत पारेषण प्रणाली की आवृत्ति से मेल खाती हैं। [[ ड्रॉप स्पीड कंट्रोल ]] में, यदि आवृत्ति कम हो जाती है, तो शक्ति बढ़ जाती है। (लाइन फ़्रीक्वेंसी में गिरावट एक संकेत है कि बढ़ा हुआ लोड जनरेटर को धीमा कर रहा है।)
आवृत्ति संकेतन में, उत्पादन इकाइयाँ विद्युत पारेषण प्रणाली की आवृत्ति से मेल खाती हैं। ड्रूप गति नियंत्रण में, यदि आवृत्ति कम हो जाती है, तो शक्ति बढ़ जाती है। (लाइन आवृति में गिरावट एक संकेत है कि बढ़ा हुआ लोड जनित्र को धीमा कर रहा है।)


[[ पवन टरबाइन ]] एस, [[ वाहन-से-ग्रिड ]] और अन्य स्थानीय रूप से वितरित भंडारण और उत्पादन प्रणालियों को पावर ग्रिड से जोड़ा जा सकता है, और सिस्टम संचालन में सुधार के लिए इसके साथ बातचीत कर सकते हैं। अंतरराष्ट्रीय स्तर पर, प्रवृत्ति एक भारी केंद्रीकृत बिजली प्रणाली से एक विकेंद्रीकृत बिजली प्रणाली की ओर धीमी गति से चल रही है। स्थानीय रूप से वितरित उत्पादन प्रणालियों का मुख्य आकर्षण जिसमें कई नए और अभिनव समाधान शामिल हैं, वे बिजली की खपत को उस स्थान के करीब ले जाकर ट्रांसमिशन नुकसान को कम करते हैं जहां इसका उत्पादन किया गया था।<ref>{{cite web
पवन टरबाइन, वाहन-से-ग्रिड और अन्य स्थानीय रूप से वितरित भंडारण और उत्पादन प्रणालियों को पावर ग्रिड से जोड़ा जा सकता है, और प्रणाली संचालन में सुधार के लिए इसके साथ बातचीत कर सकते हैं। अंतरराष्ट्रीय स्तर पर, प्रवृत्ति एक भारी केंद्रीकृत बिजली प्रणाली से एक विकेंद्रीकृत बिजली प्रणाली की ओर धीमी गति से चल रही है। स्थानीय रूप से वितरित उत्पादन प्रणालियों का मुख्य आकर्षण जिसमें कई नए और अभिनव समाधान शामिल हैं, वे बिजली की खपत को उस स्थान के करीब ले जाकर दोलक नुकसान को कम करते हैं जहां इसका उत्पादन किया गया था। <ref>{{Cite web|url=https://www.en-powered.com/blog/the-bumpy-road-to-energy-deregulation|title=The Bumpy Road to Energy Deregulation|publisher=EnPowered|date=2016-03-28}}</ref>
  | url = https://www.en-powered.com/blog/the-bumpy-road-to-energy-deregulation | title = The Bumpy Road to Energy Deregulation
  | publisher = EnPowered | date = 2016-03-28}}</ref>


=== विफलता सुरक्षा ===
=== विफलता सुरक्षा ===
अतिरिक्त लोड स्थितियों के तहत, सिस्टम को एक बार में सभी के बजाय इनायत से विफल होने के लिए डिज़ाइन किया जा सकता है। [[ ब्राउनआउट (बिजली) |  ब्राउनआउट ]] तब होता है जब आपूर्ति शक्ति मांग से कम हो जाती है। [[ पावर आउटेज |  ब्लैकआउट ]] तब होता है जब आपूर्ति पूरी तरह से विफल हो जाती है।
अतिरिक्त लोड स्थितियों के तहत, प्रणाली को एक बार में सभी के बजाय इनायत से विफल होने के लिए अभिकल्पना किया जा सकता है। ब्राउनआउट तब होता है जब आपूर्ति शक्ति मांग से कम हो जाती है। ब्लैकआउट तब होता है जब आपूर्ति पूरी तरह से विफल हो जाती है।
 
रोलिंग ब्लैकआउट (जिसे लोड शेडिंग भी कहा जाता है) जानबूझकर विद्युत पावर आउटेज को इंजीनियर किया जाता है, जब बिजली की मांग आपूर्ति से अधिक हो जाती है, तो अपर्याप्त बिजली वितरित करने के लिए उपयोग किया जाता है।
 
== '''संचार''' ==
लंबी पारेषण लाइनों के ऑपरेटरों को पावर ग्रिड के नियंत्रण के लिए विश्वसनीय संचार और, अक्सर, संबद्ध उत्पादन और वितरण सुविधाएं की आवश्यकता होती है। लाइन के प्रत्येक छोर पर फॉल्ट-सेंसिंग सुरक्षात्मक रिले को संरक्षित लाइन सेक्शन में और बाहर बिजली के प्रवाह की निगरानी के लिए संचार करना चाहिए ताकि दोषपूर्ण  परिचालक या उपकरण को जल्दी से डी-एनर्जेट किया जा सके और प्रणाली का संतुलन बहाल हो सके। शॉर्ट  परिपथ और अन्य दोषों से दोलक लाइन की सुरक्षा आमतौर पर इतनी महत्वपूर्ण होती है कि सामान्य वाहक दूरसंचार अपर्याप्त रूप से विश्वसनीय होते हैं, और दूरस्थ क्षेत्रों में एक सामान्य वाहक उपलब्ध नहीं हो सकता है। एक पारेषण परियोजना से जुड़ी संचार प्रणालियाँ उपयोग कर सकती हैं:
 
* सूक्ष्म तरंग
* पावर-लाइन संचार
* प्रकाशित रेशे
 
शायद ही कभी, और कम दूरी के लिए, एक उपयोगिता दोलक लाइन पथ के साथ फंसे पायलट-तारों का उपयोग करेगी। सामान्य वाहकों से लीज्ड  परिपथों को प्राथमिकता नहीं दी जाती है क्योंकि उपलब्धता विद्युत विद्युत पारेषण संगठन के नियंत्रण में नहीं है।
 
डेटा ले जाने के लिए पारेषण लाइनों का भी उपयोग किया जा सकता है: इसे पावर-लाइन कैरियर, या पावर लाइन संचार (पीएलसी) कहा जाता है। लंबी तरंग रेंज के लिए एक रेडियो के साथ पीएलसी सिग्नल आसानी से प्राप्त किए जा सकते हैं।
 
[[File:High Voltage Pylons carrying additional fibre cable in Kenya.jpg|thumb|केन्या में अतिरिक्त ऑप्टिकल फाइबर केबल ले जाने वाले उच्च वोल्टेज तोरण]]
 
ओवरहेड शील्ड तारों में ऑप्टिकल फाइबर को पारेषण लाइन के फंसे हुए  परिचालकों में शामिल किया जा सकता है। इन केबलों को ऑप्टिकल ग्राउंड वायर (हेपीजीडब्ल्यू) के रूप में जाना जाता है। कभी-कभी एक स्टैंडअलोन केबल का उपयोग किया जाता है, ऑल-डाइलेक्ट्रिक सेल्फ-सपोर्टिंग (एडीएस) केबल, पारेषण लाइन क्रॉस आर्म्स से जुड़ी होती है।


[[ रोलिंग ब्लैकआउट ]] एस (जिसे लोड शेडिंग भी कहा जाता है) जानबूझकर विद्युत शक्ति की कमी है, जिसका उपयोग बिजली की मांग आपूर्ति से अधिक होने पर अपर्याप्त बिजली वितरित करने के लिए किया जाता है।
कुछ क्षेत्राधिकार, जैसे कि मिनेसोटा, ऊर्जा संचरण कंपनियों को अधिशेष संचार बैंडविड्थ बेचने या दूरसंचार सामान्य वाहक के रूप में कार्य करने से रोकते हैं। जहां नियामक संरचना अनुमति देती है, उपयोगिता एक सामान्य वाहक को अतिरिक्त अंधेरे फाइबर में क्षमता बेच सकती है, एक और राजस्व धारा प्रदान कर सकती है।


== संचार ==
लंबी पारेषण लाइनों के ऑपरेटरों को पावर ग्रिड के नियंत्रण के लिए विश्वसनीय संचार की आवश्यकता होती है और, अक्सर, संबद्ध उत्पादन और वितरण सुविधाएं। लाइन के प्रत्येक छोर पर फॉल्ट-सेंसिंग  [[ सुरक्षात्मक रिले ]] एस को संरक्षित लाइन सेक्शन में और बाहर बिजली के प्रवाह की निगरानी के लिए संचार करना चाहिए ताकि दोषपूर्ण कंडक्टर या उपकरण को जल्दी से डी-एनर्जेट किया जा सके और सिस्टम का संतुलन बहाल हो सके।  [[ शॉर्ट सर्किट ]] एस और अन्य दोषों से ट्रांसमिशन लाइन की सुरक्षा आमतौर पर इतनी महत्वपूर्ण है कि  [[ सामान्य वाहक ]] दूरसंचार अपर्याप्त रूप से विश्वसनीय हैं, और दूरस्थ क्षेत्रों में एक सामान्य वाहक उपलब्ध नहीं हो सकता है। एक पारेषण परियोजना से जुड़ी संचार प्रणालियाँ उपयोग कर सकती हैं:
*  [[ माइक्रोवेव ]] सेकेंड
*  [[ पावर-लाइन संचार ]]
*  [[ ऑप्टिकल फाइबर ]] एस
शायद ही कभी, और कम दूरी के लिए, एक उपयोगिता ट्रांसमिशन लाइन पथ के साथ फंसे पायलट-तारों का उपयोग करेगी। सामान्य वाहकों से लीज्ड सर्किटों को प्राथमिकता नहीं दी जाती है क्योंकि उपलब्धता विद्युत विद्युत पारेषण संगठन के नियंत्रण में नहीं है।


डेटा ले जाने के लिए ट्रांसमिशन लाइनों का भी उपयोग किया जा सकता है: इसे पावर-लाइन कैरियर या  [[ पावर लाइन संचार ]] (पीएलसी) कहा जाता है। लंबी तरंग रेंज के लिए एक रेडियो के साथ पीएलसी सिग्नल आसानी से प्राप्त किए जा सकते हैं।
[[File:High Voltage Pylons carrying additional fibre cable in Kenya.jpg|thumb|केन्या में अतिरिक्त ऑप्टिकल फाइबर केबल ले जाने वाले उच्च वोल्टेज तोरण ]]
ओवरहेड शील्ड तारों में ऑप्टिकल फाइबर को ट्रांसमिशन लाइन के फंसे हुए कंडक्टरों में शामिल किया जा सकता है। इन केबलों को  [[ ऑप्टिकल ग्राउंड वायर ]] (''OPGW'') के रूप में जाना जाता है। कभी-कभी एक स्टैंडअलोन केबल का उपयोग किया जाता है, सभी-डाइलेक्ट्रिक सेल्फ-सपोर्टिंग (''ADSS'') केबल, ट्रांसमिशन लाइन क्रॉस आर्म्स से जुड़ी होती है।


कुछ क्षेत्राधिकार, जैसे  [[ मिनेसोटा ]], ऊर्जा संचरण कंपनियों को अधिशेष संचार बैंडविड्थ बेचने या दूरसंचार  [[ सामान्य वाहक ]] के रूप में कार्य करने से रोकते हैं। जहां नियामक संरचना अनुमति देती है, उपयोगिता एक सामान्य वाहक को अतिरिक्त  [[ डार्क फाइबर ]] एस में क्षमता बेच सकती है, एक और राजस्व धारा प्रदान करती है।


== बिजली बाजार में सुधार ==
{{Main|Electricity market}}


कुछ नियामक इलेक्ट्रिक ट्रांसमिशन को  [[ प्राकृतिक एकाधिकार मानते हैं]<ref>{{cite web | url = http://www.thehindubusinessline.com/iw/2004/08/15/stories/2004081501201300.htm | title = Power transmission business is a natural monopoly | author = Raghuvir Srinivasan | publisher = The Hindu | work = The Hindu Business Line | date = August 15, 2004 | access-date = January 31, 2008}}</ref><ref>{{cite web | url = http://www.reason.org/commentaries/kiesling_20030818b.shtml | title = Rethink the Natural Monopoly Justification of Electricity Regulation | author = Lynne Kiesling | publisher = Reason Foundation | date = 18 August 2003 | access-date = 31 January 2008 | archive-url = https://web.archive.org/web/20080213034400/http://www.reason.org/commentaries/kiesling_20030818b.shtml | archive-date = February 13, 2008 | url-status = dead }}</ref> और कई देशों में ट्रांसमिशन को अलग से विनियमित करने के लिए कदम उठाए जा रहे हैं (देखें  [[ बिजली बाजार ]])।


[[ क्षेत्रीय प्रसारण संगठन ]] की स्थापना करने वाला स्पेन पहला देश था। उस देश में, ट्रांसमिशन संचालन और बाजार संचालन अलग-अलग कंपनियों द्वारा नियंत्रित किया जाता है। ट्रांसमिशन सिस्टम ऑपरेटर  [[ Red Eléctrica de España ]] (REE) है और थोक बिजली बाजार संचालक Operador del Mercado Ibérico de Energía - Polo Español, S.A. (OMEL) [https://web.archive.org/web/20040906064835/ है। http://www.omel.es/ ओएमईएल होल्डिंग |  ओमेल होल्डिंग]। स्पेन की ट्रांसमिशन प्रणाली फ्रांस, पुर्तगाल और मोरक्को से जुड़ी हुई है।


संयुक्त राज्य अमेरिका में आरटीओ की स्थापना  [[ एफईआरसी ]] के आदेश 888 द्वारा प्रेरित थी, ''सार्वजनिक उपयोगिताओं द्वारा ओपन एक्सेस गैर-भेदभावपूर्ण ट्रांसमिशन सेवाओं के माध्यम से थोक प्रतिस्पर्धा को बढ़ावा देना; सार्वजनिक उपयोगिताओं और संचारण उपयोगिताओं द्वारा फंसे हुए लागतों की वसूली'', 1996 में जारी किया गया<ref>{{cite web|url=https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|title=FERC: Landmark Orders - Order No. 888|website=www.ferc.gov|access-date=December 7, 2016|archive-url=https://web.archive.org/web/20161219014712/https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|archive-date=December 19, 2016|url-status=dead}}</ref>
संयुक्त राज्य अमेरिका और कनाडा के कुछ हिस्सों में, कई इलेक्ट्रिक ट्रांसमिशन कंपनियां उत्पादन कंपनियों से स्वतंत्र रूप से काम करती हैं, लेकिन अभी भी ऐसे क्षेत्र हैं - दक्षिणी संयुक्त राज्य - जहां विद्युत प्रणाली का लंबवत एकीकरण बरकरार है। अलगाव के क्षेत्रों में, ट्रांसमिशन मालिक और पीढ़ी के मालिक अपने आरटीओ के भीतर मतदान के अधिकार के साथ बाजार सहभागियों के रूप में एक दूसरे के साथ बातचीत करना जारी रखते हैं। संयुक्त राज्य अमेरिका में आरटीओ  [[ संघीय ऊर्जा नियामक आयोग ]] द्वारा विनियमित हैं।


== बिजली पारेषण की लागत ==
उपभोक्ता के बिजली बिल में उत्पन्न होने वाली अन्य सभी लागतों की तुलना में उच्च वोल्टेज बिजली संचरण की लागत ( [[ विद्युत बिजली वितरण ]] की लागत के विपरीत) तुलनात्मक रूप से कम है। यूके में, लगभग 10 p प्रति kWh की घरेलू कीमत की तुलना में ट्रांसमिशन लागत लगभग 0.2 p प्रति kWh है।<ref>[http://www.claverton-energy.com/what-is-the-cost-per-kwh-of-bulk-transmission-national-grid-in-the-uk-note-this-excludes-distribution-costs .html बल्क ट्रांसमिशन की प्रति kWh लागत क्या है] / यूके में नेशनल ग्रिड (ध्यान दें कि इसमें वितरण लागत शामिल नहीं है)</ref>


अनुसंधान विद्युत शक्ति टी एंड डी उपकरण बाजार में पूंजीगत व्यय के स्तर का मूल्यांकन करता है 2011 में '' 128.9 बिलियन का होगा<ref>{{cite web |url=http://www.visiongain.com/Report/626/The-Electric-Power-Transmission-and-Distribution-(T-D)-Equipment-Market-2011-2021 |title=The Electric Power Transmission & Distribution (T&D) Equipment Market 2011–2021 |access-date=June 4, 2011 |archive-url=https://web.archive.org/web/20110618143614/http://www.visiongain.com/Report/626/The-Electric-Power-Transmission-and-Distribution-(T-D)-Equipment-Market-2011-2021 |archive-date=June 18, 2011 |url-status=dead }}</ref>


== मर्चेंट ट्रांसमिशन ==
मर्चेंट ट्रांसमिशन एक ऐसी व्यवस्था है जहां एक तीसरा पक्ष एक असंबंधित अवलंबी उपयोगिता के मताधिकार क्षेत्र के माध्यम से विद्युत पारेषण लाइनों का निर्माण और संचालन करता है।


संयुक्त राज्य अमेरिका में ऑपरेटिंग मर्चेंट ट्रांसमिशन प्रोजेक्ट्स में  [[ शोरहैम, न्यूयॉर्क ]] से  [[ न्यू हेवन, कनेक्टिकट ]], नेपच्यून आरटीएस ट्रांसमिशन लाइन  [[ सेरेविल, न्यू जर्सी ]] से  [[ न्यू ब्रिज, न्यूयॉर्क ]] से  [[ क्रॉस साउंड केबल ]] शामिल हैं। और कैलिफोर्निया में  [[ पथ 15 ]]। अतिरिक्त परियोजनाएं विकास में हैं या संयुक्त राज्य भर में प्रस्तावित की गई हैं, जिसमें  [[ लेक एरी कनेक्टर ]], आईटीसी होल्डिंग्स कॉर्प द्वारा प्रस्तावित एक अंडरवाटर ट्रांसमिशन लाइन शामिल है, जो ओन्टारियो को पीजेएम इंटरकनेक्शन क्षेत्र में सेवारत संस्थाओं को लोड करने के लिए जोड़ती है।<ref>आईटीसी होल्डिंग्स ने पीजेएम की मांग को ओंटारियो की समृद्ध नवीकरणीय ऊर्जा से कैसे जोड़ा है, यूटिलिटी डाइव, 8 दिसंबर 2014, http://www.utilitydive.com/news/how-itc-holdings-plans-to-connect-pjm-demand-with- ओंटारियो-समृद्ध-नवीकरणीय/341524</ref>
== '''बिजली बाजार में सुधार''' ==
कुछ नियामक इलेक्ट्रिक दोलक को एक प्राकृतिक एकाधिकार मानते हैं <ref>{{Cite web|url=http://www.thehindubusinessline.com/iw/2004/08/15/stories/2004081501201300.htm|title=Power transmission business is a natural monopoly|last=Raghuvir Srinivasan|publisher=The Hindu|website=The Hindu Business Line|date=August 15, 2004|access-date=January 31, 2008}}</ref> <ref>{{Cite web|url=http://www.reason.org/commentaries/kiesling_20030818b.shtml|title=Rethink the Natural Monopoly Justification of Electricity Regulation|last=Lynne Kiesling|publisher=Reason Foundation|date=18 August 2003|access-date=31 January 2008|archive-url=https://web.archive.org/web/20080213034400/http://www.reason.org/commentaries/kiesling_20030818b.shtml|archive-date=February 13, 2008}}</ref> और कई देशों में दोलक को अलग से विनियमित करने के लिए कदम उठाए जा रहे हैं ( बिजली बाजार देखें)।


ऑस्ट्रेलिया में केवल एक अनियमित या बाज़ार इंटरकनेक्टर है:  [[ बासलिंक ]]  [[ तस्मानिया ]] और [[ विक्टोरिया (ऑस्ट्रेलिया) |  विक्टोरिया ]] के बीच। दो डीसी लिंक मूल रूप से मार्केट इंटरकनेक्टर्स के रूप में लागू किए गए, [[ डायरेक्टलिंक ]] और [[ मरेलिंक ]], को विनियमित इंटरकनेक्टर्स में बदल दिया गया है। [https://web.archive.org/web/20080718211829/http://www.nemmco.com.au/psplanning/psplanning.html#interconnect NEMMCO]
स्पेन एक क्षेत्रीय प्रसारण संगठन स्थापित करने वाला पहला देश था। उस देश में, पारेषण संचालन और बाजार संचालन अलग-अलग कंपनियों द्वारा नियंत्रित किया जाता है। पारेषण प्रणाली ऑपरेटर रेड इलेक्ट्रिक डी एस्पाना (आरईई) है और थोक बिजली बाजार ऑपरेटर ऑपरडोर डेल मर्काडो इबेरिको डी एनर्जिया है - पोलो एस्पानोल, एसए (ओएमईएल) ओएमईएल होल्डिंग, ओमेल होल्डिंग। स्पेन की पारेषण प्रणाली फ्रांस, पुर्तगाल और मोरक्को से जुड़ी हुई है।


मर्चेंट ट्रांसमिशन को व्यापक रूप से अपनाने में एक बड़ी बाधा यह पहचानने में कठिनाई है कि सुविधा से किसे लाभ होगा ताकि लाभार्थी टोल का भुगतान कर सकें। इसके अलावा, एक व्यापारी ट्रांसमिशन लाइन के लिए प्रतिस्पर्धा करना मुश्किल होता है जब एक एकाधिकार और विनियमित दर आधार के साथ मौजूदा उपयोगिता व्यवसायों द्वारा वैकल्पिक ट्रांसमिशन लाइनों को सब्सिडी दी जाती है।<ref>{{cite book
संयुक्त राज्य अमेरिका में आरटीओ की स्थापना एफईआरसी के आदेश 888 द्वारा प्रेरित थी, सार्वजनिक उपयोगिताओं द्वारा ओपन एक्सेस गैर-भेदभावपूर्ण पारेषण सेवाओं के माध्यम से थोक प्रतिस्पर्धा को बढ़ावा देना; सार्वजनिक उपयोगिताओं और संचारण उपयोगिताओं द्वारा फंसे हुए लागतों की वसूली, 1996 में जारी किया गया था।<ref>{{Cite web|url=https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|title=FERC: Landmark Orders - Order No. 888|website=www.ferc.gov|access-date=December 7, 2016|archive-url=https://web.archive.org/web/20161219014712/https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|archive-date=December 19, 2016}}</ref>संयुक्त राज्य अमेरिका और कनाडा के कुछ हिस्सों में, कई इलेक्ट्रिक पारेषण कंपनियां उत्पादन कंपनियों से स्वतंत्र रूप से काम करती हैं, लेकिन अभी भी ऐसे क्षेत्र हैं - दक्षिणी संयुक्त राज्य - जहां विद्युत प्रणाली का लंबवत एकीकरण बरकरार है। अलगाव के क्षेत्रों में, पारेषण मालिक और पीढ़ी के मालिक अपने आरटीओ के भीतर मतदान के अधिकार के साथ बाजार सहभागियों के रूप में एक दूसरे के साथ बातचीत करना जारी रखते हैं। संयुक्त राज्य में आरटीओ को संघीय ऊर्जा नियामक आयोग द्वारा नियंत्रित किया जाता है।
| author = Fiona Woolf | title = Global Transmission Expansion | publisher = Pennwell Books |date=February 2003 | pages = 226, 247 | isbn = 0-87814-862-0}}</ref> संयुक्त राज्य अमेरिका में, 2010 में जारी  [[ एफईआरसी ]] का आदेश 1000, तीसरे पक्ष के निवेश और मर्चेंट ट्रांसमिशन लाइनों के निर्माण में बाधाओं को कम करने का प्रयास करता है जहां एक सार्वजनिक नीति की आवश्यकता पाई जाती है<ref>{{cite web|url=https://www.ferc.gov/industries/electric/indus-act/trans-plan.asp|title=FERC: Industries - Order No. 1000 - Transmission Planning and Cost Allocation|website=www.ferc.gov|access-date=October 30, 2018|archive-url=https://web.archive.org/web/20181030205910/https://www.ferc.gov/industries/electric/indus-act/trans-plan.asp|archive-date=October 30, 2018|url-status=dead}}</ref>


== स्वास्थ्य संबंधी चिंताएं ==
== '''विद्युत शक्ति संचरण की लागत''' ==
{{Main|Electromagnetic radiation and health}}
उपभोक्ता के बिजली बिल में उत्पन्न होने वाली अन्य सभी लागतों की तुलना में उच्च वोल्टेज बिजली संचरण की लागत (विद्युत बिजली वितरण की लागत के विपरीत) तुलनात्मक रूप से कम है। यूके में, लगभग 10 पी प्रति किलोवाट की घरेलू कीमत की तुलना में पारेषण लागत लगभग 0.2 पी प्रति किलोवाट है।<ref>[http://www.claverton-energy.com/what-is-the-cost-per-kwh-of-bulk-transmission-national-grid-in-the-uk-note-this-excludes-distribution-costs.html What is the cost per kWh of bulk transmission] / National Grid in the UK (note this excludes distribution costs)</ref>


संयुक्त राज्य अमेरिका में एक बड़े अध्ययन सहित कुछ बड़े अध्ययन, बिजली लाइनों के पास रहने और कैंसर जैसी किसी बीमारी या बीमारी के विकास के बीच कोई संबंध खोजने में विफल रहे हैं। 1997 के एक अध्ययन में पाया गया कि इससे कोई फर्क नहीं पड़ता कि कोई बिजली लाइन या सब-स्टेशन के कितना करीब था, कैंसर या बीमारी का कोई खतरा नहीं था।<ref>[http://www.abc.net.au/rn/talks/8.30/helthrpt/stories/s175.htm पावर लाइन्स एंड कैंसर] {{Webarchive|url=https://web.archive.org/web/20110417202936/http://www.abc.net.au/rn/talks/8.30/helthrpt/stories/s175.htm |date=April 17, 2011 }}, द हेल्थ रिपोर्ट / एबीसी साइंस - 7 जून 1997 को प्रसारण (ऑस्ट्रेलियाई ब्रॉडकास्टिंग कॉर्पोरेशन</ref>
अनुसंधान विद्युत शक्ति टी एंड डी उपकरण बाजार में पूंजीगत व्यय के स्तर का मूल्यांकन करता है जो 2011 में $ 128.9 बिलियन का होगा। <ref>{{Cite web|url=http://www.visiongain.com/Report/626/The-Electric-Power-Transmission-and-Distribution-(T-D)-Equipment-Market-2011-2021|title=The Electric Power Transmission & Distribution (T&D) Equipment Market 2011–2021|access-date=June 4, 2011|archive-url=https://web.archive.org/web/20110618143614/http://www.visiongain.com/Report/626/The-Electric-Power-Transmission-and-Distribution-(T-D)-Equipment-Market-2011-2021|archive-date=June 18, 2011}}</ref>


मुख्यधारा के वैज्ञानिक प्रमाण बताते हैं कि घरेलू धाराओं और उच्च संचरण बिजली लाइनों से जुड़े कम-शक्ति, कम-आवृत्ति, विद्युत चुम्बकीय विकिरण एक अल्पकालिक या दीर्घकालिक स्वास्थ्य खतरे का गठन नहीं करते हैं। हालांकि, कुछ अध्ययनों में विभिन्न रोगों और बिजली लाइनों के पास रहने या काम करने के बीच  [[ सांख्यिकीय सहसंबंध ]] एस पाया गया है। बिजली लाइनों के पास नहीं रहने वाले लोगों के स्वास्थ्य पर कोई प्रतिकूल प्रभाव साबित नहीं हुआ है<ref>[https://web.archive.org/web/20071224020021/http://www.who.int/mediacentre/factsheets/fs322/en/ विद्युतचुंबकीय क्षेत्र और सार्वजनिक स्वास्थ्य],  [[ विश्व स्वास्थ्य संगठन]</ref>
== '''मर्चेंट दोलक''' ==
मर्चेंट दोलक एक ऐसी व्यवस्था है जहां एक तीसरा पक्ष एक असंबंधित अवलंबी उपयोगिता के मताधिकार क्षेत्र के माध्यम से विद्युत पारेषण लाइनों का निर्माण और संचालन करता है।


[[ न्यूयॉर्क राज्य लोक सेवा आयोग ]] ने विद्युत क्षेत्रों के संभावित स्वास्थ्य प्रभावों का मूल्यांकन करने के लिए ''राय संख्या 78-13'' (19 जून, 1978 को जारी) में प्रलेखित एक अध्ययन किया। आयोग के ऑनलाइन डेटाबेस, DMM में केस नंबर के रूप में सूचीबद्ध होने के लिए अध्ययन की केस संख्या बहुत पुरानी है, और इसलिए मूल अध्ययन को खोजना मुश्किल हो सकता है। अध्ययन ने विद्युत क्षेत्र की ताकत का उपयोग करने के लिए चुना, जिसे न्यूयॉर्क से कनाडा के लिए 765 केवी ट्रांसमिशन लाइन पर मौजूदा (लेकिन नव निर्मित) दाहिने रास्ते के किनारे पर मापा गया था, अंतरिम मानक अधिकतम के रूप में 1.6 केवी / एम। आदेश जारी होने के बाद न्यूयॉर्क राज्य में निर्मित किसी भी नई पारेषण लाइन के किनारे पर विद्युत क्षेत्र। राय ने न्यूयॉर्क में निर्मित सभी नई ट्रांसमिशन लाइनों के वोल्टेज को 345 kV तक सीमित कर दिया। 11 सितंबर, 1990 को, चुंबकीय क्षेत्र की ताकत के समान अध्ययन के बाद, NYSPSC ने अपना ''चुंबकीय क्षेत्रों पर अंतरिम नीति वक्तव्य'' जारी किया। इस अध्ययन ने शीतकालीन-सामान्य कंडक्टर रेटिंग का उपयोग करके दाएं रास्ते के किनारे पर 200 मिलीग्राम के चुंबकीय क्षेत्र अंतरिम मानक की स्थापना की। यह बाद का दस्तावेज़ NYSPSC के ऑनलाइन डेटाबेस पर खोजना भी मुश्किल हो सकता है, क्योंकि यह ऑनलाइन डेटाबेस सिस्टम से पहले का है। रोजमर्रा की वस्तुओं की तुलना में, एक हेयर ड्रायर या इलेक्ट्रिक कंबल 100 मिलीग्राम - 500 मिलीग्राम चुंबकीय क्षेत्र उत्पन्न करता है। एक इलेक्ट्रिक रेजर 2.6 kV/m उत्पन्न कर सकता है। जबकि विद्युत क्षेत्रों को परिरक्षित किया जा सकता है, चुंबकीय क्षेत्रों को परिरक्षित नहीं किया जा सकता है, लेकिन आमतौर पर क्रॉस-सेक्शन में एक सर्किट के प्रत्येक चरण के स्थान को अनुकूलित करके कम से कम किया जाता है।<ref>{{cite web|url=http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7BED95C2A2-2DEA-4FFC-A8DA-CD9C39F5D361%7D|title=EMF Report for the CHPE|pages=1–4|publisher=TRC|date=March 2010|access-date=November 9, 2018}}</ref><ref>{{cite web|url=https://www.transpower.co.nz/sites/default/files/publications/resources/EMF-fact-sheet-3-2009.pdf|title=Electric and Magnetic Field Strengths|publisher=Transpower New Zealand Ltd|page=2|access-date=November 9, 2018}}</ref>
संयुक्त राज्य में ऑपरेटिंग मर्चेंट दोलक प्रोजेक्ट्स में शोरहैम, न्यूयॉर्क से न्यू हेवन, कनेक्टिकट, नेपच्यून आरटीएस दोलक लाइन से सायरेविल, न्यू जर्सी से न्यू ब्रिज, न्यूयॉर्क और कैलिफोर्निया में पथ 15 से क्रॉस साउंड केबल शामिल हैं। अतिरिक्त परियोजनाएं विकास में हैं या संयुक्त राज्य भर में प्रस्तावित की गई हैं, जिसमें लेक एरी कनेक्टर, आईटीसी होल्डिंग्स कॉर्प द्वारा प्रस्तावित एक अंडरवाटर दोलक लाइन शामिल है, जो ओन्टारियो को पीजेएम इंटरकनेक्शन क्षेत्र में सेवारत संस्थाओं को लोड करने के लिए जोड़ती है। <ref>{{Cite web|title=How ITC Holdings plans to connect PJM demand with Ontario's rich renewables|website=Utility Dive|date=8 December 2014|url=http://www.utilitydive.com/news/how-itc-holdings-plans-to-connect-pjm-demand-with-ontarios-rich-renewables/341524/}}</ref>


जब लागू नियामक निकाय (आमतौर पर एक सार्वजनिक उपयोगिता आयोग) के आवेदन के भीतर एक नई ट्रांसमिशन लाइन प्रस्तावित की जाती है, तो अक्सर अधिकार के किनारे पर बिजली और चुंबकीय क्षेत्र के स्तर का विश्लेषण होता है। ये विश्लेषण एक उपयोगिता द्वारा या मॉडलिंग सॉफ्टवेयर का उपयोग करके एक इलेक्ट्रिकल इंजीनियरिंग सलाहकार द्वारा किया जाता है। कम से कम एक राज्य लोक उपयोगिता आयोग के पास  [[ बोनविले पावर एडमिनिस्ट्रेशन ]] में एक इंजीनियर या इंजीनियरों द्वारा विकसित सॉफ्टवेयर तक बिजली औरप्रस्तावित पारेषण लाइनों के लिए रास्ते के अधिकार के किनारे पर चुंबकीय क्षेत्र। अक्सर, सार्वजनिक उपयोगिता आयोग बिजली और चुंबकीय क्षेत्रों के कारण किसी भी स्वास्थ्य प्रभाव पर टिप्पणी नहीं करेंगे और सूचना चाहने वालों को राज्य के संबद्ध स्वास्थ्य विभाग को संदर्भित करेंगे।
ऑस्ट्रेलिया में केवल एक अनियमित या बाज़ार इंटरकनेक्टर है: तस्मानिया और विक्टोरिया के बीच बासलिंक। मूल रूप से मार्केट इंटरकनेक्टर्स, डायरेक्टलिंक और मरेलिंक के रूप में लागू किए गए दो डीसी लिंक को विनियमित इंटरकनेक्टर्स में बदल दिया गया है। एनईएममको


[[ तीव्र विषाक्तता |  तीव्र ]] ''उच्च'' स्तर के चुंबकीय क्षेत्रों में 100  [[ टेस्ला (इकाई) |  μT ]] (1  [[ गॉस (इकाई) |  जी ]]) (1,000 मिलीग्राम) से ऊपर के लिए स्थापित जैविक प्रभाव हैं। एक आवासीय सेटिंग में, मनुष्यों में  [[ कार्सिनोजेन ]] बर्फीलेपन के सीमित प्रमाण हैं और प्रायोगिक पशुओं में कैंसरजन्यता के लिए पर्याप्त सबूत से कम है, विशेष रूप से, बचपन के ल्यूकेमिया, 0.3 से ऊपर आवासीय बिजली-आवृत्ति चुंबकीय क्षेत्र के औसत जोखिम से जुड़े हैं। µT (3 mG) से 0.4 µT (4 mG) तक। ये स्तर घरों में औसत आवासीय बिजली-आवृत्ति चुंबकीय क्षेत्रों से अधिक हैं, जो यूरोप में लगभग 0.07 μT (0.7 mG) और उत्तरी अमेरिका में 0.11 μT (1.1 mG) हैं।<ref name="WHOFactsheet322">{{cite web |url=https://www.who.int/mediacentre/factsheets/fs322/en/index.html|archive-url=https://web.archive.org/web/20070701204347/http://www.who.int/mediacentre/factsheets/fs322/en/index.html|url-status=dead|archive-date=July 1, 2007|title= Electromagnetic fields and public health|access-date=23 January 2008 |date=June 2007|work= Fact sheet No.&nbsp;322|publisher=[[World Health Organization]]}}</ref><ref name="NIEHS">{{cite web|url=http://www.niehs.nih.gov/health/docs/emf-02.pdf |title=Electric and Magnetic Fields Associated with the Use of Power |access-date=29 January 2008 |date=June 2002 |publisher=[[National Institute of Environmental Health Sciences]] }}</ref>
मर्चेंट दोलक को व्यापक रूप से अपनाने में एक बड़ी बाधा यह पहचानने में कठिनाई है कि सुविधा से किसे लाभ होगा ताकि लाभार्थी टोल का भुगतान कर सकें। इसके अलावा, एक व्यापारी दोलक लाइन के लिए प्रतिस्पर्धा करना मुश्किल होता है जब एक एकाधिकार और विनियमित दर आधार के साथ मौजूदा उपयोगिता व्यवसायों द्वारा वैकल्पिक दोलक लाइनों को सब्सिडी दी जाती है। <ref>{{Cite book|last=Fiona Woolf|title=Global Transmission Expansion|publisher=Pennwell Books|date=February 2003|pages=226, 247|isbn=0-87814-862-0}}</ref> संयुक्त राज्य अमेरिका में, 2010 में जारी एफईआरसी का आदेश 1000, तीसरे पक्ष के निवेश और मर्चेंट दोलक लाइनों के निर्माण में बाधाओं को कम करने का प्रयास करता है जहां एक सार्वजनिक नीति की आवश्यकता पाई जाती है। <ref>{{Cite web|url=https://www.ferc.gov/industries/electric/indus-act/trans-plan.asp|title=FERC: Industries - Order No. 1000 - Transmission Planning and Cost Allocation|website=www.ferc.gov|access-date=October 30, 2018|archive-url=https://web.archive.org/web/20181030205910/https://www.ferc.gov/industries/electric/indus-act/trans-plan.asp|archive-date=October 30, 2018}}</ref>


पृथ्वी की प्राकृतिक भू-चुंबकीय क्षेत्र की ताकत ग्रह की सतह पर 0.035 एमटी और 0.07 एमटी (35 μT - 70 μT या 350 मिलीग्राम - 700 मिलीग्राम) के बीच भिन्न होती है, जबकि निरंतर एक्सपोजर सीमा के लिए अंतर्राष्ट्रीय मानक 40 एमटी (400,000 मिलीग्राम या 400 जी) आम जनता के लिए<ref name="WHOFactsheet322"/>
== '''स्वास्थ्य संबंधी समस्याएं''' ==
संयुक्त राज्य अमेरिका में एक बड़े अध्ययन सहित कुछ बड़े अध्ययन, बिजली लाइनों के पास रहने और कैंसर जैसी किसी बीमारी या बीमारी के विकास के बीच कोई संबंध खोजने में विफल रहे हैं। 1997 के एक अध्ययन में पाया गया कि इससे कोई फर्क नहीं पड़ता कि कोई बिजली लाइन या सब-स्टेशन के कितना करीब था, कैंसर या बीमारी का कोई खतरा नहीं था। <ref>[http://www.abc.net.au/rn/talks/8.30/helthrpt/stories/s175.htm Power Lines and Cancer] {{Webarchive|url=https://web.archive.org/web/20110417202936/http://www.abc.net.au/rn/talks/8.30/helthrpt/stories/s175.htm|date=April 17, 2011}}, The Health Report / ABC Science - Broadcast on 7&nbsp;June 1997 (Australian Broadcasting Corporation)</ref>


ट्री ग्रोथ रेगुलेटर और हर्बिसाइड कंट्रोल मेथड्स का इस्तेमाल ट्रांसमिशन लाइन में किया जा सकता है<ref>पारेषण वनस्पति प्रबंधन एनईआरसी मानक FAC-003-2 तकनीकी संदर्भ पृष्ठ 14/50। http://www.nerc.com/docs/standards/sar/FAC-003-2_White_Paper_2009Sept9.pd</ref> जिसमें  [[ हर्बिसाइड हो सकते हैं#स्वास्थ्य और पर्यावरणीय प्रभाव |  स्वास्थ्य प्रभाव ]]
मुख्यधारा के वैज्ञानिक प्रमाण बताते हैं कि घरेलू धाराओं और उच्च संचरण बिजली लाइनों से जुड़े कम-शक्ति, कम-आवृत्ति, विद्युत चुम्बकीय विकिरण एक अल्पकालिक या दीर्घकालिक स्वास्थ्य खतरे का गठन नहीं करते हैं। हालांकि, कुछ अध्ययनों में विभिन्न बीमारियों और बिजली लाइनों के पास रहने या काम करने के बीच सांख्यिकीय संबंध पाए गए हैं। बिजली लाइनों के पास नहीं रहने वाले लोगों के स्वास्थ्य पर कोई प्रतिकूल प्रभाव साबित नहीं हुआ है। <ref>[https://web.archive.org/web/20071224020021/http://www.who.int/mediacentre/factsheets/fs322/en/ Electromagnetic fields and public health], [[World Health Organization]]</ref>


== देश द्वारा नीति ==
न्यूयॉर्क राज्य लोक सेवा आयोग ने विद्युत क्षेत्रों के संभावित स्वास्थ्य प्रभावों का मूल्यांकन करने के लिए राय संख्या 78-13 (19 जून, 1978 को जारी) में प्रलेखित एक अध्ययन किया। आयोग के ऑनलाइन डेटाबेस, डीएमएम में केस नंबर के रूप में सूचीबद्ध होने के लिए अध्ययन की केस संख्या बहुत पुरानी है, और इसलिए मूल अध्ययन को खोजना मुश्किल हो सकता है। अध्ययन ने विद्युत क्षेत्र की ताकत का उपयोग करने के लिए चुना, जिसे न्यूयॉर्क से कनाडा तक 765 केवी पारेषण लाइन पर मौजूदा (लेकिन नव निर्मित) दाहिने रास्ते के किनारे पर मापा गया था, 1.6 केवी / एम, अंतरिम मानक अधिकतम के रूप में आदेश जारी होने के बाद न्यूयॉर्क राज्य में निर्मित किसी भी नई पारेषण लाइन के किनारे पर विद्युत क्षेत्र। राय ने न्यूयॉर्क में निर्मित सभी नई पारेषण लाइनों के वोल्टेज को 345 kV तक सीमित कर दिया था। 11 सितंबर 1990 को, चुंबकीय क्षेत्र की ताकत के समान अध्ययन के बाद, एनवाईएसपीएससी ने चुंबकीय क्षेत्र पर अपना अंतरिम नीति वक्तव्य जारी किया। इस अध्ययन ने शीतकालीन-सामान्य  परिचालक रेटिंग का उपयोग करके दाएं रास्ते के किनारे पर 200 मिलीग्राम के चुंबकीय क्षेत्र अंतरिम मानक की स्थापना की। यह बाद का दस्तावेज़ एनवाईएसपीएससी के ऑनलाइन डेटाबेस पर खोजना भी मुश्किल हो सकता है, क्योंकि यह ऑनलाइन डेटाबेस प्रणाली से पहले का है। रोजमर्रा की वस्तुओं की तुलना में, एक हेयर ड्रायर या इलेक्ट्रिक कंबल 100 मिलीग्राम - 500 मिलीग्राम चुंबकीय क्षेत्र उत्पन्न करता है। एक इलेक्ट्रिक रेजर 2.6 kV/m उत्पन्न कर सकता है। जबकि विद्युत क्षेत्रों को परिरक्षित किया जा सकता है, चुंबकीय क्षेत्रों को परिरक्षित नहीं किया जा सकता है, लेकिन आमतौर पर क्रॉस-सेक्शन में एक  परिपथ के प्रत्येक चरण के स्थान को अनुकूलित करके कम से कम किया जाता है। <ref>{{Cite web|url=http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7BED95C2A2-2DEA-4FFC-A8DA-CD9C39F5D361%7D|title=EMF Report for the CHPE|pages=1–4|publisher=TRC|date=March 2010|access-date=November 9, 2018}}</ref> <ref>{{Cite web|url=https://www.transpower.co.nz/sites/default/files/publications/resources/EMF-fact-sheet-3-2009.pdf|title=Electric and Magnetic Field Strengths|publisher=Transpower New Zealand Ltd|page=2|access-date=November 9, 2018}}</ref>


=== संयुक्त राज्य ===
जब लागू नियामक निकाय (आमतौर पर एक सार्वजनिक उपयोगिता आयोग) के आवेदन के भीतर एक नई दोलक लाइन प्रस्तावित की जाती है, तो अक्सर अधिकार के किनारे पर बिजली और चुंबकीय क्षेत्र के स्तर का विश्लेषण होता है। ये विश्लेषण एक उपयोगिता द्वारा या मॉडलिंग सॉफ्टवेयर का उपयोग करके एक इलेक्ट्रिकल इंजीनियरिंग सलाहकार द्वारा किया जाता है। कम से कम एक राज्य लोक उपयोगिता आयोग के पास प्रस्तावित दोलक लाइनों के लिए रास्ते के किनारे पर बिजली और चुंबकीय क्षेत्रों का विश्लेषण करने के लिए बोनेविले पावर एडमिनिस्ट्रेशन में एक इंजीनियर या इंजीनियरों द्वारा विकसित सॉफ्टवेयर तक पहुंच है। अक्सर, सार्वजनिक उपयोगिता आयोग बिजली और चुंबकीय क्षेत्रों के कारण किसी भी स्वास्थ्य प्रभाव पर टिप्पणी नहीं करेंगे और सूचना चाहने वालों को राज्य के संबद्ध स्वास्थ्य विभाग को संदर्भित करेंगे।
[[ संघीय ऊर्जा नियामक आयोग ]] (एफईआरसी) संयुक्त राज्य अमेरिका के भीतर बिजली पारेषण और थोक बिजली की बिक्री की प्राथमिक नियामक एजेंसी है। यह मूल रूप से कांग्रेस द्वारा 1920 में फेडरल पावर कमीशन के रूप में स्थापित किया गया था और तब से कई नाम और जिम्मेदारी संशोधनों से गुजरा है। जो एफईआरसी द्वारा विनियमित नहीं है, मुख्य रूप से बिजली वितरण और बिजली की खुदरा बिक्री, राज्य प्राधिकरण के अधिकार क्षेत्र में है।


बिजली संचरण को प्रभावित करने वाली दो अधिक उल्लेखनीय अमेरिकी ऊर्जा नीतियां  [[ आदेश संख्या 888 ]] और  [[ ऊर्जा नीति अधिनियम 2005 ]] हैं।
00 µ टी (1 जी) (1,000 मिलीग्राम) से ऊपर चुंबकीय क्षेत्रों के तीव्र उच्च स्तर के जोखिम के लिए स्थापित जैविक प्रभाव हैं। एक आवासीय सेटिंग में, "मनुष्यों में कैंसरजन्यता का सीमित प्रमाण और प्रायोगिक पशुओं में कैंसरजन्यता के लिए पर्याप्त सबूत से कम" है, विशेष रूप से, बचपन के ल्यूकेमिया, 0.3 μT (3 मिलीग्राम) से 0.4 µ टी (4 मिलीग्राम) से ऊपर आवासीय बिजली-आवृत्ति चुंबकीय क्षेत्र के औसत जोखिम से जुड़ा हुआ है।ये स्तर घरों में औसत आवासीय बिजली-आवृत्ति चुंबकीय क्षेत्र से अधिक हैं, जो यूरोप में लगभग 0.07 μT (0.7 मिलीग्राम) और उत्तरी अमेरिका में 0.11 μT (1.1 मिलीग्राम) हैं। <ref name="WHOFactsheet322">{{Cite web|url=https://www.who.int/mediacentre/factsheets/fs322/en/index.html|archive-url=https://web.archive.org/web/20070701204347/http://www.who.int/mediacentre/factsheets/fs322/en/index.html|archive-date=July 1, 2007|title=Electromagnetic fields and public health|access-date=23 January 2008|date=June 2007|website=Fact sheet No.&nbsp;322|publisher=[[World Health Organization]]}}</ref> <ref name="NIEHS">{{Cite web|url=http://www.niehs.nih.gov/health/docs/emf-02.pdf|title=Electric and Magnetic Fields Associated with the Use of Power|access-date=29 January 2008|date=June 2002|publisher=[[National Institute of Environmental Health Sciences]]}}</ref>


24 अप्रैल 1996 को एफईआरसी द्वारा अपनाया गया आदेश संख्या 888, थोक थोक बिजली बाजार में प्रतिस्पर्धा के लिए बाधाओं को दूर करने और राष्ट्र के बिजली उपभोक्ताओं के लिए अधिक कुशल, कम लागत वाली बिजली लाने के लिए डिज़ाइन किया गया था। इन नियमों की कानूनी और नीतिगत आधारशिला एकाधिकार के स्वामित्व वाले ट्रांसमिशन तारों तक पहुंच में अनुचित भेदभाव को दूर करना है जो यह नियंत्रित करते हैं कि अंतरराज्यीय वाणिज्य में बिजली का परिवहन किया जा सकता है या नहीं।<ref name="Docket No. RM95-8-000">{{cite web|title=Order No. 888|url=https://www.ferc.gov/legal/maj-ord-reg/land-docs/rm95-8-00w.txt|publisher=United States of America Federal Energy Regulatory Commission}}</ref> आदेश संख्या 888 में सभी सार्वजनिक उपयोगिताओं की आवश्यकता है जो अंतरराज्यीय वाणिज्य में विद्युत ऊर्जा के संचारण के लिए उपयोग की जाने वाली सुविधाओं का स्वामित्व, नियंत्रण या संचालन करती हैं, जिनके पास गैर-भेदभावपूर्ण ट्रांसमिशन टैरिफ की खुली पहुंच होनी चाहिए। ये टैरिफ किसी भी बिजली जनरेटर को पहले से मौजूद बिजली लाइनों का उपयोग उस बिजली के संचरण के लिए करने की अनुमति देते हैं जो वे उत्पन्न करते हैं। आदेश संख्या 888 सार्वजनिक उपयोगिताओं को एक खुली पहुंच सेवा के रूप में अपनी बिजली लाइनों को प्रदान करने से जुड़ी लागतों को वसूल करने की भी अनुमति देता है<ref name="Docket No. RM95-8-000"/><ref name="Order No. 888">{{cite web|last1=Order No. 888|title=Promoting Wholesale Competition Through Open Access Non-discriminatory Transmission Services by Public Utilities; Recovery of Stranded Costs by Public Utilities and Transmitting Utilities|first1=FERC|url=https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|access-date=December 7, 2016|archive-url=https://web.archive.org/web/20161219014712/https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|archive-date=December 19, 2016|url-status=dead}}</ref>
पृथ्वी की प्राकृतिक भू-चुंबकीय क्षेत्र की ताकत ग्रह की सतह पर 0.035 . के बीच भिन्न होती है&nbsp;एमटी और 0.07&nbsp;एमटी (35&nbsp;µ टी - 70&nbsp;µT या 350 मिलीग्राम - 700 मिलीग्राम) जबकि निरंतर एक्सपोज़र सीमा के लिए अंतर्राष्ट्रीय मानक 40 . पर सेट है&nbsp;एमटी (400,000 मिलीग्राम या 400 .)&nbsp;जी) आम जनता के लिए। <ref name="WHOFactsheet3222">{{Cite web|url=https://www.who.int/mediacentre/factsheets/fs322/en/index.html|archive-url=https://web.archive.org/web/20070701204347/http://www.who.int/mediacentre/factsheets/fs322/en/index.html|archive-date=July 1, 2007|title=Electromagnetic fields and public health|access-date=23 January 2008|date=June 2007|website=Fact sheet No.&nbsp;322|publisher=[[World Health Organization]]}}</ref>


2005 के ऊर्जा नीति अधिनियम (ईपीएसीटी) ने 8 अगस्त 2005 को कांग्रेस द्वारा कानून में हस्ताक्षर किए, बिजली पारेषण को विनियमित करने के संघीय अधिकार का और विस्तार किया। ईपीएसीटी ने एफईआरसी को महत्वपूर्ण नई जिम्मेदारियां दीं, जिसमें इलेक्ट्रिक ट्रांसमिशन विश्वसनीयता मानकों को लागू करना और इलेक्ट्रिक ट्रांसमिशन में निवेश को प्रोत्साहित करने के लिए दर प्रोत्साहन की स्थापना शामिल है, लेकिन यह इन्हीं तक सीमित नहीं है।<ref>{{cite book|title=Energy Policy Act of 2005 Fact Sheet|date=8 August 2006|publisher=FERC Washington, D.C.|url=https://www.ferc.gov/legal/fed-sta/epact-fact-sheet.pdf|access-date=December 7, 2016|archive-url=https://web.archive.org/web/2016122023 [[/https://ferc.gov/legal/fed-sta/epact-fact-sheet.pdf|archive-date=December 20, 2016|url-status=dead}}</ref>
ट्री ग्रोथ रेगुलेटर और हर्बिसाइड कंट्रोल मेथड्स का इस्तेमाल दोलक लाइन राइट ऑफ वेड्स में किया जा सकता है, <ref>{{Cite web|title=Transmission Vegetation Management NERC Standard FAC-003-2 Technical Reference Page 14/50|url=http://www.nerc.com/docs/standards/sar/FAC-003-2_White_Paper_2009Sept9.pdf|website=nerc.com}}</ref> जिसका स्वास्थ्य पर प्रभाव पड़ सकता है।


ऐतिहासिक रूप से, स्थानीय सरकारों ने ग्रिड पर अधिकार का प्रयोग किया है और उन कार्यों को प्रोत्साहित करने के लिए महत्वपूर्ण हतोत्साहन हैं जो अपने स्वयं के अलावा अन्य राज्यों को लाभान्वित करेंगे। सस्ते बिजली वाले इलाकों में  [[ अंतरराज्यीय वाणिज्य ]] को बिजली व्यापार में आसान बनाने के लिए प्रोत्साहित करने के लिए एक प्रोत्साहन है, क्योंकि अन्य क्षेत्र स्थानीय ऊर्जा के लिए प्रतिस्पर्धा करने और दरों को बढ़ाने में सक्षम होंगे। उदाहरण के लिए, मेन में कुछ नियामक भीड़ की समस्याओं का समाधान नहीं करना चाहते हैं क्योंकि भीड़ मेन दरों को कम रखने का काम करती है<ref name=ncep2>{{संदर्भ पत्रिका |  url=http://www.oe.energy.gov/DocumentsandMedia/primer.pdf |  शीर्षक = बिजली संचरण: एक प्राइमर |  लेखक = बिजली नीति पर राष्ट्रीय परिषद |  पृष्ठ = 32 (पृष्ठ 41 .pdf में) |  पहुंच-तिथि=28 दिसंबर, 2008 |  संग्रह-यूआरएल=एचटीtps://web.archive.org/web/20081201222708/http://www.oe.energy.gov/DocumentsandMedia/primer.pdf |  संग्रह-तिथि = 1 दिसंबर, 2008 |  url-status=dead}</ref> इसके अलावा, मुखर स्थानीय निर्वाचन क्षेत्र दृश्य प्रभाव, पर्यावरण और कथित स्वास्थ्य संबंधी चिंताओं की ओर इशारा करके अनुमति को अवरुद्ध या धीमा कर सकते हैं। अमेरिका में, ट्रांसमिशन की तुलना में उत्पादन चार गुना तेजी से बढ़ रहा है, लेकिन बड़े ट्रांसमिशन अपग्रेड के लिए कई राज्यों के समन्वय, इंटरलॉकिंग परमिट की भीड़ और ग्रिड के स्वामित्व वाली 500 कंपनियों के एक महत्वपूर्ण हिस्से के बीच सहयोग की आवश्यकता होती है। नीति के दृष्टिकोण से, ग्रिड का नियंत्रण  [[ बाल्कनाइज्ड ]] है, और यहां तक ​​कि पूर्व  [[ संयुक्त राज्य अमेरिका के ऊर्जा सचिव |  ऊर्जा सचिव ]]  [[ बिल रिचर्डसन ]] ने इसे ''तीसरी दुनिया ग्रिड'' के रूप में संदर्भित किया है। इस समस्या का सामना करने के लिए यूरोपीय संघ और अमेरिका में प्रयास किए गए हैं। उल्लेखनीय रूप से बढ़ती संचरण क्षमता में अमेरिकी राष्ट्रीय सुरक्षा हित ने  [[ ऊर्जा नीति अधिनियम 2005 के |  2005 ऊर्जा अधिनियम ]] को पारित कर दिया, जिससे ऊर्जा विभाग को ट्रांसमिशन को मंजूरी देने का अधिकार मिला, यदि राज्य कार्य करने से इनकार करते हैं। हालांकि, ऊर्जा विभाग द्वारा दो  [[ राष्ट्रीय हित इलेक्ट्रिक ट्रांसमिशन कॉरिडोर ]] एस को नामित करने के लिए अपनी शक्ति का उपयोग करने के तुरंत बाद, 14 सीनेटरों ने एक पत्र पर हस्ताक्षर किए, जिसमें कहा गया था कि डीओई बहुत आक्रामक था<ref>{{cite journal  | last = Wald  | first = Matthew  | title = Wind Energy Bumps into Power Grid's Limits  | date=27 August 2008  | page=A1  | access-date=12 December 2008  | journal=[[The New York Times]]  | url = https://www.nytimes.com/2008/08/27/business/27grid.html?_r=2&ref=business&oref=slogin}}</ref>
== '''देश द्वारा नीति''' ==


== विशेष प्रसारण ==
=== संयुक्त राज्य अमेरिका ===
फेडरल एनर्जी रेगुलेटरी कमीशन (एफईआरसी) संयुक्त राज्य अमेरिका के भीतर इलेक्ट्रिक पावर दोलक और थोक बिजली की बिक्री की प्राथमिक नियामक एजेंसी है। यह मूल रूप से 1920 में कांग्रेस द्वारा फेडरल पावर कमीशन के रूप में स्थापित किया गया था और तब से कई नाम और जिम्मेदारी संशोधनों से गुजरा है। जो एफईआरसी द्वारा विनियमित नहीं है, मुख्य रूप से बिजली वितरण और बिजली की खुदरा बिक्री, राज्य प्राधिकरण के अधिकार क्षेत्र में है।


=== रेलवे के लिए ग्रिड ===
विद्युत पारेषण को प्रभावित करने वाली दो अधिक उल्लेखनीय अमेरिकी ऊर्जा नीतियां आदेश संख्या 888 और ऊर्जा नीति अधिनियम 2005 हैं ।
{{Main|Traction power network}}


कुछ देशों में जहां  [[ इलेक्ट्रिक लोकोमोटिव ]] एस या  [[ इलेक्ट्रिक मल्टीपल यूनिट ]] एस कम आवृत्ति एसी पावर पर चलते हैं, वहां रेलवे द्वारा संचालित अलग सिंगल फेज [[ ट्रैक्शन पावर नेटवर्क ]] एस हैं। प्रमुख उदाहरण यूरोप (ऑस्ट्रिया, जर्मनी और स्विटजरलैंड सहित) के देश हैं जो 16 <sup>2</sup>''/''<sub>3</sub> Hz (नॉर्वे और स्वीडन भी) पर आधारित पुरानी AC तकनीक का उपयोग करते हैं इस आवृत्ति का उपयोग करें लेकिन 50 Hz सार्वजनिक आपूर्ति से रूपांतरण का उपयोग करें; स्वीडन में 16 <sup>2</sup>''/''<sub>3</sub> Hz कर्षण ग्रिड है लेकिन केवल सिस्टम के हिस्से के लिए)।
24 अप्रैल 1996 को एफईआरसी द्वारा अपनाया गया आदेश संख्या 888, "थोक थोक बिजली बाजार में प्रतिस्पर्धा के लिए बाधाओं को दूर करने और राष्ट्र के बिजली उपभोक्ताओं के लिए अधिक कुशल, कम लागत वाली बिजली लाने के लिए अभिकल्पना किया गया था। इन नियमों की कानूनी और नीति आधारशिला है एकाधिकार के स्वामित्व वाले पारेषण तारों तक पहुंच में अनुचित भेदभाव को दूर करने के लिए जो यह नियंत्रित करते हैं कि अंतरराज्यीय वाणिज्य में बिजली का परिवहन किया जा सकता है या नहीं।" <ref name="Docket No. RM95-8-000">{{Cite web|title=Order No. 888|url=https://www.ferc.gov/legal/maj-ord-reg/land-docs/rm95-8-00w.txt|publisher=United States of America Federal Energy Regulatory Commission}}</ref> आदेश संख्या 888 में सभी सार्वजनिक उपयोगिताओं की आवश्यकता है जो अंतरराज्यीय वाणिज्य में विद्युत ऊर्जा को प्रसारित करने के लिए उपयोग की जाने वाली सुविधाओं का स्वामित्व, नियंत्रण या संचालन करती हैं, जिनके पास गैर-भेदभावपूर्ण पारेषण टैरिफ हैं। ये टैरिफ किसी भी बिजली जनरेटर को पहले से मौजूद बिजली लाइनों का उपयोग उस बिजली के संचरण के लिए करने की अनुमति देते हैं जो वे उत्पन्न करते हैं। आदेश संख्या 888 सार्वजनिक उपयोगिताओं को एक खुली पहुंच सेवा के रूप में अपनी बिजली लाइनों को प्रदान करने से जुड़ी लागतों को वसूल करने की भी अनुमति देता है।<ref name="Docket No. RM95-8-000" /> <ref name="Order No. 888">{{Cite web|last=Order No. 888|title=Promoting Wholesale Competition Through Open Access Non-discriminatory Transmission Services by Public Utilities; Recovery of Stranded Costs by Public Utilities and Transmitting Utilities|first=FERC|url=https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|access-date=December 7, 2016|archive-url=https://web.archive.org/web/20161219014712/https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|archive-date=December 19, 2016}}</ref>


=== अतिचालक केबल ===
2005 के ऊर्जा नीति अधिनियम (ईपीएसीटी) ने 8 अगस्त 2005 को कांग्रेस द्वारा कानून में हस्ताक्षर किए, बिजली पारेषण को विनियमित करने के संघीय प्राधिकरण का और विस्तार किया था। ईपीएसीटी ने एफईआरसी को महत्वपूर्ण नई जिम्मेदारियां दीं, जिसमें इलेक्ट्रिकपारेषणविश्वसनीयता मानकों को लागू करना और इलेक्ट्रिक पारेषण में निवेश को प्रोत्साहित करने के लिए दर प्रोत्साहन की स्थापना शामिल है, लेकिन यह इन्हीं तक सीमित नहीं है। <ref>{{Cite book|title=Energy Policy Act of 2005 Fact Sheet|date=8 August 2006|publisher=FERC Washington, D.C.|url=https://www.ferc.gov/legal/fed-sta/epact-fact-sheet.pdf|access-date=December 7, 2016|archive-url=https://web.archive.org/web/20161220231111/https://ferc.gov/legal/fed-sta/epact-fact-sheet.pdf|archive-date=December 20, 2016}}</ref>
[[ उच्च तापमान सुपरकंडक्टर ]] एस (एचटीएस) विद्युत शक्ति के दोषरहित संचरण प्रदान करके बिजली वितरण में क्रांति लाने का वादा करता है।  [[ तरल नाइट्रोजन ]] के क्वथनांक से अधिक संक्रमण तापमान वाले सुपरकंडक्टर्स के विकास ने सुपरकंडक्टिंग पावर लाइनों की अवधारणा को व्यावसायिक रूप से व्यवहार्य बना दिया है, कम से कम उच्च-लोड अनुप्रयोगों के लिए।<ref>{{cite journal |doi=10.1109/77.920339 |author=Jacob Oestergaard |journal=IEEE Transactions on Applied Superconductivity |title=Energy losses of superconducting power transmission cables in the grid |year=2001 |volume=11 |issue=1 |page=2375|bibcode=2001ITAS...11.2375O |display-authors=etal|url=http://orbit.dtu.dk/files/4280307/%C3%B8stergaard.pdf }}</ref> यह अनुमान लगाया गया है कि इस पद्धति का उपयोग करके कचरे को आधा कर दिया जाएगा, क्योंकि आवश्यक प्रशीतन उपकरण अधिकांश प्रतिरोधक हानियों को समाप्त करके बचाई गई बिजली की लगभग आधी खपत करेंगे।  [[ कंसोलिडेटेड एडिसन ]] और  [[ अमेरिकन सुपरकंडक्टर ]] जैसी कुछ कंपनियों ने पहले ही ऐसी प्रणालियों का व्यावसायिक उत्पादन शुरू कर दिया है।<ref>{{cite web|url=https://www.newscientist.com/article/dn11907-superconducting-power-line-to-shore-up-new-york-grid/|title=Superconducting power line to shore up New York grid|first=New Scientist Tech and|last=Reuters|website=New Scientist}}</ref> [[ सुपरग्रिड ]] नामक एक काल्पनिक भविष्य प्रणाली में, एक तरल हाइड्रोजन पाइपलाइन के साथ ट्रांसमिशन लाइन को जोड़कर शीतलन की लागत को समाप्त कर दिया जाएगा।


सुपरकंडक्टिंग केबल विशेष रूप से बड़े शहरों के व्यावसायिक जिले जैसे उच्च भार घनत्व वाले क्षेत्रों के लिए उपयुक्त हैं, जहां केबल के लिए [[ ईज़ीमेंट ]] की खरीद बहुत महंगी होगी<ref>{{cite web |url=http://www.futureenergies.com/modules.php?name=News&file=article&sid=237 |title=Superconducting cables will be used to supply electricity to consumers |access-date=June 12, 2014 |archive-url=https://web.archive.org/web/20140714161200/http://www.futureenergies.com/modules.php?name=News&file=article&sid=237 |archive-date=July 14, 2014 |url-status=dead }}</ref>
ऐतिहासिक रूप से, स्थानीय सरकारों ने ग्रिड पर अधिकार का प्रयोग किया है और उन कार्यों को प्रोत्साहित करने के लिए महत्वपूर्ण हतोत्साहन हैं जो अपने स्वयं के अलावा अन्य राज्यों को लाभान्वित करेंगे। सस्ते बिजली वाले इलाकों में बिजली के व्यापार में अंतरराज्यीय वाणिज्य को आसान बनाने के लिए प्रोत्साहित किया जाता है, क्योंकि अन्य क्षेत्र स्थानीय ऊर्जा के लिए प्रतिस्पर्धा करने और दरों को बढ़ाने में सक्षम होते हैं। उदाहरण के लिए, मेन में कुछ नियामक भीड़ की समस्याओं का समाधान नहीं करना चाहते हैं क्योंकि भीड़ मेन दरों को कम रखने का काम करती है। <ref name="ncep2">{{Cite book|last=Brown|first=Matthew H.|last2=Sedano|first2=Richard P.|title=Electricity transmission : a primer|date=2004|publisher=National Council on Electricity Policy|location=Denver, Colorado|isbn=1-58024-352-5|page=32 (page&nbsp;41 in .pdf)|url=http://www.oe.energy.gov/DocumentsandMedia/primer.pdf|access-date=29 May 2022|archive-url=https://web.archive.org/web/20090730010635/http://www.oe.energy.gov/DocumentsandMedia/primer.pdf|archive-date=30 July 2009}}</ref> इसके अलावा, मुखर स्थानीय निर्वाचन क्षेत्र दृश्य प्रभाव, पर्यावरण और कथित स्वास्थ्य चिंताओं की ओर इशारा करके अनुमति को अवरुद्ध या धीमा कर सकते हैं। अमेरिका में, दोलक की तुलना में उत्पादन चार गुना तेजी से बढ़ रहा है, लेकिन बड़े दोलक अपग्रेड के लिए कई राज्यों के समन्वय, इंटरलॉकिंग परमिट की भीड़ और ग्रिड के स्वामित्व वाली 500 कंपनियों के एक महत्वपूर्ण हिस्से के बीच सहयोग की आवश्यकता होती है। नीति के दृष्टिकोण से, ग्रिड का नियंत्रण संतुलित है, और यहां तक कि पूर्व ऊर्जा सचिव बिल रिचर्डसन भी इसे ''तीसरी दुनिया के ग्रिड'' के रूप में संदर्भित करते हैं। इस समस्या का सामना करने के लिए यूरोपीय संघ और अमेरिका में प्रयास किए गए हैं। उल्लेखनीय रूप से बढ़ती संचरण क्षमता में अमेरिकी राष्ट्रीय सुरक्षा हित ने 2005 के ऊर्जा अधिनियम को पारित कर दिया, जिससे ऊर्जा विभाग को दोलक को मंजूरी देने का अधिकार मिला, यदि राज्य कार्य करने से इनकार करते हैं। हालांकि, जल्द ही ऊर्जा विभाग ने दो राष्ट्रीय हित इलेक्ट्रिक दोलक कॉरिडोर नामित करने के लिए अपनी शक्ति का इस्तेमाल किया, 14&nbsp;सीनेटरों ने एक पत्र पर हस्ताक्षर किए, जिसमें कहा गया था कि डीओई बहुत आक्रामक था। <ref>{{Cite journal|last=Wald|first=Matthew|title=Wind Energy Bumps into Power Grid's Limits|date=27 August 2008|page=A1|access-date=12 December 2008|journal=[[The New York Times]]|url=https://www.nytimes.com/2008/08/27/business/27grid.html?_r=2&ref=business&oref=slogin}}</ref>


{ |  वर्ग = छांटने योग्य विकिटेबल
== '''विशेष प्रसारण''' ==
|  + एचटीएस ट्रांसमिशन लाइन<ref>{{cite web |url=https://spectrum.ieee.org/biomedical/imaging/superconductivitys-first-century/3 |title=Superconductivity's First Century |access-date=August 9, 2012 |archive-url=https://web.archive.org/web/20120812011121/https://spectrum.ieee.org/biomedical/imaging/superconductivitys-first-century/3 |archive-date=August 12, 2012 |url-status=dead }}</ref>
|  -
! जगह !! लंबाई (किमी) !! वोल्टेज (केवी) !! क्षमता (जीडब्ल्यू) !! दिनांक
|  -
|  कैरोलटन, जॉर्जिया |  |  |  |  |  |  |  |  |  2000
|  -
|  अलाइन = लेफ्ट |  अल्बानी, न्यू यॉर्क<ref>{{cite web|url=http://www.superpower-inc.com/content/hts-transmission-cable|title=HTS Transmission Cable|website=www.superpower-inc.com}}</ref>|  |  0.35 |  |  34.5 |  |  0.048 |  |  2006
|  -
|  [[ होलब्रुक सुपरकंडक्टर प्रोजेक्ट |  होलब्रुक, लॉन्ग आइलैंड]<ref>{{cite web|url=http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/hightempsuperconductors/|title=IBM100 - High-Temperature Superconductors|date=August 10, 2017|website=www-03.ibm.com}}</ref>|  |  0.6 |  |  138 |  |  0.574 |  |  2008
|  -
|  संरेखित करें = बाएं |  [[ ट्रेस एमिगस सुपरस्टेशन |  ट्रेस एमिगस ]] |  |  |  |  |  |  5 |  |  प्रस्तावित 2013
|  -
|  संरेखित = बाएं |  मैनहट्टन: परियोजना हाइड्रा |  |  |  |  |  |  |  |  |  प्रस्तावित 2014
|  -
|  एलाइन = लेफ्ट |  एसेन, जर्मन<ref>{{cite web|url=https://www.powermag.com/high-temperature-superconductor-technology-stepped-up/|title=High-Temperature Superconductor Technology Stepped Up|first=03/01/2012 &#124; Sonal|last=Patel|date=March 1, 2012|website=POWER Magazine}}</ref><ref>{{cite web|url=https://phys.org/news/2014-05-longest-superconducting-cable-worldwide.html|title=Operation of longest superconducting cable worldwide started|website=phys.org}}</ref>|  |  1  |  |  10  |  |  0.04  |  |  2014
|  }


=== सिंगल वायर अर्थ रिटर्न ===
=== रेलवे के लिए ग्रिड ===
{{Main|Single-wire earth return}}
कुछ देशों में जहां इलेक्ट्रिक लोकोमोटिव या इलेक्ट्रिक मल्टीपल यूनिट्स लो फ्रीक्वेंसी एसी पावर पर चलती हैं, वहां रेलवे द्वारा संचालित अलग सिंगल फेज ट्रैक्शन पावर नेटवर्क हैं। प्रमुख उदाहरण यूरोप के देश हैं (ऑस्ट्रिया, जर्मनी और स्विटजरलैंड सहित) जो 16 2/3 हर्ट्ज पर आधारित पुरानी एसी तकनीक का उपयोग करते हैं (नॉर्वे और स्वीडन भी इस आवृत्ति का उपयोग करते हैं लेकिन 50 हर्ट्ज सार्वजनिक आपूर्ति से रूपांतरण का उपयोग करते हैं,स्वीडन में 16 2/3 हर्ट्ज ट्रैक्शन ग्रिड है लेकिन केवल प्रणाली के हिस्से के लिए)।


सिंगल-वायर अर्थ रिटर्न (एसडब्ल्यूईआर) या सिंगल वायर ग्राउंड रिटर्न, कम लागत पर दूरदराज के क्षेत्रों में विद्युत ग्रिड के लिए एकल-चरण विद्युत शक्ति की आपूर्ति के लिए एक सिंगल-वायर ट्रांसमिशन लाइन है। यह मुख्य रूप से ग्रामीण विद्युतीकरण के लिए उपयोग किया जाता है, लेकिन पानी के पंपों जैसे बड़े पृथक भार के लिए भी इसका उपयोग होता है। पनडुब्बी बिजली केबल्स पर एचवीडीसी के लिए सिंगल वायर अर्थ रिटर्न का भी उपयोग किया जाता है।
=== अतिचालक केबल ===
उच्च तापमान वाले अतिचालक (एचटीएस) विद्युत शक्ति के दोषरहित संचरण प्रदान करके बिजली वितरण में क्रांति लाने का वादा करते हैं। तरल नाइट्रोजन के क्वथनांक से अधिक संक्रमण तापमान वाले अतिचालक के विकास ने सुपरकंडक्टिंग पावर लाइनों की अवधारणा को व्यावसायिक रूप से व्यवहार्य कम से कम उच्च-लोड अनुप्रयोगों के लिएबना दिया है। <ref>{{Cite journal|doi=10.1109/77.920339|last=Jacob Oestergaard|journal=IEEE Transactions on Applied Superconductivity|title=Energy losses of superconducting power transmission cables in the grid|year=2001|volume=11|issue=1|page=2375|bibcode=2001ITAS...11.2375O|displayauthors=etal|url=http://orbit.dtu.dk/files/4280307/%C3%B8stergaard.pdf}}</ref> यह अनुमान लगाया गया है कि इस पद्धति का उपयोग करके कचरे को आधा कर दिया जाएगा, क्योंकि आवश्यक प्रशीतन उपकरण अधिकांश प्रतिरोधक हानियों को समाप्त करके बचाई गई बिजली की लगभग आधी खपत करेंगे। कंसोलिडेटेड एडिसन और अमेरिकन अतिचालक जैसी कुछ कंपनियों ने पहले ही इस तरह के प्रणाली का व्यावसायिक उत्पादन शुरू कर दिया है। <ref>{{Cite web|url=https://www.newscientist.com/article/dn11907-superconducting-power-line-to-shore-up-new-york-grid/|title=Superconducting power line to shore up New York grid|first=New Scientist Tech and|last=Reuters|website=New Scientist}}</ref> सुपरग्रिड नामक एक काल्पनिक भविष्य प्रणाली में, एक तरल हाइड्रोजन पाइपलाइन के साथ पारेषण लाइन को जोड़कर शीतलन की लागत को समाप्त कर दिया जाता है।


=== वायरलेस पावर ट्रांसमिशन ===
अतिचालक केबल विशेष रूप से बड़े शहरों के व्यावसायिक जिले जैसे उच्च भार घनत्व वाले क्षेत्रों के लिए उपयुक्त हैं, जहां केबल के लिए एक आसान खरीदना बहुत महंगा होता है। <ref>{{Cite web|url=http://www.futureenergies.com/modules.php?name=News&file=article&sid=237|title=Superconducting cables will be used to supply electricity to consumers|access-date=June 12, 2014|archive-url=https://web.archive.org/web/20140714161200/http://www.futureenergies.com/modules.php?name=News&file=article&sid=237|archive-date=July 14, 2014}}</ref>
{{Main|Wireless energy transfer}}
{| class="wikitable sortable"
!स्थान
!लंबाई (किमी)
!वोल्टेज (केवी)
!क्षमता (जीडब्ल्यू)
!दिनांक
|-
|कैरोलटन, जॉर्जिया
|
|
|
|2000
|-
|अल्बानी, न्यूयॉर्क <ref>{{Cite web|url=http://www.superpower-inc.com/content/hts-transmission-cable|title=HTS Transmission Cable|website=www.superpower-inc.com}}</ref>
|0.35
|34.5
|0.048
|2006
|-
|होलब्रुक, लॉन्ग आइलैंड <ref>{{Cite web|url=http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/hightempsuperconductors/|title=IBM100 - High-Temperature Superconductors|date=August 10, 2017|website=www-03.ibm.com}}</ref>
|0.6
|138
|0.574
|2008
|-
|ट्रेस अमिगास
|
|
|5
|प्रस्तावित 2013
|-
|मैनहट्टन: प्रोजेक्ट हाइड्रा
|
|
|
|प्रस्तावित 2014
|-
|एसेन, जर्मनी <ref>{{Cite web|url=https://www.powermag.com/high-temperature-superconductor-technology-stepped-up/|title=High-Temperature Superconductor Technology Stepped Up|first=03/01/2012 &#124; Sonal|last=Patel|date=March 1, 2012|website=POWER Magazine}}</ref> <ref>{{Cite web|url=https://phys.org/news/2014-05-longest-superconducting-cable-worldwide.html|title=Operation of longest superconducting cable worldwide started|website=phys.org}}</ref>
|1
|10
|0.04
|2014
|}


[[ निकोला टेस्ला ]] और  [[ हिदेत्सुगु यागी ]] दोनों ने 1800 के दशक के अंत और 1900 के दशक की शुरुआत में बड़े पैमाने पर वायरलेस पावर ट्रांसमिशन के लिए सिस्टम तैयार करने का प्रयास किया, जिसमें कोई व्यावसायिक सफलता नहीं मिली।
=== सिंगल वायर अर्थ रिटर्न ===
सिंगल-वायर अर्थ रिटर्न (एसडब्ल्यूईआर) या सिंगल वायर ग्राउंड रिटर्न, कम लागत पर दूरदराज के क्षेत्रों में विद्युत ग्रिड के लिए सिंगल-फेज विद्युत शक्ति की आपूर्ति के लिए एक सिंगल-वायर दोलक लाइन है। यह मुख्य रूप से ग्रामीण विद्युतीकरण के लिए उपयोग किया जाता है, लेकिन पानी के पंपों जैसे बड़े पृथक भार के लिए भी इसका उपयोग होता है। पनडुब्बी बिजली केबलों पर एचवीडीसी के लिए सिंगल वायर अर्थ रिटर्न का भी उपयोग किया जाता है।


नवंबर 2009 में, LaserMotive ने ग्राउंड-आधारित लेज़र ट्रांसमीटर का उपयोग करके एक केबल पर्वतारोही को 1 किमी लंबवत शक्ति देकर NASA 2009 पावर बीमिंग चैलेंज जीता। सिस्टम ने रिसीवर के अंत में 1 kW तक बिजली का उत्पादन किया। अगस्त 2010 में, नासा ने निजी कंपनियों के साथ कम पृथ्वी की कक्षा के उपग्रहों को बिजली देने और लेजर पावर बीम का उपयोग करके रॉकेट लॉन्च करने के लिए लेजर पावर बीमिंग सिस्टम के डिजाइन को आगे बढ़ाने के लिए अनुबंधित किया।
=== वायरलेस शक्ति संचरण ===
निकोला टेस्ला और हिदेत्सुगु यागी दोनों ने 1800 के दशक के अंत और 1900 की शुरुआत में बड़े पैमाने पर वायरलेस पावर दोलक के लिए प्रणाली तैयार करने का प्रयास किया, जिसमें कोई व्यावसायिक सफलता नहीं मिली।


[[ सौर ऊर्जा उपग्रह ]] एस से पृथ्वी तक बिजली के संचरण के लिए वायरलेस पावर ट्रांसमिशन का अध्ययन किया गया है।  [[ माइक्रोवेव ]] या लेजर ट्रांसमीटरों की एक उच्च शक्ति सरणी [[ रेक्टेना ]] को शक्ति प्रदान करेगी। प्रमुख इंजीनियरिंग और आर्थिक चुनौतियां किसी भी सौर ऊर्जा उपग्रह परियोजना का सामना करती हैं।
नवंबर 2009 में, लेज़र मोटिव ने एक ग्राउंड-आधारित लेज़र प्रेषित्र का उपयोग करके एक केबल पर्वतारोही को 1 किमी लंबवत शक्ति देकर नासा 2009 पावर बीमिंग चैलेंज जीता। प्रणाली ने रिसीवर के अंत में 1 kW तक बिजली का उत्पादन किया। अगस्त 2010 में, नासा ने कम पृथ्वी की कक्षा के उपग्रहों को शक्ति प्रदान करने और लेजर पावर बीम का उपयोग करके रॉकेट लॉन्च करने के लिए लेजर पावर बीमिंग प्रणाली के अभिकल्पना को आगे बढ़ाने के लिए निजी कंपनियों के साथ अनुबंध किया था। पग्रहों से पृथ्वी तक बिजली के संचरण के लिए वायरलेस पावर दोलक का अध्ययन किया गया है।  सूक्ष्म तरंग या लेजर प्रेषित्रों की एक उच्च शक्ति सरणी एक रेक्टेंना को शक्ति प्रदान करेगी। प्रमुख इंजीनियरिंग और आर्थिक चुनौतियां किसी भी सौर ऊर्जा उपग्रह परियोजना का सामना करती हैं।


== नियंत्रण प्रणाली की सुरक्षा ==
== '''नियंत्रण प्रणालियों की सुरक्षा''' ==
{{Globalize|date=March 2013}}
संयुक्त राज्य की संघीय सरकार स्वीकार करती है कि पावर ग्रिड साइबर युद्ध के लिए अतिसंवेदनशील है। <ref>{{Cite news|url=http://news.bbc.co.uk/2/hi/technology/7990997.stm|title=Spies 'infiltrate US power grid'|date=April 9, 2009|work=BBC News|first=Maggie|last=Shiels}}</ref> <ref>{{Cite news|url=http://www.cnn.com/2009/TECH/04/08/grid.threat/index.html?iref=newssearch#cnnSTCVideo|title=Hackers reportedly have embedded code in power grid|work=CNN|date=April 9, 2009}}</ref> यूनाइटेड स्टेट्स डिपार्टमेंट ऑफ़ होमलैंड सिक्योरिटी कमजोरियों की पहचान करने के लिए उद्योग के साथ काम करता है और उद्योग को नियंत्रण प्रणाली नेटवर्क की सुरक्षा बढ़ाने में मदद करने के लिए, संघीय सरकार यह सुनिश्चित करने के लिए भी काम कर रही है कि जैसे ही अमेरिका 'स्मार्ट ग्रिड' की अगली पीढ़ी विकसित करता है, सुरक्षा का निर्माण किया जाता है। नेटवर्क। <ref>{{Cite news|url=https://in.reuters.com/article/cyberattack-usa-idINN0853911920090408|title=UPDATE 2-US concerned power grid vulnerable to cyber-attack|work=Reuters|date=April 8, 2009|first=Steve|last=Holland|first2=Randall|last2=Mikkelsen}}</ref>


संयुक्त राज्य अमेरिका की  [[ संघीय सरकार ]] स्वीकार करती है कि पावर ग्रिड  [[ साइबर युद्ध ]] के लिए अतिसंवेदनशील है<ref>{{cite news|url=http://news.bbc.co.uk/2/hi/technology/7990997.stm|title=Spies 'infiltrate US power grid'|date=April 9, 2009|via=news.bbc.co.uk}}</ref><ref>{{cite news|url=http://www.cnn.com/2009/TECH/04/08/grid.threat/index.html?iref=newssearch#cnnSTCVideo|title=Hackers reportedly have embedded code in power grid - CNN.com|website=www.cnn.com}}</ref> [[ यूनाइटेड स्टेट्स डिपार्टमेंट ऑफ़ होमलैंड सिक्योरिटी ]] कमजोरियों की पहचान करने के लिए उद्योग के साथ काम करता है और उद्योग को नियंत्रण प्रणाली नेटवर्क की सुरक्षा बढ़ाने में मदद करता है, संघीय सरकार यह सुनिश्चित करने के लिए भी काम कर रही है कि यू.एस. ग्रिड 'नेटवर्क<ref>{{cite news|url=https://in.reuters.com/article/cyberattack-usa-idINN0853911920090408|title=UPDATE 2-US concerned power grid vulnerable to cyber-attack|newspaper=Reuters|date=April 8, 2009|via=in.reuters.com}}</ref>
जून 2019 में, रूस ने माना कि यह "संभव" है कि इसका विद्युत ग्रिड संयुक्त राज्य अमेरिका द्वारा साइबर हमले के अधीन है। <ref>{{Cite news|title=US and Russia clash over power grid 'hack attacks|url=https://www.bbc.com/news/technology-48675203|work=BBC News|date=18 June 2019}}</ref> ''न्यूयॉर्क टाइम्स'' ने बताया कि यूनाइटेड स्टेट्स साइबर कमांड के अमेरिकी हैकर्स ने मैलवेयर लगाया जो संभावित रूप से रूसी विद्युत ग्रिड को बाधित करने में सक्षम थे। <ref>{{Cite news|title=How Not To Prevent a Cyberwar With Russia|url=https://www.wired.com/story/russia-cyberwar-escalation-power-grid/|work=[[Wired (magazine)|Wired]]|date=18 June 2019|first=Andy|last=Greenberg}}</ref>


जून 2019 में, रूस ने माना है कि यह संभव है कि रूस में उसका  [[ विद्युत क्षेत्र |  विद्युत ग्रिड ]] संयुक्त राज्य अमेरिका द्वारा साइबर हमले के अधीन है।<ref>{{cite news |title=US and Russia clash over power grid 'hack attacks |url=https://www.bbc.com/news/technology-48675203 |work=BBC News |date=18 June 2019}}</ref> ''द न्यूयॉर्क टाइम्स'' ने बताया कि  [[ यूनाइटेड स्टेट्स साइबर कमांड ]] के अमेरिकी हैकरों ने रूसी विद्युत ग्रिड को बाधित करने में संभावित रूप से सक्षम मैलवेयर लगाए<ref>{{cite news |title=How Not To Prevent a Cyberwar With Russia |url=https://www.wired.com/story/russia-cyberwar-escalation-power-grid/ |magazine=[[Wired (magazine)|Wired]] |date=18 June 2019}}</ref>
== '''अभिलेख''' ==


== रिकॉर्ड्स ==
* उच्चतम क्षमता प्रणाली: 12 GW Zhundong-Wannan(准东-皖南)±1100&nbsp;केवी एचवीडीसी।
* उच्चतम क्षमता प्रणाली: 12 GW Zhundong-Wannan (Zhundong-Wannan) ± 1100 kV HVDC<ref>{{cite web|url=https://www.e-fermat.org/files/communication/Li-COMM-ASIAEM2015-2017-Vol21-May-Jun.-017.pdf|title=Development of UHV Transmission and Insulation Technology in China}}</ref><ref>{{cite web|url=http://www.xj.xinhuanet.com/2019-09/27/c_1125048315.htm|title=准东-皖南±1100千伏特高压直流输电工程竣工投运}}</ref>
* उच्चतम संचरण वोल्टेज (एसी):
* उच्चतम संचरण वोल्टेज (एसी):
**योजनाबद्ध: 1.20 एमवी (अल्ट्रा हाई वोल्टेज) वर्धा-औरंगाबाद लाइन (भारत) पर - निर्माणाधीन। प्रारंभ में 400 kV . पर संचालित होगा<ref>{{cite journal |url=http://tdworld.com/overhead_transmission/powergrid-research-development-201301/ |title=India Steps It Up |journal=Transmission & Distribution World | date=January 2013}}</ref>
** योजना बनाई: 1.20&nbsp;वर्धा-औरंगाबाद लाइन (भारत) पर एमवी (अल्ट्रा हाई वोल्टेज) - निर्माणाधीन। शुरुआत में 400 केवी पर काम करेगा।
**दुनिया भर में: [[ पावरलाइन पर 1.15 एमवी (अल्ट्रा हाई वोल्टेज) एकिबस्तुज़-कोकशेताउ |  एकिबस्तुज़-कोकशेताउ लाइन ]] ( [[ कज़ाखस्तान ]])
** दुनिया भर में: 1.15&nbsp;एमवी (अल्ट्रा हाई वोल्टेज) एकिबस्तुज-कोकशेतौ लाइन ( कजाकिस्तान ) पर
* सबसे बड़ा डबल-सर्किट ट्रांसमिशन, [[ किटा-इवाकी पावरलाइन ]] (जापान)।
* सबसे बड़ा डबल- परिपथ दोलक, किटा-इवाकी पावरलाइन (जापान)।
* उच्चतम  [[ ट्रांसमिशन टावर |  टावर ]]: [[ यांग्त्ज़ी नदी क्रॉसिंग ]] (चीन) (ऊंचाई: {{convert|345|m|ft|0|abbr=on|disp=or}})
* सबसे ऊंचे टावर : यांग्त्ज़ी रिवर क्रॉसिंग (चीन) (ऊंचाई: {{Convert|345|m|ft|0|abbr=on|disp=or}} )
* सबसे लंबी बिजली लाइन: [[ इंगा-शबा ]] ( [[ कांगो लोकतांत्रिक गणराज्य ]] ) (लंबाई: {{convert|1700|km|mi|0|disp=or}})
* सबसे लंबी बिजली लाइन: इंगा-शबा ( कांगो लोकतांत्रिक गणराज्य ) (लंबाई: {{Convert|1700|km|mi|0|disp=or}} )
* बिजली लाइन की सबसे लंबी अवधि: {{convert|5376|m|ft|0|abbr=on}} [[ अमेरलिक स्पैन ]] ( [[ ग्रीनलैंड ]], डेनमार्क) पर
* बिजली लाइन की सबसे लंबी अवधि: {{Convert|5376|m|ft|0|abbr=on}} अमेरलिक स्पैन ( ग्रीनलैंड, डेनमार्क) में
* सबसे लंबी पनडुब्बी केबल:
* सबसे लंबी पनडुब्बी केबल:
** [[ नॉर्थ सी लिंक ]], (नॉर्वे/यूनाइटेड किंगडम) - (पनडुब्बी केबल की लंबाई: {{convert|720|km|mi|0|disp=or}})
** नॉर्थ सी लिंक, (नॉर्वे/यूनाइटेड किंगडम) - (पनडुब्बी केबल की लंबाई: {{Convert|720|km|mi|0|disp=or}} )
** [[ नॉर्नड ]], [[ नॉर्थ सी ]] (नॉर्वे/नीदरलैंड) - (पनडुब्बी केबल की लंबाई: {{convert|580|km|mi|0|disp=or}})
** NorNed, उत्तरी सागर (नॉर्वे/नीदरलैंड) - (पनडुब्बी केबल की लंबाई: {{Convert|580|km|mi|0|disp=or}} )
** [[ बासलिंक ]], [[ बास स्ट्रेट ]], (ऑस्ट्रेलिया) - (पनडुब्बी केबल की लंबाई: {{convert|290|km|mi|0|disp=or}}, कुल लंबाई: {{convert|370.1|km|mi|0|disp=or}})
** बासलिंक, बास स्ट्रेट, (ऑस्ट्रेलिया) - (पनडुब्बी केबल की लंबाई: {{Convert|290|km|mi|0|disp=or}}, कुल लंबाई: {{Convert|370.1|km|mi|0|disp=or}} )
** [[ बाल्टिक केबल ]], [[ बाल्टिक सागर ]] (जर्मनी/स्वीडन) - (पनडुब्बी केबल की लंबाई: {{convert|238|km|mi|0|disp=or}}, [[ उच्च वोल्टेज प्रत्यक्ष वर्तमान |  एचवीडीसी ]] लंबाई: {{convert|250|km|mi|0|disp=or}}, कुल लंबाई: {{convert|262|km|mi|0|disp=or}})
** बाल्टिक केबल, बाल्टिक सागर (जर्मनी/स्वीडन) - (पनडुब्बी केबल की लंबाई: {{Convert|238|km|mi|0|disp=or}}, एचवीडीसी की लंबाई: {{Convert|250|km|mi|0|disp=or}}, कुल लंबाई: {{Convert|262|km|mi|0|disp=or}} )
* सबसे लंबी भूमिगत केबल:
* सबसे लंबी भूमिगत केबल:
** [[ मुर्रेलिंक ]], [[ रिवरलैंड ]]/ [[ सनरेशिया ]] (ऑस्ट्रेलिया) - (भूमिगत केबल की लंबाई: {{convert|170|km|mi|0|disp=or}})
** मुर्रेलिंक, रिवरलैंड / सनरेशिया (ऑस्ट्रेलिया) - (भूमिगत केबल की लंबाई: {{Convert|170|km|mi|0|disp=or}} )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


==See also==
== '''यह सभी देखें''' ==
{{Portal|Energy}}
 
{{div col|colwidth=30em}}
== {{div col|colwidth=30em}}
* [[Dynamic demand (electric power)]]
* [[Dynamic demand (electric power)]]
* [[Demand response]]
* [[Demand response]]
Line 432: Line 465:
{{div col end}}
{{div col end}}


==References==
== '''संदर्भ''' ==<!-- पवन ऊर्जा से जुड़ा हुआ है। -> ट्रांसमिशन लाइन पर भेजी जा सकने वाली बिजली की मात्रा सीमित है। सीमा की उत्पत्ति रेखा की लंबाई के आधार पर भिन्न होती है। एक छोटी लाइन के लिए, लाइन लॉस के कारण कंडक्टरों का ताप एक थर्मल सीमा निर्धारित करता है। यदि बहुत अधिक धारा खींची जाती है, तो कंडक्टर जमीन के बहुत करीब झुक सकते हैं, या अधिक गर्म होने से कंडक्टर और उपकरण क्षतिग्रस्त हो सकते हैं। के क्रम में मध्यवर्ती-लंबाई वाली रेखाओं के लिए {{convert|100|km|mi|abbr=off}}, सीमा लाइन में  [[ वोल्टेज ड्रॉप ]] द्वारा निर्धारित की जाती है। लंबी एसी लाइनों के लिए,  [[ पावर सिस्टम स्थिरता |  सिस्टम स्थिरता ]] उस शक्ति की सीमा निर्धारित करती है जिसे स्थानांतरित किया जा सकता है। लगभग, एक एसी लाइन पर बहने वाली शक्ति वोल्टेज के चरण कोण के कोसाइन के समानुपाती होती है और प्राप्त करने और संचारित करने वाले सिरों पर होती है। यह कोण सिस्टम लोडिंग और पीढ़ी के आधार पर भिन्न होता है। कोण के लिए 90 डिग्री तक पहुंचना अवांछनीय है, क्योंकि बिजली का प्रवाह कम हो जाता है लेकिन प्रतिरोधक नुकसान बना रहता है। लगभग, लाइन की लंबाई और अधिकतम भार का स्वीकार्य उत्पाद सिस्टम वोल्टेज के वर्ग के समानुपाती होता है। स्थिरता में सुधार के लिए लंबी लाइनों पर श्रृंखला कैपेसिटर या चरण-स्थानांतरण ट्रांसफार्मर का उपयोग किया जाता है।  [[ उच्च-वोल्टेज प्रत्यक्ष वर्तमान ]] लाइनें केवल थर्मल और वोल्टेज ड्रॉप सीमा द्वारा प्रतिबंधित हैं, क्योंकि चरण कोण उनके संचालन के लिए महत्वपूर्ण नहीं है।  अब तक, केबल मार्ग के साथ तापमान वितरण की भविष्यवाणी करना लगभग असंभव हो गया है, ताकि अधिकतम लागू वर्तमान भार आमतौर पर संचालन की स्थिति और जोखिम को कम करने की समझ के बीच एक समझौता के रूप में निर्धारित किया गया हो। औद्योगिक  [[ डिस्ट्रिब्यूटेड टेम्परेचर सेंसिंग ]] (डीटीएस) सिस्टम की उपलब्धता, जो पूरे केबल में वास्तविक समय के तापमान को मापते हैं, ट्रांसमिशन सिस्टम क्षमता की निगरानी में पहला कदम है। यह निगरानी समाधान तापमान सेंसर के रूप में निष्क्रिय ऑप्टिकल फाइबर का उपयोग करने पर आधारित है, या तो सीधे एक उच्च वोल्टेज केबल के अंदर एकीकृत होता है या केबल इन्सुलेशन पर बाहरी रूप से लगाया जाता है। ओवरहेड लाइनों का समाधान भी उपलब्ध है। इस मामले में ऑप्टिकल फाइबर ओवरहेड ट्रांसमिशन लाइनों (ओपीपीसी) के एक चरण तार के मूल में एकीकृत होता है। एकीकृत डायनेमिक केबल रेटिंग (डीसीआर) या जिसे रीयल टाइम थर्मल रेटिंग (आरटीटीआर) समाधान भी कहा जाता है, न केवल वास्तविक समय में एक उच्च वोल्टेज केबल सर्किट के तापमान की निरंतर निगरानी करने में सक्षम बनाता है, बल्कि मौजूदा नेटवर्क क्षमता को अधिकतम तक सुरक्षित रूप से उपयोग करने में सक्षम बनाता है। इसके अलावा, यह ऑपरेटर को इसकी प्रारंभिक परिचालन स्थितियों में किए गए बड़े बदलावों पर ट्रांसमिशन सिस्टम के व्यवहार की भविष्यवाणी करने की क्षमता प्रदान करता है।  == नियंत्रण == सुरक्षित और पूर्वानुमेय संचालन सुनिश्चित करने के लिए, ट्रांसमिशन सिस्टम के घटकों को जनरेटर, स्विच, सर्किट ब्रेकर और लोड के साथ नियंत्रित किया जाता है। ट्रांसमिशन सिस्टम की वोल्टेज, पावर, फ्रीक्वेंसी, लोड फैक्टर और विश्वसनीयता क्षमताओं को ग्राहकों के लिए लागत प्रभावी प्रदर्शन प्रदान करने के लिए डिज़ाइन किया गया है।  === लोड संतुलन === ट्रांसमिशन सिस्टम सुरक्षा और दोष सहिष्णुता मार्जिन के साथ बेस लोड और  [[ पीकिंग पावर प्लांट |  पीक लोड क्षमता ]] प्रदान करता है। बड़े पैमाने पर उद्योग मिश्रण के कारण क्षेत्र के अनुसार पीक लोड समय अलग-अलग होता है। बहुत गर्म और बहुत ठंडी जलवायु में घरेलू एयर कंडीशनिंग और हीटिंग लोड का समग्र भार पर प्रभाव पड़ता है। वे आम तौर पर वर्ष के सबसे गर्म भाग में देर से दोपहर में और वर्ष के सबसे ठंडे हिस्से में मध्य-सुबह और मध्य-शाम में सबसे अधिक होते हैं। इससे बिजली की आवश्यकताएं मौसम और दिन के समय के अनुसार बदलती रहती हैं। वितरण प्रणाली के डिजाइन हमेशा बेस लोड और पीक लोड को ध्यान में रखते हैं।  ट्रांसमिशन सिस्टम में आमतौर पर पीढ़ी के साथ लोड से मेल खाने के लिए बड़ी बफरिंग क्षमता नहीं होती है। इस प्रकार पीढ़ी के उपकरणों की ओवरलोडिंग विफलताओं को रोकने के लिए, उत्पादन को लोड से मिलान किया जाना चाहिए।  कई स्रोतों और भारों को पारेषण प्रणाली से जोड़ा जा सकता है और शक्ति के व्यवस्थित हस्तांतरण को प्रदान करने के लिए उन्हें नियंत्रित किया जाना चाहिए। केंद्रीकृत बिजली उत्पादन में, उत्पादन का केवल स्थानीय नियंत्रण आवश्यक है, और इसमें  [[ अल्टरनेटर सिंक्रोनाइज़ेशन |  जेनरेशन यूनिट्स ]] का सिंक्रोनाइज़ेशन शामिल है, ताकि बड़े ट्रांसिएंट और ओवरलोड की स्थिति को रोका जा सके।  [[ वितरित उत्पादन में |  वितरित बिजली उत्पादन ]] जनरेटर भौगोलिक रूप से वितरित किए जाते हैं और उन्हें ऑनलाइन और ऑफलाइन लाने की प्रक्रिया को सावधानीपूर्वक नियंत्रित किया जाना चाहिए। लोड नियंत्रण संकेतों को या तो अलग लाइनों पर या स्वयं बिजली लाइनों पर भेजा जा सकता है। भार को संतुलित करने के लिए वोल्टेज और आवृत्ति का उपयोग सिग्नलिंग तंत्र के रूप में किया जा सकता है।  वोल्टेज सिग्नलिंग में, वोल्टेज की भिन्नता का उपयोग पीढ़ी बढ़ाने के लिए किया जाता है। लाइन वोल्टेज कम होने पर किसी भी सिस्टम द्वारा जोड़ी गई शक्ति बढ़ जाती है। यह व्यवस्था सैद्धांतिक रूप से स्थिर है। वोल्टेज-आधारित विनियमन जाल नेटवर्क में उपयोग करने के लिए जटिल है, क्योंकि व्यक्तिगत घटकों और सेटपॉइंट्स को हर बार जाल में एक नया जनरेटर जोड़ने पर पुन: कॉन्फ़िगर करने की आवश्यकता होगी।  आवृत्ति संकेतन में, उत्पादन इकाइयाँ विद्युत पारेषण प्रणाली की आवृत्ति से मेल खाती हैं।  [[ ड्रॉप स्पीड कंट्रोल ]] में, यदि आवृत्ति कम हो जाती है, तो शक्ति बढ़ जाती है। (लाइन फ़्रीक्वेंसी में गिरावट एक संकेत है कि बढ़ा हुआ लोड जनरेटर को धीमा कर रहा है।)  [[ पवन टरबाइन ]] एस,  [[ वाहन-से-ग्रिड ]] और अन्य स्थानीय रूप से वितरित भंडारण और उत्पादन प्रणालियों को पावर ग्रिड से जोड़ा जा सकता है, और सिस्टम संचालन में सुधार के लिए इसके साथ बातचीत कर सकते हैं। अंतरराष्ट्रीय स्तर पर, प्रवृत्ति एक भारी केंद्रीकृत बिजली प्रणाली से एक विकेंद्रीकृत बिजली प्रणाली की ओर धीमी गति से चल रही है। स्थानीय रूप से वितरित उत्पादन प्रणालियों का मुख्य आकर्षण जिसमें कई नए और अभिनव समाधान शामिल हैं, वे बिजली की खपत को उस स्थान के करीब ले जाकर ट्रांसमिशन नुकसान को कम करते हैं जहां इसका उत्पादन किया गया था।<ref>{{cite web  | url = https://www.en-powered.com/blog/the-bumpy-road-to-energy-deregulation | title = The Bumpy Road to Energy Deregulation  | publisher = EnPowered  | date = 2016-03-28}}</ref>  === विफलता सुरक्षा === अतिरिक्त लोड स्थितियों के तहत, सिस्टम को एक बार में सभी के बजाय इनायत से विफल होने के लिए डिज़ाइन किया जा सकता है।  [[ ब्राउनआउट (बिजली) |  ब्राउनआउट ]] तब होता है जब आपूर्ति शक्ति मांग से कम हो जाती है।  [[ पावर आउटेज |  ब्लैकआउट ]] तब होता है जब आपूर्ति पूरी तरह से विफल हो जाती है।  [[ रोलिंग ब्लैकआउट ]] एस (जिसे लोड शेडिंग भी कहा जाता है) जानबूझकर विद्युत शक्ति की कमी है, जिसका उपयोग बिजली की मांग आपूर्ति से अधिक होने पर अपर्याप्त बिजली वितरित करने के लिए किया जाता है।  == संचार == लंबी पारेषण लाइनों के ऑपरेटरों को पावर ग्रिड के नियंत्रण के लिए विश्वसनीय संचार की आवश्यकता होती है और, अक्सर, संबद्ध उत्पादन और वितरण सुविधाएं। लाइन के प्रत्येक छोर पर फॉल्ट-सेंसिंग  [[ सुरक्षात्मक रिले ]] एस को संरक्षित लाइन सेक्शन में और बाहर बिजली के प्रवाह की निगरानी के लिए संचार करना चाहिए ताकि दोषपूर्ण कंडक्टर या उपकरण को जल्दी से डी-एनर्जेट किया जा सके और सिस्टम का संतुलन बहाल हो सके।  [[ शॉर्ट सर्किट ]] एस और अन्य दोषों से ट्रांसमिशन लाइन की सुरक्षा आमतौर पर इतनी महत्वपूर्ण है कि  [[ सामान्य वाहक ]] दूरसंचार अपर्याप्त रूप से विश्वसनीय हैं, और दूरस्थ क्षेत्रों में एक सामान्य वाहक उपलब्ध नहीं हो सकता है। एक पारेषण परियोजना से जुड़ी संचार प्रणालियाँ उपयोग कर सकती हैं: *  [[ माइक्रोवेव ]] सेकेंड *  [[ पावर-लाइन संचार ]] *  [[ ऑप्टिकल फाइबर ]] एस शायद ही कभी, और कम दूरी के लिए, एक उपयोगिता ट्रांसमिशन लाइन पथ के साथ फंसे पायलट-तारों का उपयोग करेगी। सामान्य वाहकों से लीज्ड सर्किटों को प्राथमिकता नहीं दी जाती है क्योंकि उपलब्धता विद्युत विद्युत पारेषण संगठन के नियंत्रण में नहीं है।  डेटा ले जाने के लिए ट्रांसमिशन लाइनों का भी उपयोग किया जा सकता है: इसे पावर-लाइन कैरियर या  [[ पावर लाइन संचार ]] (पीएलसी) कहा जाता है। लंबी तरंग रेंज के लिए एक रेडियो के साथ पीएलसी सिग्नल आसानी से प्राप्त किए जा सकते हैं। [[File:High Voltage Pylons carrying additional fibre cable in Kenya.jpg|thumb|केन्या में अतिरिक्त ऑप्टिकल फाइबर केबल ले जाने वाले उच्च वोल्टेज तोरण ]] ओवरहेड शील्ड तारों में ऑप्टिकल फाइबर को ट्रांसमिशन लाइन के फंसे हुए कंडक्टरों में शामिल किया जा सकता है। इन केबलों को  [[ ऑप्टिकल ग्राउंड वायर ]] (''OPGW'') के रूप में जाना जाता है। कभी-कभी एक स्टैंडअलोन केबल का उपयोग किया जाता है, सभी-डाइलेक्ट्रिक सेल्फ-सपोर्टिंग (''ADSS'') केबल, ट्रांसमिशन लाइन क्रॉस आर्म्स से जुड़ी होती है।  कुछ क्षेत्राधिकार, जैसे  [[ मिनेसोटा ]], ऊर्जा संचरण कंपनियों को अधिशेष संचार बैंडविड्थ बेचने या दूरसंचार  [[ सामान्य वाहक ]] के रूप में कार्य करने से रोकते हैं। जहां नियामक संरचना अनुमति देती है, उपयोगिता एक सामान्य वाहक को अतिरिक्त  [[ डार्क फाइबर ]] एस में क्षमता बेच सकती है, एक और राजस्व धारा प्रदान करती है।  == बिजली बाजार में सुधार == {{Main|Electricity market}}  कुछ नियामक इलेक्ट्रिक ट्रांसमिशन को  [[ प्राकृतिक एकाधिकार मानते हैं]<ref>{{cite web | url = http://www.thehindubusinessline.com/iw/2004/08/15/stories/2004081501201300.htm | title = Power transmission business is a natural monopoly | author = Raghuvir Srinivasan | publisher = The Hindu | work = The Hindu Business Line | date = August 15, 2004 | access-date = January 31, 2008}}</ref><ref>{{cite web | url = http://www.reason.org/commentaries/kiesling_20030818b.shtml | title = Rethink the Natural Monopoly Justification of Electricity Regulation | author = Lynne Kiesling | publisher = Reason Foundation | date = 18 August 2003 | access-date = 31 January 2008 | archive-url = https://web.archive.org/web/20080213034400/http://www.reason.org/commentaries/kiesling_20030818b.shtml | archive-date = February 13, 2008 | url-status = dead }}</ref> और कई देशों में ट्रांसमिशन को अलग से विनियमित करने के लिए कदम उठाए जा रहे हैं (देखें  [[ बिजली बाजार ]])।  [[ क्षेत्रीय प्रसारण संगठन ]] की स्थापना करने वाला स्पेन पहला देश था। उस देश में, ट्रांसमिशन संचालन और बाजार संचालन अलग-अलग कंपनियों द्वारा नियंत्रित किया जाता है। ट्रांसमिशन सिस्टम ऑपरेटर  [[ Red Eléctrica de España ]] (REE) है और थोक बिजली बाजार संचालक Operador del Mercado Ibérico de Energía - Polo Español, S.A. (OMEL) [https://web.archive.org/web/20040906064835/ है। http://www.omel.es/ ओएमईएल होल्डिंग |  ओमेल होल्डिंग]। स्पेन की ट्रांसमिशन प्रणाली फ्रांस, पुर्तगाल और मोरक्को से जुड़ी हुई है।  संयुक्त राज्य अमेरिका में आरटीओ की स्थापना  [[ एफईआरसी ]] के आदेश 888 द्वारा प्रेरित थी, ''सार्वजनिक उपयोगिताओं द्वारा ओपन एक्सेस गैर-भेदभावपूर्ण ट्रांसमिशन सेवाओं के माध्यम से थोक प्रतिस्पर्धा को बढ़ावा देना; सार्वजनिक उपयोगिताओं और संचारण उपयोगिताओं द्वारा फंसे हुए लागतों की वसूली'', 1996 में जारी किया गया<ref>{{cite web|url=https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|title=FERC: Landmark Orders - Order No. 888|website=www.ferc.gov|access-date=December 7, 2016|archive-url=https://web.archive.org/web/20161219014712/https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|archive-date=December 19, 2016|url-status=dead}}</ref> संयुक्त राज्य अमेरिका और कनाडा के कुछ हिस्सों में, कई इलेक्ट्रिक ट्रांसमिशन कंपनियां उत्पादन कंपनियों से स्वतंत्र रूप से काम करती हैं, लेकिन अभी भी ऐसे क्षेत्र हैं - दक्षिणी संयुक्त राज्य - जहां विद्युत प्रणाली का लंबवत एकीकरण बरकरार है। अलगाव के क्षेत्रों में, ट्रांसमिशन मालिक और पीढ़ी के मालिक अपने आरटीओ के भीतर मतदान के अधिकार के साथ बाजार सहभागियों के रूप में एक दूसरे के साथ बातचीत करना जारी रखते हैं। संयुक्त राज्य अमेरिका में आरटीओ  [[ संघीय ऊर्जा नियामक आयोग ]] द्वारा विनियमित हैं।  == बिजली पारेषण की लागत == उपभोक्ता के बिजली बिल में उत्पन्न होने वाली अन्य सभी लागतों की तुलना में उच्च वोल्टेज बिजली संचरण की लागत ( [[ विद्युत बिजली वितरण ]] की लागत के विपरीत) तुलनात्मक रूप से कम है। यूके में, लगभग 10 p प्रति kWh की घरेलू कीमत की तुलना में ट्रांसमिशन लागत लगभग 0.2 p प्रति kWh है।<ref>[http://www.claverton-energy.com/what-is-the-cost-per-kwh-of-bulk-transmission-national-grid-in-the-uk-note-this-excludes-distribution-costs .html बल्क ट्रांसमिशन की प्रति kWh लागत क्या है] / यूके में नेशनल ग्रिड (ध्यान दें कि इसमें वितरण लागत शामिल नहीं है)</ref>  अनुसंधान विद्युत शक्ति टी एंड डी उपकरण बाजार में पूंजीगत व्यय के स्तर का मूल्यांकन करता है 2011 में '' 128.9 बिलियन का होगा<ref>{{cite web |url=http://www.visiongain.com/Report/626/The-Electric-Power-Transmission-and-Distribution-(T-D)-Equipment-Market-2011-2021 |title=The Electric Power Transmission & Distribution (T&D) Equipment Market 2011–2021 |access-date=June 4, 2011 |archive-url=https://web.archive.org/web/20110618143614/http://www.visiongain.com/Report/626/The-Electric-Power-Transmission-and-Distribution-(T-D)-Equipment-Market-2011-2021 |archive-date=June 18, 2011 |url-status=dead }}</ref>  == मर्चेंट ट्रांसमिशन == मर्चेंट ट्रांसमिशन एक ऐसी व्यवस्था है जहां एक तीसरा पक्ष एक असंबंधित अवलंबी उपयोगिता के मताधिकार क्षेत्र के माध्यम से विद्युत पारेषण लाइनों का निर्माण और संचालन करता है।  संयुक्त राज्य अमेरिका में ऑपरेटिंग मर्चेंट ट्रांसमिशन प्रोजेक्ट्स में  [[ शोरहैम, न्यूयॉर्क ]] से  [[ न्यू हेवन, कनेक्टिकट ]], नेपच्यून आरटीएस ट्रांसमिशन लाइन  [[ सेरेविल, न्यू जर्सी ]] से  [[ न्यू ब्रिज, न्यूयॉर्क ]] से  [[ क्रॉस साउंड केबल ]] शामिल हैं। और कैलिफोर्निया में  [[ पथ 15 ]]। अतिरिक्त परियोजनाएं विकास में हैं या संयुक्त राज्य भर में प्रस्तावित की गई हैं, जिसमें  [[ लेक एरी कनेक्टर ]], आईटीसी होल्डिंग्स कॉर्प द्वारा प्रस्तावित एक अंडरवाटर ट्रांसमिशन लाइन शामिल है, जो ओन्टारियो को पीजेएम इंटरकनेक्शन क्षेत्र में सेवारत संस्थाओं को लोड करने के लिए जोड़ती है।<ref>आईटीसी होल्डिंग्स ने पीजेएम की मांग को ओंटारियो की समृद्ध नवीकरणीय ऊर्जा से कैसे जोड़ा है, यूटिलिटी डाइव, 8 दिसंबर 2014, http://www.utilitydive.com/news/how-itc-holdings-plans-to-connect-pjm-demand-with- ओंटारियो-समृद्ध-नवीकरणीय/341524</ref>  ऑस्ट्रेलिया में केवल एक अनियमित या बाज़ार इंटरकनेक्टर है:  [[ बासलिंक ]]  [[ तस्मानिया ]] और  [[ विक्टोरिया (ऑस्ट्रेलिया) |  विक्टोरिया ]] के बीच। दो डीसी लिंक मूल रूप से मार्केट इंटरकनेक्टर्स के रूप में लागू किए गए,  [[ डायरेक्टलिंक ]] और  [[ मरेलिंक ]], को विनियमित इंटरकनेक्टर्स में बदल दिया गया है। [https://web.archive.org/web/20080718211829/http://www.nemmco.com.au/psplanning/psplanning.html#interconnect NEMMCO]  मर्चेंट ट्रांसमिशन को व्यापक रूप से अपनाने में एक बड़ी बाधा यह पहचानने में कठिनाई है कि सुविधा से किसे लाभ होगा ताकि लाभार्थी टोल का भुगतान कर सकें। इसके अलावा, एक व्यापारी ट्रांसमिशन लाइन के लिए प्रतिस्पर्धा करना मुश्किल होता है जब एक एकाधिकार और विनियमित दर आधार के साथ मौजूदा उपयोगिता व्यवसायों द्वारा वैकल्पिक ट्रांसमिशन लाइनों को सब्सिडी दी जाती है।<ref>{{cite book  | author = Fiona Woolf | title = Global Transmission Expansion | publisher = Pennwell Books |date=February 2003 | pages = 226, 247 | isbn = 0-87814-862-0}}</ref> संयुक्त राज्य अमेरिका में, 2010 में जारी  [[ एफईआरसी ]] का आदेश 1000, तीसरे पक्ष के निवेश और मर्चेंट ट्रांसमिशन लाइनों के निर्माण में बाधाओं को कम करने का प्रयास करता है जहां एक सार्वजनिक नीति की आवश्यकता पाई जाती है<ref>{{cite web|url=https://www.ferc.gov/industries/electric/indus-act/trans-plan.asp|title=FERC: Industries - Order No. 1000 - Transmission Planning and Cost Allocation|website=www.ferc.gov|access-date=October 30, 2018|archive-url=https://web.archive.org/web/20181030205910/https://www.ferc.gov/industries/electric/indus-act/trans-plan.asp|archive-date=October 30, 2018|url-status=dead}}</ref>  == स्वास्थ्य संबंधी चिंताएं == {{Main|Electromagnetic radiation and health}}  संयुक्त राज्य अमेरिका में एक बड़े अध्ययन सहित कुछ बड़े अध्ययन, बिजली लाइनों के पास रहने और कैंसर जैसी किसी बीमारी या बीमारी के विकास के बीच कोई संबंध खोजने में विफल रहे हैं। 1997 के एक अध्ययन में पाया गया कि इससे कोई फर्क नहीं पड़ता कि कोई बिजली लाइन या सब-स्टेशन के कितना करीब था, कैंसर या बीमारी का कोई खतरा नहीं था।<ref>[http://www.abc.net.au/rn/talks/8.30/helthrpt/stories/s175.htm पावर लाइन्स एंड कैंसर] {{Webarchive|url=https://web.archive.org/web/20110417202936/http://www.abc.net.au/rn/talks/8.30/helthrpt/stories/s175.htm |date=April 17, 2011 }}, द हेल्थ रिपोर्ट / एबीसी साइंस - 7 जून 1997 को प्रसारण (ऑस्ट्रेलियाई ब्रॉडकास्टिंग कॉर्पोरेशन</ref>  मुख्यधारा के वैज्ञानिक प्रमाण बताते हैं कि घरेलू धाराओं और उच्च संचरण बिजली लाइनों से जुड़े कम-शक्ति, कम-आवृत्ति, विद्युत चुम्बकीय विकिरण एक अल्पकालिक या दीर्घकालिक स्वास्थ्य खतरे का गठन नहीं करते हैं। हालांकि, कुछ अध्ययनों में विभिन्न रोगों और बिजली लाइनों के पास रहने या काम करने के बीच  [[ सांख्यिकीय सहसंबंध ]] एस पाया गया है। बिजली लाइनों के पास नहीं रहने वाले लोगों के स्वास्थ्य पर कोई प्रतिकूल प्रभाव साबित नहीं हुआ है<ref>[https://web.archive.org/web/20071224020021/http://www.who.int/mediacentre/factsheets/fs322/en/ विद्युतचुंबकीय क्षेत्र और सार्वजनिक स्वास्थ्य],  [[ विश्व स्वास्थ्य संगठन]</ref>  [[ न्यूयॉर्क राज्य लोक सेवा आयोग ]] ने विद्युत क्षेत्रों के संभावित स्वास्थ्य प्रभावों का मूल्यांकन करने के लिए ''राय संख्या 78-13'' (19 जून, 1978 को जारी) में प्रलेखित एक अध्ययन किया। आयोग के ऑनलाइन डेटाबेस, DMM में केस नंबर के रूप में सूचीबद्ध होने के लिए अध्ययन की केस संख्या बहुत पुरानी है, और इसलिए मूल अध्ययन को खोजना मुश्किल हो सकता है। अध्ययन ने विद्युत क्षेत्र की ताकत का उपयोग करने के लिए चुना, जिसे न्यूयॉर्क से कनाडा के लिए 765 केवी ट्रांसमिशन लाइन पर मौजूदा (लेकिन नव निर्मित) दाहिने रास्ते के किनारे पर मापा गया था, अंतरिम मानक अधिकतम के रूप में 1.6 केवी / एम। आदेश जारी होने के बाद न्यूयॉर्क राज्य में निर्मित किसी भी नई पारेषण लाइन के किनारे पर विद्युत क्षेत्र। राय ने न्यूयॉर्क में निर्मित सभी नई ट्रांसमिशन लाइनों के वोल्टेज को 345 kV तक सीमित कर दिया। 11 सितंबर, 1990 को, चुंबकीय क्षेत्र की ताकत के समान अध्ययन के बाद, NYSPSC ने अपना ''चुंबकीय क्षेत्रों पर अंतरिम नीति वक्तव्य'' जारी किया। इस अध्ययन ने शीतकालीन-सामान्य कंडक्टर रेटिंग का उपयोग करके दाएं रास्ते के किनारे पर 200 मिलीग्राम के चुंबकीय क्षेत्र अंतरिम मानक की स्थापना की। यह बाद का दस्तावेज़ NYSPSC के ऑनलाइन डेटाबेस पर खोजना भी मुश्किल हो सकता है, क्योंकि यह ऑनलाइन डेटाबेस सिस्टम से पहले का है। रोजमर्रा की वस्तुओं की तुलना में, एक हेयर ड्रायर या इलेक्ट्रिक कंबल 100 मिलीग्राम - 500 मिलीग्राम चुंबकीय क्षेत्र उत्पन्न करता है। एक इलेक्ट्रिक रेजर 2.6 kV/m उत्पन्न कर सकता है। जबकि विद्युत क्षेत्रों को परिरक्षित किया जा सकता है, चुंबकीय क्षेत्रों को परिरक्षित नहीं किया जा सकता है, लेकिन आमतौर पर क्रॉस-सेक्शन में एक सर्किट के प्रत्येक चरण के स्थान को अनुकूलित करके कम से कम किया जाता है।<ref>{{cite web|url=http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7BED95C2A2-2DEA-4FFC-A8DA-CD9C39F5D361%7D|title=EMF Report for the CHPE|pages=1–4|publisher=TRC|date=March 2010|access-date=November 9, 2018}}</ref><ref>{{cite web|url=https://www.transpower.co.nz/sites/default/files/publications/resources/EMF-fact-sheet-3-2009.pdf|title=Electric and Magnetic Field Strengths|publisher=Transpower New Zealand Ltd|page=2|access-date=November 9, 2018}}</ref>  जब लागू नियामक निकाय (आमतौर पर एक सार्वजनिक उपयोगिता आयोग) के आवेदन के भीतर एक नई ट्रांसमिशन लाइन प्रस्तावित की जाती है, तो अक्सर अधिकार के किनारे पर बिजली और चुंबकीय क्षेत्र के स्तर का विश्लेषण होता है। ये विश्लेषण एक उपयोगिता द्वारा या मॉडलिंग सॉफ्टवेयर का उपयोग करके एक इलेक्ट्रिकल इंजीनियरिंग सलाहकार द्वारा किया जाता है। कम से कम एक राज्य लोक उपयोगिता आयोग के पास  [[ बोनविले पावर एडमिनिस्ट्रेशन ]] में एक इंजीनियर या इंजीनियरों द्वारा विकसित सॉफ्टवेयर तक बिजली औरप्रस्तावित पारेषण लाइनों के लिए रास्ते के अधिकार के किनारे पर चुंबकीय क्षेत्र। अक्सर, सार्वजनिक उपयोगिता आयोग बिजली और चुंबकीय क्षेत्रों के कारण किसी भी स्वास्थ्य प्रभाव पर टिप्पणी नहीं करेंगे और सूचना चाहने वालों को राज्य के संबद्ध स्वास्थ्य विभाग को संदर्भित करेंगे।  [[ तीव्र विषाक्तता |  तीव्र ]] ''उच्च'' स्तर के चुंबकीय क्षेत्रों में 100  [[ टेस्ला (इकाई) |  μT ]] (1  [[ गॉस (इकाई) |  जी ]]) (1,000 मिलीग्राम) से ऊपर के लिए स्थापित जैविक प्रभाव हैं। एक आवासीय सेटिंग में, मनुष्यों में  [[ कार्सिनोजेन ]] बर्फीलेपन के सीमित प्रमाण हैं और प्रायोगिक पशुओं में कैंसरजन्यता के लिए पर्याप्त सबूत से कम है, विशेष रूप से, बचपन के ल्यूकेमिया, 0.3 से ऊपर आवासीय बिजली-आवृत्ति चुंबकीय क्षेत्र के औसत जोखिम से जुड़े हैं। µT (3 mG) से 0.4 µT (4 mG) तक। ये स्तर घरों में औसत आवासीय बिजली-आवृत्ति चुंबकीय क्षेत्रों से अधिक हैं, जो यूरोप में लगभग 0.07 μT (0.7 mG) और उत्तरी अमेरिका में 0.11 μT (1.1 mG) हैं।<ref name="WHOFactsheet322">{{cite web |url=https://www.who.int/mediacentre/factsheets/fs322/en/index.html|archive-url=https://web.archive.org/web/20070701204347/http://www.who.int/mediacentre/factsheets/fs322/en/index.html|url-status=dead|archive-date=July 1, 2007|title= Electromagnetic fields and public health|access-date=23 January 2008 |date=June 2007|work= Fact sheet No.&nbsp;322|publisher=[[World Health Organization]]}}</ref><ref name="NIEHS">{{cite web|url=http://www.niehs.nih.gov/health/docs/emf-02.pdf |title=Electric and Magnetic Fields Associated with the Use of Power |access-date=29 January 2008 |date=June 2002 |publisher=[[National Institute of Environmental Health Sciences]] }}</ref>  पृथ्वी की प्राकृतिक भू-चुंबकीय क्षेत्र की ताकत ग्रह की सतह पर 0.035 एमटी और 0.07 एमटी (35 μT - 70 μT या 350 मिलीग्राम - 700 मिलीग्राम) के बीच भिन्न होती है, जबकि निरंतर एक्सपोजर सीमा के लिए अंतर्राष्ट्रीय मानक 40 एमटी (400,000 मिलीग्राम या 400 जी) आम जनता के लिए<ref name="WHOFactsheet322"/>  ट्री ग्रोथ रेगुलेटर और हर्बिसाइड कंट्रोल मेथड्स का इस्तेमाल ट्रांसमिशन लाइन में किया जा सकता है<ref>पारेषण वनस्पति प्रबंधन एनईआरसी मानक FAC-003-2 तकनीकी संदर्भ पृष्ठ 14/50। http://www.nerc.com/docs/standards/sar/FAC-003-2_White_Paper_2009Sept9.pd</ref> जिसमें  [[ हर्बिसाइड हो सकते हैं#स्वास्थ्य और पर्यावरणीय प्रभाव |  स्वास्थ्य प्रभाव ]]।  == देश द्वारा नीति ==  === संयुक्त राज्य ===  [[ संघीय ऊर्जा नियामक आयोग ]] (एफईआरसी) संयुक्त राज्य अमेरिका के भीतर बिजली पारेषण और थोक बिजली की बिक्री की प्राथमिक नियामक एजेंसी है। यह मूल रूप से कांग्रेस द्वारा 1920 में फेडरल पावर कमीशन के रूप में स्थापित किया गया था और तब से कई नाम और जिम्मेदारी संशोधनों से गुजरा है। जो एफईआरसी द्वारा विनियमित नहीं है, मुख्य रूप से बिजली वितरण और बिजली की खुदरा बिक्री, राज्य प्राधिकरण के अधिकार क्षेत्र में है।  बिजली संचरण को प्रभावित करने वाली दो अधिक उल्लेखनीय अमेरिकी ऊर्जा नीतियां  [[ आदेश संख्या 888 ]] और  [[ ऊर्जा नीति अधिनियम 2005 ]] हैं।  24 अप्रैल 1996 को एफईआरसी द्वारा अपनाया गया आदेश संख्या 888, थोक थोक बिजली बाजार में प्रतिस्पर्धा के लिए बाधाओं को दूर करने और राष्ट्र के बिजली उपभोक्ताओं के लिए अधिक कुशल, कम लागत वाली बिजली लाने के लिए डिज़ाइन किया गया था। इन नियमों की कानूनी और नीतिगत आधारशिला एकाधिकार के स्वामित्व वाले ट्रांसमिशन तारों तक पहुंच में अनुचित भेदभाव को दूर करना है जो यह नियंत्रित करते हैं कि अंतरराज्यीय वाणिज्य में बिजली का परिवहन किया जा सकता है या नहीं।<ref name="Docket No. RM95-8-000">{{cite web|title=Order No. 888|url=https://www.ferc.gov/legal/maj-ord-reg/land-docs/rm95-8-00w.txt|publisher=United States of America Federal Energy Regulatory Commission}}</ref> आदेश संख्या 888 में सभी सार्वजनिक उपयोगिताओं की आवश्यकता है जो अंतरराज्यीय वाणिज्य में विद्युत ऊर्जा के संचारण के लिए उपयोग की जाने वाली सुविधाओं का स्वामित्व, नियंत्रण या संचालन करती हैं, जिनके पास गैर-भेदभावपूर्ण ट्रांसमिशन टैरिफ की खुली पहुंच होनी चाहिए। ये टैरिफ किसी भी बिजली जनरेटर को पहले से मौजूद बिजली लाइनों का उपयोग उस बिजली के संचरण के लिए करने की अनुमति देते हैं जो वे उत्पन्न करते हैं। आदेश संख्या 888 सार्वजनिक उपयोगिताओं को एक खुली पहुंच सेवा के रूप में अपनी बिजली लाइनों को प्रदान करने से जुड़ी लागतों को वसूल करने की भी अनुमति देता है<ref name="Docket No. RM95-8-000"/><ref name="Order No. 888">{{cite web|last1=Order No. 888|title=Promoting Wholesale Competition Through Open Access Non-discriminatory Transmission Services by Public Utilities; Recovery of Stranded Costs by Public Utilities and Transmitting Utilities|first1=FERC|url=https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|access-date=December 7, 2016|archive-url=https://web.archive.org/web/20161219014712/https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp|archive-date=December 19, 2016|url-status=dead}}</ref>  2005 के ऊर्जा नीति अधिनियम (ईपीएसीटी) ने 8 अगस्त 2005 को कांग्रेस द्वारा कानून में हस्ताक्षर किए, बिजली पारेषण को विनियमित करने के संघीय अधिकार का और विस्तार किया। ईपीएसीटी ने एफईआरसी को महत्वपूर्ण नई जिम्मेदारियां दीं, जिसमें इलेक्ट्रिक ट्रांसमिशन विश्वसनीयता मानकों को लागू करना और इलेक्ट्रिक ट्रांसमिशन में निवेश को प्रोत्साहित करने के लिए दर प्रोत्साहन की स्थापना शामिल है, लेकिन यह इन्हीं तक सीमित नहीं है।<ref>{{cite book|title=Energy Policy Act of 2005 Fact Sheet|date=8 August 2006|publisher=FERC Washington, D.C.|url=https://www.ferc.gov/legal/fed-sta/epact-fact-sheet.pdf|access-date=December 7, 2016|archive-url=https://web.archive.org/web/2016122023 [[/https://ferc.gov/legal/fed-sta/epact-fact-sheet.pdf|archive-date=December 20, 2016|url-status=dead}}</ref>  ऐतिहासिक रूप से, स्थानीय सरकारों ने ग्रिड पर अधिकार का प्रयोग किया है और उन कार्यों को प्रोत्साहित करने के लिए महत्वपूर्ण हतोत्साहन हैं जो अपने स्वयं के अलावा अन्य राज्यों को लाभान्वित करेंगे। सस्ते बिजली वाले इलाकों में  [[ अंतरराज्यीय वाणिज्य ]] को बिजली व्यापार में आसान बनाने के लिए प्रोत्साहित करने के लिए एक प्रोत्साहन है, क्योंकि अन्य क्षेत्र स्थानीय ऊर्जा के लिए प्रतिस्पर्धा करने और दरों को बढ़ाने में सक्षम होंगे। उदाहरण के लिए, मेन में कुछ नियामक भीड़ की समस्याओं का समाधान नहीं करना चाहते हैं क्योंकि भीड़ मेन दरों को कम रखने का काम करती है<ref name=ncep2>{{संदर्भ पत्रिका |  url=http://www.oe.energy.gov/DocumentsandMedia/primer.pdf |  शीर्षक = बिजली संचरण: एक प्राइमर |  लेखक = बिजली नीति पर राष्ट्रीय परिषद |  पृष्ठ = 32 (पृष्ठ 41 .pdf में) |  पहुंच-तिथि=28 दिसंबर, 2008 |  संग्रह-यूआरएल=एचटीtps://web.archive.org/web/20081201222708/http://www.oe.energy.gov/DocumentsandMedia/primer.pdf |  संग्रह-तिथि = 1 दिसंबर, 2008 |  url-status=dead}</ref> इसके अलावा, मुखर स्थानीय निर्वाचन क्षेत्र दृश्य प्रभाव, पर्यावरण और कथित स्वास्थ्य संबंधी चिंताओं की ओर इशारा करके अनुमति को अवरुद्ध या धीमा कर सकते हैं। अमेरिका में, ट्रांसमिशन की तुलना में उत्पादन चार गुना तेजी से बढ़ रहा है, लेकिन बड़े ट्रांसमिशन अपग्रेड के लिए कई राज्यों के समन्वय, इंटरलॉकिंग परमिट की भीड़ और ग्रिड के स्वामित्व वाली 500 कंपनियों के एक महत्वपूर्ण हिस्से के बीच सहयोग की आवश्यकता होती है। नीति के दृष्टिकोण से, ग्रिड का नियंत्रण  [[ बाल्कनाइज्ड ]] है, और यहां तक ​​कि पूर्व  [[ संयुक्त राज्य अमेरिका के ऊर्जा सचिव |  ऊर्जा सचिव ]]  [[ बिल रिचर्डसन ]] ने इसे ''तीसरी दुनिया ग्रिड'' के रूप में संदर्भित किया है। इस समस्या का सामना करने के लिए यूरोपीय संघ और अमेरिका में प्रयास किए गए हैं। उल्लेखनीय रूप से बढ़ती संचरण क्षमता में अमेरिकी राष्ट्रीय सुरक्षा हित ने  [[ ऊर्जा नीति अधिनियम 2005 के |  2005 ऊर्जा अधिनियम ]] को पारित कर दिया, जिससे ऊर्जा विभाग को ट्रांसमिशन को मंजूरी देने का अधिकार मिला, यदि राज्य कार्य करने से इनकार करते हैं। हालांकि, ऊर्जा विभाग द्वारा दो  [[ राष्ट्रीय हित इलेक्ट्रिक ट्रांसमिशन कॉरिडोर ]] एस को नामित करने के लिए अपनी शक्ति का उपयोग करने के तुरंत बाद, 14 सीनेटरों ने एक पत्र पर हस्ताक्षर किए, जिसमें कहा गया था कि डीओई बहुत आक्रामक था<ref>{{cite journal  | last = Wald  | first = Matthew  | title = Wind Energy Bumps into Power Grid's Limits  | date=27 August 2008  | page=A1  | access-date=12 December 2008  | journal=[[The New York Times]]  | url = https://www.nytimes.com/2008/08/27/business/27grid.html?_r=2&ref=business&oref=slogin}}</ref>  == विशेष प्रसारण ==  === रेलवे के लिए ग्रिड === {{Main|Traction power network}}  कुछ देशों में जहां  [[ इलेक्ट्रिक लोकोमोटिव ]] एस या  [[ इलेक्ट्रिक मल्टीपल यूनिट ]] एस कम आवृत्ति एसी पावर पर चलते हैं, वहां रेलवे द्वारा संचालित अलग सिंगल फेज  [[ ट्रैक्शन पावर नेटवर्क ]] एस हैं। प्रमुख उदाहरण यूरोप (ऑस्ट्रिया, जर्मनी और स्विटजरलैंड सहित) के देश हैं जो 16 <sup>2</sup>''/''<sub>3</sub> Hz (नॉर्वे और स्वीडन भी) पर आधारित पुरानी AC तकनीक का उपयोग करते हैं इस आवृत्ति का उपयोग करें लेकिन 50 Hz सार्वजनिक आपूर्ति से रूपांतरण का उपयोग करें; स्वीडन में 16 <sup>2</sup>''/''<sub>3</sub> Hz कर्षण ग्रिड है लेकिन केवल सिस्टम के हिस्से के लिए)।  === अतिचालक केबल ===  [[ उच्च तापमान सुपरकंडक्टर ]] एस (एचटीएस) विद्युत शक्ति के दोषरहित संचरण प्रदान करके बिजली वितरण में क्रांति लाने का वादा करता है।  [[ तरल नाइट्रोजन ]] के क्वथनांक से अधिक संक्रमण तापमान वाले सुपरकंडक्टर्स के विकास ने सुपरकंडक्टिंग पावर लाइनों की अवधारणा को व्यावसायिक रूप से व्यवहार्य बना दिया है, कम से कम उच्च-लोड अनुप्रयोगों के लिए।<ref>{{cite journal |doi=10.1109/77.920339 |author=Jacob Oestergaard |journal=IEEE Transactions on Applied Superconductivity |title=Energy losses of superconducting power transmission cables in the grid |year=2001 |volume=11 |issue=1 |page=2375|bibcode=2001ITAS...11.2375O |display-authors=etal|url=http://orbit.dtu.dk/files/4280307/%C3%B8stergaard.pdf }}</ref> यह अनुमान लगाया गया है कि इस पद्धति का उपयोग करके कचरे को आधा कर दिया जाएगा, क्योंकि आवश्यक प्रशीतन उपकरण अधिकांश प्रतिरोधक हानियों को समाप्त करके बचाई गई बिजली की लगभग आधी खपत करेंगे।  [[ कंसोलिडेटेड एडिसन ]] और  [[ अमेरिकन सुपरकंडक्टर ]] जैसी कुछ कंपनियों ने पहले ही ऐसी प्रणालियों का व्यावसायिक उत्पादन शुरू कर दिया है।<ref>{{cite web|url=https://www.newscientist.com/article/dn11907-superconducting-power-line-to-shore-up-new-york-grid/|title=Superconducting power line to shore up New York grid|first=New Scientist Tech and|last=Reuters|website=New Scientist}}</ref>  [[ सुपरग्रिड ]] नामक एक काल्पनिक भविष्य प्रणाली में, एक तरल हाइड्रोजन पाइपलाइन के साथ ट्रांसमिशन लाइन को जोड़कर शीतलन की लागत को समाप्त कर दिया जाएगा।  सुपरकंडक्टिंग केबल विशेष रूप से बड़े शहरों के व्यावसायिक जिले जैसे उच्च भार घनत्व वाले क्षेत्रों के लिए उपयुक्त हैं, जहां केबल के लिए  [[ ईज़ीमेंट ]] की खरीद बहुत महंगी होगी<ref>{{cite web |url=http://www.futureenergies.com/modules.php?name=News&file=article&sid=237 |title=Superconducting cables will be used to supply electricity to consumers |access-date=June 12, 2014 |archive-url=https://web.archive.org/web/20140714161200/http://www.futureenergies.com/modules.php?name=News&file=article&sid=237 |archive-date=July 14, 2014 |url-status=dead }}</ref>  { |  वर्ग = छांटने योग्य विकिटेबल  |  + एचटीएस ट्रांसमिशन लाइन<ref>{{cite web |url=https://spectrum.ieee.org/biomedical/imaging/superconductivitys-first-century/3 |title=Superconductivity's First Century |access-date=August 9, 2012 |archive-url=https://web.archive.org/web/20120812011121/https://spectrum.ieee.org/biomedical/imaging/superconductivitys-first-century/3 |archive-date=August 12, 2012 |url-status=dead }}</ref> |  - ! जगह !! लंबाई (किमी) !! वोल्टेज (केवी) !! क्षमता (जीडब्ल्यू) !! दिनांक  |  -  |  कैरोलटन, जॉर्जिया |  |  |  |  |  |  |  |  |  2000  |  -  |  अलाइन = लेफ्ट |  अल्बानी, न्यू यॉर्क<ref>{{cite web|url=http://www.superpower-inc.com/content/hts-transmission-cable|title=HTS Transmission Cable|website=www.superpower-inc.com}}</ref>|  |  0.35 |  |  34.5 |  |  0.048 |  |  2006  |  -  |  [[ होलब्रुक सुपरकंडक्टर प्रोजेक्ट |  होलब्रुक, लॉन्ग आइलैंड]<ref>{{cite web|url=http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/hightempsuperconductors/|title=IBM100 - High-Temperature Superconductors|date=August 10, 2017|website=www-03.ibm.com}}</ref>|  |  0.6 |  |  138 |  |  0.574 |  |  2008  |  -  |  संरेखित करें = बाएं |  [[ ट्रेस एमिगस सुपरस्टेशन |  ट्रेस एमिगस ]] |  |  |  |  |  |  5 |  |  प्रस्तावित 2013  |  -  |  संरेखित = बाएं |  मैनहट्टन: परियोजना हाइड्रा |  |  |  |  |  |  |  |  |  प्रस्तावित 2014  |  -  |  एलाइन = लेफ्ट |  एसेन, जर्मन<ref>{{cite web|url=https://www.powermag.com/high-temperature-superconductor-technology-stepped-up/|title=High-Temperature Superconductor Technology Stepped Up|first=03/01/2012 &#124; Sonal|last=Patel|date=March 1, 2012|website=POWER Magazine}}</ref><ref>{{cite web|url=https://phys.org/news/2014-05-longest-superconducting-cable-worldwide.html|title=Operation of longest superconducting cable worldwide started|website=phys.org}}</ref>|  |  1  |  |  10  |  |  0.04  |  |  2014  |  }  === सिंगल वायर अर्थ रिटर्न === {{Main|Single-wire earth return}}  सिंगल-वायर अर्थ रिटर्न (एसडब्ल्यूईआर) या सिंगल वायर ग्राउंड रिटर्न, कम लागत पर दूरदराज के क्षेत्रों में विद्युत ग्रिड के लिए एकल-चरण विद्युत शक्ति की आपूर्ति के लिए एक सिंगल-वायर ट्रांसमिशन लाइन है। यह मुख्य रूप से ग्रामीण विद्युतीकरण के लिए उपयोग किया जाता है, लेकिन पानी के पंपों जैसे बड़े पृथक भार के लिए भी इसका उपयोग होता है। पनडुब्बी बिजली केबल्स पर एचवीडीसी के लिए सिंगल वायर अर्थ रिटर्न का भी उपयोग किया जाता है।  === वायरलेस पावर ट्रांसमिशन === {{Main|Wireless energy transfer}}  [[ निकोला टेस्ला ]] और  [[ हिदेत्सुगु यागी ]] दोनों ने 1800 के दशक के अंत और 1900 के दशक की शुरुआत में बड़े पैमाने पर वायरलेस पावर ट्रांसमिशन के लिए सिस्टम तैयार करने का प्रयास किया, जिसमें कोई व्यावसायिक सफलता नहीं मिली।  नवंबर 2009 में, LaserMotive ने ग्राउंड-आधारित लेज़र ट्रांसमीटर का उपयोग करके एक केबल पर्वतारोही को 1 किमी लंबवत शक्ति देकर NASA 2009 पावर बीमिंग चैलेंज जीता। सिस्टम ने रिसीवर के अंत में 1 kW तक बिजली का उत्पादन किया। अगस्त 2010 में, नासा ने निजी कंपनियों के साथ कम पृथ्वी की कक्षा के उपग्रहों को बिजली देने और लेजर पावर बीम का उपयोग करके रॉकेट लॉन्च करने के लिए लेजर पावर बीमिंग सिस्टम के डिजाइन को आगे बढ़ाने के लिए अनुबंधित किया।  [[ सौर ऊर्जा उपग्रह ]] एस से पृथ्वी तक बिजली के संचरण के लिए वायरलेस पावर ट्रांसमिशन का अध्ययन किया गया है।  [[ माइक्रोवेव ]] या लेजर ट्रांसमीटरों की एक उच्च शक्ति सरणी  [[ रेक्टेना ]] को शक्ति प्रदान करेगी। प्रमुख इंजीनियरिंग और आर्थिक चुनौतियां किसी भी सौर ऊर्जा उपग्रह परियोजना का सामना करती हैं।  == नियंत्रण प्रणाली की सुरक्षा == {{Globalize|date=March 2013}}  संयुक्त राज्य अमेरिका की  [[ संघीय सरकार ]] स्वीकार करती है कि पावर ग्रिड  [[ साइबर युद्ध ]] के लिए अतिसंवेदनशील है<ref>{{cite news|url=http://news.bbc.co.uk/2/hi/technology/7990997.stm|title=Spies 'infiltrate US power grid'|date=April 9, 2009|via=news.bbc.co.uk}}</ref><ref>{{cite news|url=http://www.cnn.com/2009/TECH/04/08/grid.threat/index.html?iref=newssearch#cnnSTCVideo|title=Hackers reportedly have embedded code in power grid - CNN.com|website=www.cnn.com}}</ref>  [[ यूनाइटेड स्टेट्स डिपार्टमेंट ऑफ़ होमलैंड सिक्योरिटी ]] कमजोरियों की पहचान करने के लिए उद्योग के साथ काम करता है और उद्योग को नियंत्रण प्रणाली नेटवर्क की सुरक्षा बढ़ाने में मदद करता है, संघीय सरकार यह सुनिश्चित करने के लिए भी काम कर रही है कि यू.एस. ग्रिड 'नेटवर्क<ref>{{cite news|url=https://in.reuters.com/article/cyberattack-usa-idINN0853911920090408|title=UPDATE 2-US concerned power grid vulnerable to cyber-attack|newspaper=Reuters|date=April 8, 2009|via=in.reuters.com}}</ref>  जून 2019 में, रूस ने माना है कि यह संभव है कि रूस में उसका  [[ विद्युत क्षेत्र |  विद्युत ग्रिड ]] संयुक्त राज्य अमेरिका द्वारा साइबर हमले के अधीन है।<ref>{{cite news |title=US and Russia clash over power grid 'hack attacks |url=https://www.bbc.com/news/technology-48675203 |work=BBC News |date=18 June 2019}}</ref> ''द न्यूयॉर्क टाइम्स'' ने बताया कि  [[ यूनाइटेड स्टेट्स साइबर कमांड ]] के अमेरिकी हैकरों ने रूसी विद्युत ग्रिड को बाधित करने में संभावित रूप से सक्षम मैलवेयर लगाए<ref>{{cite news |title=How Not To Prevent a Cyberwar With Russia |url=https://www.wired.com/story/russia-cyberwar-escalation-power-grid/ |magazine=[[Wired (magazine)|Wired]] |date=18 June 2019}}</ref>  == रिकॉर्ड्स == * उच्चतम क्षमता प्रणाली: 12 GW Zhundong-Wannan (Zhundong-Wannan) ± 1100 kV HVDC<ref>{{cite web|url=https://www.e-fermat.org/files/communication/Li-COMM-ASIAEM2015-2017-Vol21-May-Jun.-017.pdf|title=Development of UHV Transmission and Insulation Technology in China}}</ref><ref>{{cite web|url=http://www.xj.xinhuanet.com/2019-09/27/c_1125048315.htm|title=准东-皖南±1100千伏特高压直流输电工程竣工投运}}</ref> * उच्चतम संचरण वोल्टेज (एसी): **योजनाबद्ध: 1.20 एमवी (अल्ट्रा हाई वोल्टेज) वर्धा-औरंगाबाद लाइन (भारत) पर - निर्माणाधीन। प्रारंभ में 400 kV . पर संचालित होगा<ref>{{cite journal |url=http://tdworld.com/overhead_transmission/powergrid-research-development-201301/ |title=India Steps It Up |journal=Transmission & Distribution World | date=January 2013}}</ref> **दुनिया भर में:  [[ पावरलाइन पर 1.15 एमवी (अल्ट्रा हाई वोल्टेज) एकिबस्तुज़-कोकशेताउ |  एकिबस्तुज़-कोकशेताउ लाइन ]] ( [[ कज़ाखस्तान ]]) * सबसे बड़ा डबल-सर्किट ट्रांसमिशन,  [[ किटा-इवाकी पावरलाइन ]] (जापान)। * उच्चतम  [[ ट्रांसमिशन टावर |  टावर ]]:  [[ यांग्त्ज़ी नदी क्रॉसिंग ]] (चीन) (ऊंचाई: {{convert|345|m|ft|0|abbr=on|disp=or}}) * सबसे लंबी बिजली लाइन:  [[ इंगा-शबा ]] ( [[ कांगो लोकतांत्रिक गणराज्य ]] ) (लंबाई: {{convert|1700|km|mi|0|disp=or}}) * बिजली लाइन की सबसे लंबी अवधि: {{convert|5376|m|ft|0|abbr=on}}  [[ अमेरलिक स्पैन ]] ( [[ ग्रीनलैंड ]], डेनमार्क) पर * सबसे लंबी पनडुब्बी केबल: ** [[ नॉर्थ सी लिंक ]], (नॉर्वे/यूनाइटेड किंगडम) - (पनडुब्बी केबल की लंबाई: {{convert|720|km|mi|0|disp=or}}) ** [[ नॉर्नड ]],  [[ नॉर्थ सी ]] (नॉर्वे/नीदरलैंड) - (पनडुब्बी केबल की लंबाई: {{convert|580|km|mi|0|disp=or}}) ** [[ बासलिंक ]],  [[ बास स्ट्रेट ]], (ऑस्ट्रेलिया) - (पनडुब्बी केबल की लंबाई: {{convert|290|km|mi|0|disp=or}}, कुल लंबाई: {{convert|370.1|km|mi|0|disp=or}}) ** [[ बाल्टिक केबल ]],  [[ बाल्टिक सागर ]] (जर्मनी/स्वीडन) - (पनडुब्बी केबल की लंबाई: {{convert|238|km|mi|0|disp=or}},  [[ उच्च वोल्टेज प्रत्यक्ष वर्तमान |  एचवीडीसी ]] लंबाई: {{convert|250|km|mi|0|disp=or}}, कुल लंबाई: {{convert|262|km|mi|0|disp=or}}) * सबसे लंबी भूमिगत केबल: ** [[ मुर्रेलिंक ]],  [[ रिवरलैंड ]]/ [[ सनरेशिया ]] (ऑस्ट्रेलिया) - (भूमिगत केबल की लंबाई: {{convert|170|km|mi|0|disp=or}})  ==See also== {{Portal|Energy}} {{div col|colwidth=30em}} * [[Dynamic demand (electric power)]] * [[Demand response]] * [[List of energy storage projects]] * [[Traction power network]] * [[Backfeeding]] * [[Conductor marking lights]] * [[Double-circuit transmission line]] * [[Emtp|Electromagnetic Transients Program]] (EMTP) * [[Flexible AC transmission system]] (FACTS) * [[Geomagnetically induced current]], (GIC) * [[Grid-tied electrical system]] * [[List of high voltage underground and submarine cables]] * [[Load profile]] * [[National Grid (disambiguation)]] * [[Power line communication]]s (PLC) * [[Power system simulation]] * [[Radio frequency power transmission]] * [[Wheeling (electric power transmission)]] {{div col end}}  ==References== {{reflist}} ==Further reading== * Grigsby, L. L., et al. ''The Electric Power Engineering Handbook''. USA: CRC Press. (2001). {{ISBN|0-8493-8578-4}} * [[Thomas P. Hughes|Hughes, Thomas P.]], ''Networks of Power: Electrification in Western Society 1880–1930'', The Johns Hopkins University Press, Baltimore 1983 {{ISBN|0-8018-2873-2}}, an excellent overview of development during the first 50 years of commercial electric power * {{cite book | author=Reilly, Helen | title= Connecting the Country – New Zealand's National Grid 1886–2007| location=Wellington| publisher= Steele Roberts| year=2008| pages = 376 pages | isbn=978-1-877448-40-9}} * Pansini, Anthony J, E.E., P.E. ''undergrounding electric lines''. USA Hayden Book Co, 1978. {{ISBN|0-8104-0827-9}} * Westinghouse Electric Corporation, "''Electric power transmission patents; Tesla polyphase system''". (Transmission of power; polyphase system; [[Tesla patents]]) * [http://www.bsharp.org/physics/transmission The Physics of Everyday Stuff - Transmission Lines] {{Commons category|Electric power transmission}} {{Wiktionary|grid electricity}} {{Electricity generation}} {{Authority control}} {{DEFAULTSORT:Electric Power Transmission}}    --> ==
{{reflist}}
 
==Further reading==
* Grigsby, L. L., et al. ''The Electric Power Engineering Handbook''. USA: CRC Press. (2001). {{ISBN|0-8493-8578-4}}
* [[Thomas P. Hughes|Hughes, Thomas P.]], ''Networks of Power: Electrification in Western Society 1880–1930'', The Johns Hopkins University Press, Baltimore 1983 {{ISBN|0-8018-2873-2}}, an excellent overview of development during the first 50 years of commercial electric power
* {{cite book | author=Reilly, Helen | title= Connecting the Country – New Zealand's National Grid 1886–2007| location=Wellington| publisher= Steele Roberts| year=2008| pages = 376 pages | isbn=978-1-877448-40-9}}
* Pansini, Anthony J, E.E., P.E. ''undergrounding electric lines''. USA Hayden Book Co, 1978. {{ISBN|0-8104-0827-9}}
* Westinghouse Electric Corporation, "''Electric power transmission patents; Tesla polyphase system''". (Transmission of power; polyphase system; [[Tesla patents]])
* [http://www.bsharp.org/physics/transmission The Physics of Everyday Stuff - Transmission Lines]
 
{{Commons category|Electric power transmission}}
{{Wiktionary|grid electricity}}
 
{{Electricity generation}}
{{Authority control}}


{{DEFAULTSORT:Electric Power Transmission}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: बिजली पारेषण| ]]
[[Category:CS1]]
[[Category: इलेक्ट्रिकल इंजीनियरिंग]]
[[Category:CS1 errors]]
[[Category: एकाधिकार (अर्थशास्त्र)]]
[[Category:CS1 maint]]
[[Category: विद्युत सुरक्षा]]
[[Category:Lua-based templates]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Pages with template loops]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia fully protected templates|Div col]]

Latest revision as of 15:01, 25 August 2023

ग्रैंड कौली डैम में पांच सौ किलोवोल्ट (500 केवी) तीन-चरण इलेक्ट्रिक पावर ट्रांसमिशन लाइन; चार सर्किट दिखाए गए हैं; दो अतिरिक्त सर्किट दूर दाहिनी ओर पेड़ों द्वारा अस्पष्ट हैं; बांध की संपूर्ण 7079 मेगावाट नेमप्लेट उत्पादन क्षमता इन छह सर्किटों द्वारा समायोजित की जाती है।

विद्युत शक्ति संचरण, विद्युत ऊर्जा का एक उत्पादन स्थल, जैसे कि विद्युत संयंत्र, से विद्युत उपकेंद्र तक की थोक गति है। आपस में जुड़ी हुई लाइनें जो इस संचलन को सुगम बनाती हैं, संचार प्रसार के रूप में जानी जाती हैं। यह  उच्‍च वोल्टता उपकेंद्रों और ग्राहकों के बीच स्थानीय वायरिंग से अलग है, जिसे विशिष्ट रूप से विद्युत् शक्ति वितरण के रूप में जाना जाता है। संयुक्त संचार और वितरण प्रसार, विद्युत् शक्ति वितरण का हिस्सा है, जिसे विद्युत ग्रिड के रूप में जाना जाता है।

विद्युत शक्ति के प्रभावशाली सुदूर संचरण के लिए उच्च वोल्टेज की आवश्यकता होती है। यह भारी प्रवाह से होने वाले नुकसान को कम करता है।  संचरण लाइन ज्यादातर उच्च वोल्टता AC [हाई-वोल्टेज एसी (अल्टरनेटिंग धारा)] का उपयोग करती हैं, लेकिन संचरण लाइन का एक महत्वपूर्ण वर्ग उच्च वोल्टेज एकदिश धारा का उपयोग करता है। वोल्टेज स्तर को परिणामित्र के साथ बदल दिया जाता है, संचरण के लिए वोल्टेज को बढ़ाया जाता है, फिर स्थानीय वितरण के लिए वोल्टेज को कम किया जाता है, और फिर ग्राहकों द्वारा उपयोग किया जाता है।

एक विस्तृत क्षेत्र समकालिक ग्रिड, जिसे उत्तरी अमेरिका में " अंतःसंयोजन" के रूप में भी जाना जाता है, कई उपभोक्ताओं को समान सापेक्ष आवृत्ति के साथ AC पावर देने वाले कई जनित्र को सीधे जोड़ता है। उदाहरण के लिए, उत्तरी अमेरिका (पश्चिमी  अंतःसंयोजन, पूर्वी अंतःसंयोजन, क्यूबेक अंतःसंयोजन और टेक्सास अंतःसंयोजन) में चार प्रमुख अंतःसंयोजन हैं। यूरोप में एक बड़ा ग्रिड अधिकांश महाद्वीपीय यूरोप को जोड़ता है।

ऐतिहासिक रूप से, पारेषण और वितरण लाइनों का स्वामित्व अक्सर एक ही कंपनी के पास होता था, लेकिन 1990 के दशक से शुरू होकर, कई देशों ने बिजली बाजार के नियमन को इस तरह से उदार बना दिया है जिससे वितरण व्यवसाय से बिजली पारेषण व्यवसाय अलग हो गया है।[1]

प्रणाली

अधिकांश संचरण लाइनें उच्च वोल्टता थ्री-फेज प्रत्यावर्ति धारा (AC) हैं, हालांकि सिंगल फेज AC का इस्तेमाल कभी-कभी रेलवे विद्युतीकरण प्रणालियों में किया जाता है। उच्च वोल्टता एकदिश धारा (HVDC) तकनीक का उपयोग बहुत लंबी दूरी (आमतौर पर सैकड़ों मील) पर अधिक दक्षता के लिए किया जाता है। एचवीडीसी तकनीक का उपयोग पनडुब्बी बिजली केबलों (आमतौर पर 30 मील (50 किमी) से अधिक) में भी किया जाता है, और ग्रिड के बीच बिजली के आदान-प्रदान में जो पारस्परिक रूप से समकालीन नहीं होते हैं। एचवीडीसी लिंक का उपयोग बड़े बिजली वितरण प्रसार को स्थिर करने के लिए किया जाता है जहां अचानक नए लोड, या संजाल के एक हिस्से में तिमिरण, अन्यथा समकालिक समस्याओं और सोपानी अवसर्पण विफलताओं का परिणाम हो सकता है।

एक विद्युत शक्ति प्रणाली का आरेख; पारेषण प्रणाली नीले रंग में है

लंबी दूरी के संचरण में होने वाली ऊर्जा हानि को कम करने के लिए उच्च वोल्टेज पर बिजली का संचार किया जाता है। बिजली आमतौर पर उपरिव्यय पावर लाइनों के माध्यम से प्रेषित होती है। भूमिगत बिजली पारेषण की स्थापना लागत काफी अधिक है और परिचालन सीमाएँ अधिक हैं, लेकिन रखरखाव की लागत कम है। कभी-कभी शहरी क्षेत्रों या पर्यावरण की दृष्टि से संवेदनशील स्थानों में भूमिगत संचरण का उपयोग किया जाता है।

प्रेषण व्यवस्था में विद्युत ऊर्जा भंडारण सुविधाओं की कमी एक प्रमुख सीमा की ओर ले जाती है। विद्युत ऊर्जा को उसी दर से उत्पन्न किया जाना चाहिए जिस दर पर इसका उपभोग किया जाता है। यह सुनिश्चित करने के लिए एक परिष्कृत नियंत्रण प्रणाली की आवश्यकता है कि बिजली उत्पादन मांग से बहुत निकटता से मेल खाता होना चाहिए। यदि बिजली की मांग आपूर्ति से अधिक हो जाती है, तो असंतुलन से उत्पादन संयंत्र (संयंत्रों) और पारेषण उपकरण क्षति को रोकने के लिए ,स्वचालित रूप से पृथक या बंद हो सकते हैं। उदाहरणों में 1965, 1977, 2003 के यूएस नॉर्थईस्ट तिमिरण और 1996 और 2011 में अन्य अमेरिकी क्षेत्रों में प्रमुख तिमिरण शामिल हैं। विद्युत् संचार संजाल क्षेत्रीय, राष्ट्रीय और यहां तक ​​​​कि महाद्वीप के व्यापक संजाल से जुड़े हुए हैं ताकि इस तरह की विफलता के जोखिम को कम किया जा सके। बिजली के प्रवाह के लिए कई अनावश्यक, वैकल्पिक मार्ग ऐसे बंद होने चाहिए। संचार कंपनियां प्रत्येक लाइन की अधिकतम विश्वसनीय क्षमता निर्धारित करती हैं (आमतौर पर इसकी भौतिक या थर्मल सीमा से कम) यह सुनिश्चित करने के लिए कि प्रसार के दूसरे हिस्से में विफलता की स्थिति में अतिरिक्त क्षमता उपलब्ध है।

उपरिव्यय संचरण

Four-circuit, two-voltage power transmission line; "Bundled" 2-ways
A typical ACSR. The conductor consists of seven strands of steel surrounded by four layers of aluminium.
वाशिंगटन राज्य में पांच सौ किलोवोल्ट (500 केवी) तीन चरण ट्रांसमिशन टावर, लाइन "बंडल" 3-तरफा है

उच्च वोल्टेज शिरोपरि संवाहक ऊष्मा रोधन द्वारा कवर नहीं किए जाते हैं। संवाहक सामग्री लगभग हमेशा एक एल्यूमीनियम मिश्र धातु होती है, जिसे कई स्ट्रैंड्स में बनाया जाता है और संभवतः स्टील स्ट्रैंड्स के साथ प्रबलित किया जाता है। कॉपर का उपयोग कभी-कभी उपरिव्यय पारेषण के लिए किया जाता था, लेकिन एल्युमीनियम हल्का होता है, केवल प्रदर्शन में मामूली कमी आती है और लागत बहुत कम होती है। शिरोपरि संवाहक दुनिया भर में कई कंपनियों द्वारा आपूर्ति की जाने वाली वस्तु है। बेहतर संवाहक सामग्री और आकार नियमित रूप से बढ़ी हुई क्षमता की अनुमति देने और पारेषण परिपथ को आधुनिक बनाने के लिए उपयोग किए जाते हैं। संवाहक का आकार 12 मिमी2 (#6 अमेरिकी वायर गेज) से लेकर 750 मिमी2 (1,590,000 सर्कुलर मिल क्षेत्र) तक होता है, जिसमें अलग-अलग प्रतिरोध और वर्तमान-वहन क्षमता होती है। बिजली आवृत्ति पर बड़े संवाहक (व्यास में कुछ सेंटीमीटर से अधिक) के लिए, त्वचा के प्रभाव के कारण वर्तमान प्रवाह का अधिकांश भाग सतह के पास केंद्रित होता है। संवाहक का मध्य भाग थोड़ा धारा वहन करता है, लेकिन संवाहक को वजन और लागत में योगदान देता है। इस वर्तमान सीमा के कारण, उच्च क्षमता की आवश्यकता होने पर कई समानांतर केबल (बंडल संवाहक कहा जाता है) का उपयोग किया जाता है। कोरोना डिस्चार्ज के कारण होने वाली ऊर्जा हानि को कम करने के लिए बंडल संवाहक का उपयोग उच्च वोल्टेज पर भी किया जाता है।

आज, पारेषण-स्तर के वोल्टेज को आमतौर पर 110 केवी और उससे अधिक माना जाता है। कम वोल्टेज, जैसे कि 66 केवी और 33 केवी, को आमतौर पर सब-पारेषण वोल्टेज माना जाता है, लेकिन कभी-कभी हल्के भार के साथ लंबी लाइनों पर उपयोग किया जाता है। 33 केवी से कम वोल्टेज आमतौर पर वितरण के लिए उपयोग किया जाता है। 765 kV से ऊपर के वोल्टेज को अतिरिक्त उच्च वोल्टेज माना जाता है और कम वोल्टेज पर उपयोग किए जाने वाले उपकरणों की तुलना में विभिन्न अभिकल्पना की आवश्यकता होती है।

चूंकि उपरिव्यय पारेषण तार इन्सुलेशन के लिए हवा पर निर्भर करते हैं, इसलिए इन लाइनों के अभिकल्पना को सुरक्षा बनाए रखने के लिए न्यूनतम मंजूरी की आवश्यकता होती है। प्रतिकूल मौसम की स्थिति, जैसे तेज हवाएं और कम तापमान, बिजली की कटौती का कारण बन सकते हैं। 23 समुद्री मील (43 किमी/घंटा) जितनी कम हवा की गतिपरिचालकों को परिचालन मंजूरी का अतिक्रमण करने की अनुमति दे सकती है, जिसके परिणामस्वरूप फ्लैशओवर और आपूर्ति का नुकसान होता है।[2]भौतिक रेखा की दोलन गति को दोलन की आवृत्ति और आयाम के आधार परपरिचालक सरपट या स्पंदन कहा जा सकता है।

वेबस्टर, टेक्सास में तीन बराबर बिजली के तोरण






भूमिगत संचरण

शिरोपरि पावर लाइनों के बजाय भूमिगत विद्युत केबलों द्वारा विद्युत शक्ति का संचार भी किया जा सकता है। अंडरग्राउंड केबल शिरोपरि लाइनों की तुलना में कम अधिकृत रास्ता लेते हैं, कम दृश्यता रखते हैं, और खराब मौसम से कम प्रभावित होते हैं। हालांकि, इन्सुलेटेड केबल और उत्खनन की लागत शिरोपरि निर्माण की तुलना में बहुत अधिक है। दबी हुई पारेषण लाइनों में खराबी का पता लगाने और मरम्मत करने में अधिक समय लगता है।

कुछ महानगरीय क्षेत्रों में, भूमिगत संचरण केबल धातु के पाइप से घिरे होते हैं और ढांकता हुआ द्रव (आमतौर पर एक तेल) से अछूता रहता है जो या तो स्थिर होता है या पंपों के माध्यम से परिचालित होता है। यदि कोई विद्युत दोष पाइप को नुकसान पहुंचाता है और आसपास की मिट्टी में एक ढांकता हुआ रिसाव पैदा करता है, तो तरल नाइट्रोजन ट्रकों को पाइप के कुछ हिस्सों को जमने के लिए जुटाया जाता है ताकि क्षतिग्रस्त पाइप स्थान की निकासी और मरम्मत को सक्षम किया जा सके। इस प्रकार की भूमिगत पारेषण केबल मरम्मत की अवधि को बढ़ा सकती है और मरम्मत की लागत बढ़ा सकती है। पाइप और मिट्टी के तापमान की आमतौर पर मरम्मत की अवधि के दौरान लगातार निगरानी की जाती है।[3][4][5]

भूमिगत लाइनों को उनकी तापीय क्षमता द्वारा सख्ती से सीमित किया जाता है, जो शिरोपरि लाइनों की तुलना में कम ओवरलोड या री-रेटिंग की अनुमति देता है। लंबे भूमिगत एसी केबल्स में महत्वपूर्ण समाई होती है, जो 50 मील (80 किलोमीटर) से अधिक लोड करने के लिए उपयोगी शक्ति प्रदान करने की उनकी क्षमता को कम कर सकती है। डीसी केबल्स उनकी कैपेसिटेंस द्वारा लंबाई में सीमित नहीं हैं, हालांकि, पारेषण प्रसार से जुड़े होने से पहले उन्हें डीसी से एसी में कनवर्ट करने के लिए लाइन के दोनों सिरों पर एचवीडीसी कनवर्टर स्टेशनों की आवश्यकता होती है।

इतिहास

1890 में न्यूयॉर्क शहर की सड़कें। टेलीग्राफ लाइनों के अलावा, विभिन्न वोल्टेज

वाणिज्यिक विद्युत शक्ति के शुरुआती दिनों में, प्रकाश और यांत्रिक भार द्वारा उपयोग किए जाने वाले समान वोल्टेज पर विद्युत शक्ति के संचरण ने संयंत्र और उपभोक्ताओं के बीच की दूरी को सीमित कर दिया। 1882 में, उत्पादन प्रत्यक्ष धारा (डीसी) के साथ था, जिसे लंबी दूरी के संचरण के लिए वोल्टेज में आसानी से नहीं बढ़ाया जा सकता था। भार के विभिन्न वर्गों (उदाहरण के लिए, प्रकाश व्यवस्था, फिक्स्ड मोटर्स, और ट्रैक्शन/रेलवे प्रणाली) को अलग-अलग वोल्टेज की आवश्यकता होती है, और इसलिए विभिन्न जनित्र और परिपथ का उपयोग किया जाता है।[6][7]

लाइनों के इस विशेषज्ञता के कारण और क्योंकि कम वोल्टेज वाले उच्च-वर्तमान परिपथ के लिए पारेषण अक्षम था, जनित्र को अपने भार के पास होने की आवश्यकता थी। उस समय, ऐसा लग रहा था कि उद्योग विकसित होगा जिसे अब एक वितरित पीढ़ी प्रणाली के रूप में जाना जाता है जिसमें बड़ी संख्या में छोटे जनित्र उनके भार के पास स्थित होते हैं।[8]

1881 में लुसिएन गॉलार्ड और जॉन डिक्सन गिब्स द्वारा निर्मित एक प्रारंभिक परिवर्तक, 1:1 टर्न अनुपात और खुले चुंबकीय परिपथ के साथ प्रदान किया गया एक प्रारंभिक परिवर्तक के निर्माण के बाद बारी-बारी से चालू (एसी) के साथ विद्युत शक्ति का संचरण संभव हो गया था।

पहली लंबी दूरी की एसी लाइन 34 किलोमीटर (21 मील) लंबी थी, जिसे 1884 में ट्यूरिन, इटली में बिजली की अंतर्राष्ट्रीय प्रदर्शनी के लिए बनाया गया था। यह 2 केवी, 130 हर्ट्ज सीमेंस और हल्सके अल्टरनेटर द्वारा संचालित था और श्रृंखला में जुड़े उनके प्राथमिक वाइंडिंग के साथ कई गौलार्ड "माध्यमिक जनित्र" ( परिवर्तक) को चित्रित किया, जो गरमागरम लैंप को खिलाते थे। प्रणाली ने लंबी दूरी पर एसी इलेक्ट्रिक शक्ति संचरण की व्यवहार्यता साबित की थी।[7]

संचालित करने वाली पहली एसी वितरण प्रणाली 1885 में सार्वजनिक प्रकाश व्यवस्था के लिए रोम, इटली के वाया देई सेर्ची में सेवा में थी। इसे दो सीमेंस और हल्सके अल्टरनेटर द्वारा संचालित किया गया था, 30 एचपी (22 किलोवाट), 2 केवी 120 हर्ट्ज पर और 19 किमी केबल और 200 समानांतर-जुड़े 2 केवी से 20 वी स्टेप-डाउन परिवर्तक का उपयोग किया गया था, जो एक बंद चुंबकीयपरिपथ के साथ प्रदान किया गया था, कुछ महीने बाद इसके बाद पहला ब्रिटिश एसी प्रणाली आया, जिसे लंदन के ग्रोसवेनर गैलरी में सेवा में लगाया गया था। इसमें सीमेंस अल्टरनेटर और 2.4 केवी से 100 वी अपचायी परिणामित्र - प्रति उपयोगकर्ता एक - शंट-कनेक्टेड प्राइमरी के साथ शामिल हैं। [9]

Working for Westinghouse, William Stanley Jr. spent his time recovering from illness in Great Barrington installing what is considered the world's first practical AC transformer system.


जिसे उन्होंने अव्यवहारिक गॉलार्ड-गिब्स अभिकल्पना माना था, उससे काम करते हुए, इलेक्ट्रिकल इंजीनियर विलियम स्टेनली, जूनियर ने 1885 में पहली व्यावहारिक श्रृंखला एसी परिवर्तक माना जाता है।[10]जॉर्ज वेस्टिंगहाउस के समर्थन से काम करते हुए, 1886 में उन्होंने ग्रेट बैरिंगटन, मैसाचुसेट्स में एक परिवर्तक आधारित प्रत्यावर्ति धारा लाइटिंग प्रणाली का प्रदर्शन किया। 500 वी सीमेंस जनित्र द्वारा संचालित एक भाप इंजन द्वारा संचालित, 4,000 फीट (1,200 मीटर) से बहुत कम बिजली के नुकसान के साथ मुख्य सड़क के साथ 23 व्यवसायों में गरमागरम लैंप को बिजली देने के लिए नए स्टेनली परिवर्तक का उपयोग करके वोल्टेज को 100 वोल्ट तक नीचे ले जाया गया था।[11] परिवर्तक और वैकल्पिक वर्तमान प्रकाश व्यवस्था के इस व्यावहारिक प्रदर्शन ने वेस्टिंगहाउस को उस वर्ष के अंत में एसी आधारित प्रणाली स्थापित करना शुरू कर दिया था।[10]

1888 में एक कार्यात्मक एसी मोटर के लिए अभिकल्पना देखे गए, कुछ ऐसा जो इन प्रणालियों में तब तक नहीं था। ये पॉलीपेज़ धारा पर चलने वाले इंडक्शन मोटर्स थे, जिनका आविष्कार गैलीलियो फेरारिस और निकोला टेस्ला द्वारा स्वतंत्र रूप से किया गया था (यूएस में वेस्टिंगहाउस द्वारा लाइसेंस प्राप्त टेस्ला के अभिकल्पना के साथ)। इस अभिकल्पना को आगे मिखाइल डोलिवो-डोब्रोवोल्स्की और चार्ल्स यूजीन लैंसलॉट ब्राउन द्वारा आधुनिक व्यावहारिक तीन-चरण रूप में विकसित किया गया था।[12] विकास की समस्याओं और उन्हें बिजली देने के लिए आवश्यक पॉली-फेज पावर प्रणाली की कमी से इस प्रकार के मोटर्स के व्यावहारिक उपयोग में कई वर्षों की देरी होती है।[13][14]

1880 के दशक के अंत और 1890 के दशक की शुरुआत में छोटी इलेक्ट्रिक कंपनियों का वित्तीय विलय यूरोप में गैंज़ और एईजी और यूएस में जनरल इलेक्ट्रिक और वेस्टिंगहाउस इलेक्ट्रिक जैसे कुछ बड़े निगमों में होता है। इन कंपनियों ने एसी प्रणाली विकसित करना जारी रखा लेकिन प्रत्यक्ष और वैकल्पिक मौजूदा प्रणाली के बीच तकनीकी अंतर एक लंबे समय तक तकनीकी विलय का पालन करता है।[15]अमेरिका और यूरोप में नवाचार के कारण, लंबी दूरी के संचरण के माध्यम से लोड से जुड़े बहुत बड़े उत्पादन संयंत्रों के साथ पैमाने की वर्तमान अर्थव्यवस्था को धीरे-धीरे आपूर्ति की जाने वाली सभी मौजूदा प्रणालियों के साथ जोड़ने की क्षमता के साथ जोड़ा जा रहा था। इनमें सिंगल फेज एसी प्रणाली, पॉली-फेज एसी प्रणाली, लो वोल्टेज तापदीप्त  प्रकाश, हाई वोल्टेज आर्क लाइटिंग और कारखानों और स्ट्रीट कारों में मौजूदा डीसी मोटर्स शामिल हैं।जो एक सार्वभौमिक प्रणाली बन रही थी, इन तकनीकी अंतरों को अस्थायी रूप से रोटरी कन्वर्टर्स और मोटर-जनित्र के विकास के माध्यम से पाटा जा रहा था जो बड़ी संख्या में विरासत प्रणालियों को एसी ग्रिड से जोड़ने की अनुमति देता है। [15][16]इन स्थानपन्न को धीरे-धीरे बदल दिया जाएगा क्योंकि पुराने प्रणाली सेवानिवृत्त या अपग्रेड किए गए थे।

उच्च वोल्टेज का उपयोग करते हुए एकल-चरण प्रत्यावर्ती धारा का पहला संचरण 1890 में ओरेगन में हुआ था जब विलमेट फॉल्स में एक जलविद्युत संयंत्र से 14 मील (23 किमी) डाउनरिवर शहर में बिजली पहुंचाई गई थी। उच्च वोल्टेज का उपयोग करने वाला पहला तीन-चरण प्रत्यावर्ती धारा 1891 में फ्रैंकफर्ट में अंतर्राष्ट्रीय बिजली प्रदर्शनी के दौरान हुआ था। एक 15 केवी पारेषण लाइन, लगभग 175 किमी लंबी, नेकर और फ्रैंकफर्ट पर लॉफेन से जुड़ी हुई है। [9][17]

20वीं सदी के दौरान विद्युत शक्ति संचरण के लिए उपयोग किए जाने वाले वोल्टेज में वृद्धि हुई। 1914 तक, 70 केवी से अधिक पर काम कर रहे पचास पारेषण प्रणाली सेवा में थे। तब इस्तेमाल किया जाने वाला उच्चतम वोल्टेज 150 केवी था।[18]ई उत्पादन संयंत्रों को एक विस्तृत क्षेत्र में आपस में जोड़ने की अनुमति देकर, बिजली उत्पादन लागत कम हो गई थी। दिन के दौरान अलग-अलग भार की आपूर्ति के लिए सबसे कुशल उपलब्ध संयंत्रों का उपयोग किया जा सकता है। विश्वसनीयता में सुधार हुआ और पूंजी निवेश लागत कम हो गई, क्योंकि उद्यत उत्पादन क्षमता को कई और ग्राहकों और व्यापक भौगोलिक क्षेत्र में साझा किया जा सकता था।ऊर्जा के दूरस्थ और कम लागत वाले स्रोत, जैसे कि जलविद्युत शक्ति या माइन-माउथ कोयला, का उपयोग ऊर्जा उत्पादन लागत को कम करने के लिए किया जा सकता है।[6][9]

20वीं सदी में तीव्र औद्योगीकरण ने अधिकांश औद्योगिक देशों में विद्युत पारेषण लाइनों और ग्रिडों को महत्वपूर्ण बुनियादी ढाँचा बना दिया। स्थानीय उत्पादन संयंत्रों और छोटे वितरण प्रसारों का अंतर्संबंध प्रथम विश्व युद्ध की आवश्यकताओं से प्रेरित था, जिसमें बड़े विद्युत उत्पादन संयंत्र सरकारों द्वारा युद्धपोतों के कारखानों को शक्ति प्रदान करने के लिए बनाए गए थे। बाद में इन उत्पादन संयंत्रों को लंबी दूरी के संचरण के माध्यम से नागरिक भार की आपूर्ति के लिए जोड़ा गया था।[19]






बल्क पावर पारेषण

एक पारेषण उपकेंद्र आने वाली बिजली के वोल्टेज को कम करता है, जिससे यह लंबी दूरी के उच्च वोल्टेज पारेषण से स्थानीय कम वोल्टेज वितरण से जुड़ने की अनुमति देता है। यह स्थानीय बाजारों की सेवा करने वाली अन्य पारेषण लाइनों के लिए भी बिजली का मार्ग बदल देता है। यह PacifiCorp हेल उपकेंद्र, ओरेम, यूटा , यूएसए

इंजीनियर पारेषण प्रसार को यथासंभव कुशलता से ऊर्जा के परिवहन के लिए अभिकल्पना करते हैं, साथ ही साथ आर्थिक कारकों, प्रसार सुरक्षा और अतिरेक को भी ध्यान में रखते हैं। ये प्रसार  बिजली लाइन, केबल, परिपथ वियोजक, स्विच और परिवर्तक जैसे घटकों का उपयोग करते हैं। पारेषण प्रसार आमतौर पर एक क्षेत्रीय आधार पर एक क्षेत्रीय पारेषण संगठन या पारेषण प्रणाली ऑपरेटर जैसी इकाई द्वारा प्रशासित किया जाता है।[20]

लाइनपरिचालकों में वोल्टेज बढ़ाने वाले उपकरणों द्वारा पारेषण दक्षता में काफी सुधार होता है (और इस तरह आनुपातिक रूप से वर्तमान को कम करता है), इस प्रकार स्वीकार्य नुकसान के साथ बिजली को प्रसारित करने की इजाजत देता है। लाइन के माध्यम से बहने वाली कम परिचालकों में ताप के नुकसान को कम करती है। जूल के नियम के अनुसार, ऊर्जा हानि धारा के वर्ग के समानुपाती होती है। इस प्रकार, दो के एक कारक द्वारा वर्तमान को कम करने से परिचालक के किसी भी आकार के लिएपरिचालक प्रतिरोध में चार के कारक द्वारा खोई गई ऊर्जा कम हो जाएगी।

किसी दिए गए वोल्टेज और धारा के लिए एकपरिचालक के इष्टतम आकार का अनुमानपरिचालक के आकार के लिए केल्विन के नियम द्वारा लगाया जा सकता है, जिसमें कहा गया है कि आकार अपने इष्टतम पर है जब प्रतिरोध में बर्बाद होने वाली ऊर्जा की वार्षिक लागत प्रदान करने वालेपरिचालक की वार्षिक पूंजी शुल्क के बराबर होती है। कम ब्याज दरों के समय, केल्विन का नियम इंगित करता है कि मोटे तार इष्टतम हैं जबकि, जब धातुएं महंगी होती हैं, तो पतलेपरिचालक इंगित किए जाते हैं: हालांकि, बिजली लाइनों को दीर्घकालिक उपयोग के लिए अभिकल्पना किया गया है, इसलिए केल्विन के नियम को तांबे और एल्यूमीनियम की कीमत के साथ-साथ ब्याज दरों के दीर्घकालिक अनुमानों के पूंजी के लिए संयोजन के साथ प्रयोग किया जाना चाहिए।

एक स्टेप-अप परिवर्तक का उपयोग करके एसीपरिपथ में वोल्टेज में वृद्धि हासिल की जाती है। एचवीडीसी प्रणाली को अपेक्षाकृत महंगे रूपांतरण उपकरण की आवश्यकता होती है जो विशेष परियोजनाओं जैसे पनडुब्बी केबल और लंबी दूरी की उच्च क्षमता वाले पॉइंट-टू-पॉइंट पारेषण के लिए आर्थिक रूप से उचित हो सकते हैं। एचवीडीसी उन ग्रिड प्रणालियों के बीच ऊर्जा के आयात और निर्यात के लिए आवश्यक है जो एक दूसरे के साथ  समकालिक नहीं हैं।

पारेषण ग्रिड पावर स्टेशनों, पारेषण लाइनों और उपकेंद्रों का एक नेटवर्क है। ऊर्जा आमतौर पर तीन-चरण एसी वाले ग्रिड के भीतर संचारित होती है। सिंगल-फ़ेज़ एसी का उपयोग केवल अंतिम उपयोगकर्ताओं को वितरण के लिए किया जाता है क्योंकि यह बड़े पॉलीफ़ेज़ इंडक्शन मोटर्स के लिए उपयोग करने योग्य नहीं है। 19वीं शताब्दी में, दो-चरण संचरण का उपयोग किया गया था, लेकिन इसके लिए चार तारों या असमान धाराओं वाले तीन तारों की आवश्यकता थी। उच्च क्रम चरण प्रणालियों के लिए तीन से अधिक तारों की आवश्यकता होती है, लेकिन बहुत कम या कोई लाभ नहीं देते हैं।

इलेक्ट्रिक पावर स्टेशन की क्षमता की कीमत अधिक है, और बिजली की मांग परिवर्तनशील है, इसलिए स्थानीय स्तर पर इसे उत्पन्न करने की तुलना में आवश्यक बिजली के कुछ हिस्से को आयात करना अक्सर सस्ता होता है। क्योंकि लोड अक्सर क्षेत्रीय रूप से सहसंबद्ध होते हैं (अमेरिका के दक्षिण-पश्चिम हिस्से में गर्म मौसम के कारण कई लोग एयर कंडीशनर का उपयोग कर सकते हैं), बिजली अक्सर दूर के स्रोतों से आती है। क्षेत्रों के बीच लोड शेयरिंग के आर्थिक लाभों के कारण, वाइड एरिया पारेषण ग्रिड अब देशों और यहां तक ​​कि महाद्वीपों तक फैले हुए हैं। बिजली उत्पादकों और उपभोक्ताओं के बीच अंतर्संबंधों का जाल बिजली को प्रवाहित करने में सक्षम होना चाहिए, भले ही कुछ लिंक निष्क्रिय होंना चाहिए।

बिजली की मांग के अपरिवर्तनीय (या धीरे-धीरे कई घंटों में अलग-अलग) हिस्से को बेस लोड के रूप में जाना जाता है और आम तौर पर ईंधन और संचालन के लिए निश्चित लागत के साथ बड़ी सुविधाओं (जो पैमाने की अर्थव्यवस्थाओं के कारण अधिक कुशल होते हैं) द्वारा परोसा जाता है। ऐसी सुविधाएं परमाणु, कोयले से चलने वाली या जलविद्युत हैं, जबकि अन्य ऊर्जा स्रोत जैसे कि केंद्रित सौर तापीय और भूतापीय ऊर्जा में आधार भार शक्ति प्रदान करने की क्षमता है। अक्षय ऊर्जा स्रोत, जैसे कि सौर फोटोवोल्टिक, पवन, लहर और ज्वार-भाटा, उनकी आंतरायिकता के कारण, "बेस लोड" की आपूर्ति के रूप में नहीं माना जाता है, लेकिन फिर भी ग्रिड में बिजली जोड़ देगा। शेष या 'पीक' बिजली की मांग, बिजली संयंत्रों को चोटी से आपूर्ति की जाती है, जो आम तौर पर छोटे, तेजी से प्रतिक्रिया देने वाले और उच्च लागत वाले स्रोत जैसे प्राकृतिक गैस द्वारा ईंधन वाले संयुक्त चक्र या दहन टरबाइन संयंत्र होते हैं।

US$0.005–0.02 प्रति kWh (वार्षिक औसत बड़ी उत्पादक लागत US$0.01–0.025 प्रति kWh की तुलना में, US$0.10 प्रति kWh से ऊपर की खुदरा दरों की तुलना में, बिजली का लंबी दूरी का संचरण (सैकड़ों किलोमीटर) सस्ता और कुशल है, जिसकी लागत US$0.005–0.02 प्रति kWh है। और अप्रत्याशित उच्चतम मांग क्षणों पर तात्कालिक आपूर्तिकर्ताओं के लिए खुदरा के गुणक)।[21] इस प्रकार दूर के आपूर्तिकर्ता स्थानीय स्रोतों से सस्ते हो सकते हैं (उदाहरण के लिए, न्यूयॉर्क अक्सर कनाडा से 1000 मेगावाट से अधिक बिजली खरीदता है)।[22]कई स्थानीय स्रोत (भले ही अधिक महंगे और कम उपयोग किए गए हों) पारेषण ग्रिड को मौसम और अन्य आपदाओं के प्रति अधिक दोष सहिष्णु बना सकते हैं जो दूर के आपूर्तिकर्ताओं को बंद कर सकते हैं।

एक हाई-पावर इलेक्ट्रिकल पारेषण टावर, 230 kV, डबल- परिपथ, डबल-बंडल

लंबी दूरी के प्रसारण से जीवाश्म ईंधन की खपत को विस्थापित करने के लिए दूरस्थ नवीकरणीय ऊर्जा संसाधनों का उपयोग किया जा सकता है। जल और पवन स्रोतों को आबादी वाले शहरों के करीब नहीं ले जाया जा सकता है, और दूरदराज के इलाकों में सौर लागत सबसे कम है जहां स्थानीय बिजली की जरूरत न्यूनतम है। अकेले कनेक्शन की लागत यह निर्धारित कर सकती है कि कोई विशेष अक्षय विकल्प आर्थिक रूप से समझदार है या नहीं है। पारेषण लाइनों के लिए लागत निषेधात्मक हो सकती है, लेकिन उच्च क्षमता, बहुत लंबी दूरी के सुपर ग्रिड पारेषण नेटवर्क में बड़े पैमाने पर बुनियादी ढांचे के निवेश के विभिन्न प्रस्तावों को मामूली उपयोग शुल्क के साथ वसूल किया जा सकता है।

ग्रिड इनपुट

पावर स्टेशनों पर, यूनिट के आकार के आधार पर लगभग 2.3 केवी और 30 केवी के बीच अपेक्षाकृत कम वोल्टेज पर बिजली का उत्पादन किया जाता है। लंबी दूरी पर पारेषण के लिए जनित्र टर्मिनल वोल्टेज को पावर स्टेशन ट्रांसफॉर्मर द्वारा एक उच्च वोल्टेज (115 केवी से 765 केवी एसी, पारेषण प्रणाली और देश द्वारा अलग-अलग) तक बढ़ाया जाता है।

संयुक्त राज्य अमेरिका में, बिजली पारेषण 230 केवी से 500 केवी है, जिसमें 230 केवी से कम या 500 केवी से अधिक स्थानीय अपवाद हैं।

उदाहरण के लिए, वेस्टर्न अंतःसंबंध में दो प्राथमिक अंतःसंबंध वोल्टेज हैं: 60 हर्ट्ज पर 500 केवी एसी, और ± 500 केवी (1,000 केवी नेट) डीसी उत्तर से दक्षिण (कोलंबिया नदी से दक्षिणी कैलिफोर्निया) और पूर्वोत्तर से दक्षिण पश्चिम (यूटा से दक्षिणी कैलिफोर्निया) . 287.5 केवी (विक्टोरविले के माध्यम से लॉस एंजिल्स लाइन के लिए हूवर बांध) और 345 केवी (एरिजोना पब्लिक सर्विस (एपीएस) लाइन) स्थानीय मानक हैं, जिनमें से दोनों को 500 केवी से पहले लागू किया गया था, और उसके बाद लंबी दूरी के लिए पश्चिमी अंतःसंबंध मानक एसी पावर पारेषण लागू किया गया था।

नुकसान

उच्च वोल्टेज पर बिजली संचारित करने से प्रतिरोध में खोई हुई ऊर्जा का अंश कम हो जाता है, जो विशिष्टपरिचालकों, वर्तमान प्रवाह और पारेषण लाइन की लंबाई के आधार पर भिन्न होता है। उदाहरण के लिए, 765 केवी पर 100 मील (160 किमी) की अवधि में 1000 मेगावाट बिजली ले जाने पर 1.1% से 0.5% की हानि हो सकती है। समान दूरी पर समान भार ले जाने वाली 345 केवी लाइन में 4.2% की हानि होती है।[23]दी गई शक्ति की मात्रा के लिए, एक उच्च वोल्टेज वर्तमान को कम करता है और इस प्रकारपरिचालक में प्रतिरोधक नुकसान होता है। उदाहरण के लिए, वोल्टेज को 10 के एक कारक द्वारा बढ़ाने से करंट 10 के संबंधित कारक से कम हो जाता है और इसलिए नुकसान 100 के कारक से होता है, बशर्ते दोनों मामलों में एक ही आकार केपरिचालक का उपयोग किया जाता है। भले हीपरिचालक का आकार (क्रॉस-सेक्शनल एरिया) निचले करंट से मेल खाने के लिए दस गुना कम हो, नुकसान अभी भी दस गुना कम हो गया है . लंबी दूरी की पारेषण आमतौर पर 115 से 1,200 केवी के वोल्टेज पर शिरोपरि लाइनों के साथ किया जाता है। अत्यधिक उच्च वोल्टेज पर, जहांपरिचालक और ग्राउंड के बीच 2,000 केवी से अधिक मौजूद है, कोरोना डिस्चार्ज नुकसान इतने बड़े हैं कि कि वे लाइनपरिचालक में कम प्रतिरोधक नुकसान की भरपाई कर सकते हैं। कोरोना के नुकसान को कम करने के उपायों में बड़े व्यास वालेपरिचालक,  वजन बचाने के लिए अक्सर खोखला,[24] या दो या दो से अधिकपरिचालकों के बंडल शामिल हैं।

संचरण और वितरण लाइनों में उपयोग किए जाने वालेपरिचालकों के प्रतिरोध और इस प्रकार नुकसान को प्रभावित करने वाले कारकों में तापमान, सर्पिलिंग और त्वचा प्रभाव शामिल हैं। किसी चालक का प्रतिरोध उसके ताप के साथ बढ़ता है। विद्युत विद्युत लाइनों में तापमान परिवर्तन का लाइन में बिजली के नुकसान पर महत्वपूर्ण प्रभाव पड़ सकता है। सर्पिलिंग, जो केंद्र के बारे में फंसेपरिचालकों के सर्पिल के तरीके को संदर्भित करता है,परिचालक प्रतिरोध में वृद्धि में भी योगदान देता है। त्वचा प्रभाव उच्च प्रत्यावर्ती धारा आवृत्तियों परपरिचालक के प्रभावी प्रतिरोध को बढ़ाने का कारण बनता है। एक गणितीय मॉडल का उपयोग करके कोरोना और प्रतिरोधक नुकसान का अनुमान लगाया जा सकता है।[25]

1997 में संयुक्त राज्य अमेरिका में संचरण और वितरण हानि 6.6% होने का अनुमान लगाया गया था[26] 200 . में 6.5%[26] और 2013 से 2019 तक 5%[27] सामान्य तौर पर, उत्पादित बिजली (जैसा कि बिजली संयंत्रों द्वारा रिपोर्ट किया गया है) और अंतिम ग्राहकों को बेची गई बिजली के बीच विसंगति से नुकसान का अनुमान लगाया जाता है, जो उत्पादित किया जाता है और जो उपभोग किया जाता है, उसके बीच का अंतर संचरण और वितरण हानियों का गठन करता है,यह मानते हुए कि कोई उपयोगिता चोरी नहीं होती है।

1980 तक, प्रत्यक्ष-वर्तमान संचरण के लिए सबसे लंबी लागत प्रभावी दूरी 7,000 किलोमीटर (4,300 मील) निर्धारित की गई थी। प्रत्यावर्ती धारा के लिए यह 4,000 किलोमीटर (2,500 मील) था, हालांकि आज उपयोग में आने वाली सभी पारेषण लाइनें इससे काफी कम हैं।[21]

किसी भी प्रत्यावर्ती धारा संचरण लाइन में,परिचालकों का अधिष्ठापन और समाई महत्वपूर्ण हो सकता है। धाराएं जो परिपथ के इन गुणों के लिए पूरी तरह से 'प्रतिक्रिया' में प्रवाहित होती हैं, (जो प्रतिरोध के साथ प्रतिबाधा को परिभाषित करती हैं) प्रतिक्रियाशील शक्ति प्रवाह का गठन करती हैं, जो भार को कोई 'वास्तविक' शक्ति नहीं पहुंचाती है। हालाँकि, ये प्रतिक्रियाशील धाराएँ बहुत वास्तविक हैं और पारेषण परिपथ में अतिरिक्त हीटिंग नुकसान का कारण बनती हैं। 'वास्तविक' शक्ति (लोड को प्रेषित) का 'स्पष्ट' शक्ति (एक परिपथ के वोल्टेज और वर्तमान का उत्पाद, चरण कोण के संदर्भ के बिना) का अनुपात शक्ति कारक है। जैसे-जैसे प्रतिक्रियाशील धारा बढ़ती है, प्रतिक्रियाशील शक्ति बढ़ती है और शक्ति कारक घटता है। उपयोगिताएँ पूरे प्रणाली में कैपेसिटर बैंक, रिएक्टर और अन्य घटकों (जैसे चरण-शिफ्टर्स, स्थिर वीएआर कम्पेसाटर, और लचीली एसी पारेषण प्रणाली,) जोड़ती हैं, प्रतिक्रियाशील शक्ति प्रवाह की भरपाई करने, बिजली संचरण में नुकसान को कम करने और प्रणाली वोल्टेज को स्थिर करने में मदद करती हैं। . इन उपायों को सामूहिक रूप से 'प्रतिक्रियाशील समर्थन' कहा जाता है।

स्थानान्तरण

पारेषण लाइनों के माध्यम से बहने वाली धारा एक चुंबकीय क्षेत्र को प्रेरित करती है जो प्रत्येक चरण की रेखाओं को घेर लेती है और अन्य चरणों के आसपास के परिचालकों के अधिष्ठापन को प्रभावित करती है। परिचालकों का पारस्परिक अधिष्ठापन आंशिक रूप से एक दूसरे के संबंध में रेखाओं के भौतिक अभिविन्यास पर निर्भर करता है। तीन-चरण विद्युत पारेषण लाइनें पारंपरिक रूप से अलग-अलग ऊर्ध्वाधर स्तरों पर अलग-अलग चरणों के साथ जुड़ी हुई हैं। अन्य दो चरणों के बीच में चरण के एक परिचालक द्वारा देखा जाने वाला पारस्परिक अधिष्ठापन ऊपर या नीचे परिचालकों द्वारा देखे जाने वाले अधिष्ठापन से अलग होता है। तीन परिचालकों के बीच एक असंतुलित अधिष्ठापन समस्याग्रस्त है क्योंकि इसके परिणामस्वरूप मध्य रेखा में कुल संचरित शक्ति की अनुपातहीन मात्रा हो सकती है। इसी तरह, एक असंतुलित भार तब हो सकता है जब एक लाइन लगातार जमीन के सबसे करीब हो और कम प्रतिबाधा पर काम कर रही हो। इस घटना के कारण,परिचालकों को समय-समय पर पारेषण लाइन की लंबाई के साथ स्थानांतरित किया जाना चाहिए ताकि प्रत्येक चरण तीनों चरणों द्वारा देखे गए पारस्परिक अधिष्ठापन को संतुलित करने के लिए प्रत्येक सापेक्ष स्थिति में समान समय देखे। इसे पूरा करने के लिए, विभिन्न प्रतिस्थापन स्कीम में पारेषण लाइन की लंबाई के साथ-साथ नियमित अंतराल पर विशेष रूप से अभिकल्पना किए गए प्रतिस्थापन टॉवर एस पर लाइन की स्थिति की अदला-बदली की जाती है।

सब-पारेषण

फिलीपींस में एक 115; केवी सबट्रांसमिशन लाइन, 20; केवी वितरण लाइनों और एक स्ट्रीट लाइट के साथ, सभी एक लकड़ी में जोड़ा हुआ सबट्रांसमिशन पोल

]

115 केवी एच-फ्रेम पारेषण टावर

सब-पारेषण एक इलेक्ट्रिक पावर पारेषण प्रणाली का हिस्सा है जो अपेक्षाकृत कम वोल्टेज पर चलता है। सभी वितरण उपकेंद्र एस को हाई मेन पारेषण वोल्टेज से जोड़ना आर्थिक नहीं है, क्योंकि उपकरण बड़ा और अधिक महंगा है। आमतौर पर, केवल बड़े उपकेंद्र इस उच्च वोल्टेज से जुड़ते हैं। इसे नीचे उतारा जाता है और कस्बों और आस-पड़ोस के छोटे उपकेंद्रों में भेजा जाता है। सब पारेषण परिपथ को आमतौर पर लूप में व्यवस्थित किया जाता है ताकि एक लाइन की विफलता कई ग्राहकों को थोड़े समय से अधिक समय तक सेवा में कटौती न करे। लूप को सामान्य रूप से बंद किया जा सकता है, जहां एक परिपथ के नुकसान के परिणामस्वरूप कोई रुकावट नहीं होनी चाहिए, या सामान्य रूप से खुले जहां उपकेंद्र बैकअप आपूर्ति पर स्विच कर सकते हैं। जबकि सब पारेषण परिपथ आमतौर पर शिरोपरि लाइन पर किए जाते हैं, शहरी क्षेत्रों में दफन केबल का उपयोग किया जा सकता है। लो-वोल्टेज सब पारेषण लाइनें कम अधिकृत रास्ता और सरल संरचनाओं का उपयोग करती हैं, जहां आवश्यक हो, उन्हें भूमिगत रखना कहीं अधिक संभव है। उच्च-वोल्टेज लाइनों को अधिक स्थान की आवश्यकता होती है और आमतौर पर जमीन के ऊपर होती हैं क्योंकि उन्हें भूमिगत रखना बहुत महंगा होता है।

सब पारेषण वितरण के बीच कोई निश्चित कटऑफ नहीं है। वोल्टेज पर्वतमाला कुछ हद तक ओवरलैप होती है। 69 केवी, 115 केवी, और 138 केवी के वोल्टेज अक्सर उत्तरी अमेरिका में सब पारेषण के लिए उपयोग किए जाते हैं। जैसे-जैसे पावर प्रणाली विकसित हुआ, पहले पारेषण के लिए इस्तेमाल किए जाने वाले वोल्टेज का इस्तेमाल सब-पारेषण के लिए किया जाता था, और सब-पारेषण वोल्टेज वितरण वोल्टेज बन जाते थे। पारेषण की तरह, सब-पारेषण अपेक्षाकृत बड़ी मात्रा में बिजली ले जाता है, और वितरण की तरह, सब-पारेषण सिर्फ स्थल से स्थल के बजाय एक क्षेत्र को कवर करता है[28]

पारेषण ग्रिड से बाहर निकलें

उपकेंद्र पर, परिवर्तक वितरण के लिए वाणिज्यिक और आवासीय उपयोगकर्ताओं के लिए वोल्टेज को निचले स्तर तक कम कर देता है। यह वितरण सब-पारेषण (33 से 132 केवी) और वितरण (3.3 से 25 केवी) के संयोजन के साथ पूरा किया जाता है। अंत में, उपयोग के बिंदु पर, ऊर्जा कम वोल्टेज में बदल जाती है (देश और ग्राहकों की आवश्यकताओं के अनुसार अलग-अलग देश में मेन्स बिजली देखें)।






हाई-वोल्टेज पावर पारेषण का लाभ

हाई-वोल्टेज पावर पारेषण वायरिंग में लंबी दूरी पर कम प्रतिरोधक नुकसान की अनुमति देता है। उच्च वोल्टेज संचरण की यह दक्षता उपकेंद्रों को उत्पन्न बिजली के बड़े अनुपात के संचरण की अनुमति देती है और बदले में परिचालन लागत बचत में अनुवाद करती है।

बिना परिवर्तक के विद्युत ग्रिड।
परिवर्तक के साथ विद्युत ग्रिड।

सरलीकृत मॉडल में, मान लें कि विद्युत ग्रिड एक जनित्र से बिजली वितरित करता है (वोल्टेज के साथ आदर्श वोल्टेज स्रोत के रूप में प्रतिरूपित) , एक शक्ति प्रदान करता है ) खपत के एक बिंदु तक, एक शुद्ध प्रतिरोध , द्वारा मॉडलिंग की जाती है, जब तार काफी लंबे होते हैं ताकि एक महत्वपूर्ण प्रतिरोध हो सके।

यदि उनके बीच किसी भी परिवर्तक के बिना श्रृंखला ]] में प्रतिरोध केवल [[ है, तोपरिपथ वोल्टेज विभक्त के रूप में कार्य करता है, क्योंकि वही वर्तमान तार प्रतिरोध और संचालित उपकरण के माध्यम से चलता है। परिणामस्वरूप, उपयोगी शक्ति (खपत के बिंदु पर प्रयुक्त) है:

अब मान लें कि एक ट्रांसफॉर्मर खपत बिंदु पर उपयोग के लिए तारों द्वारा ले जाने वाली उच्च-वोल्टेज, कम-वर्तमान बिजली को कम-वोल्टेज, उच्च-वर्तमान बिजली में परिवर्तित करता है। अगर हम मान लें कि यह एक आदर्श परिवर्तक है जिसका वोल्टेज अनुपात है (यानी, वोल्टेज को से विभाजित किया जाता है और करंट को प्राथमिक शाखा की तुलना में सेकेंडरी ब्रांच में से गुणा किया जाता है), फिर परिपथ फिर से वोल्टेज डिवाइडर के बराबर होता है, लेकिन पारेषण तारों में अब केवल का स्पष्ट प्रतिरोध है। तब उपयोगी शक्ति है:

के लिए (यानी खपत बिंदु के पास उच्च वोल्टेज का कम वोल्टेज में रूपांतरण), जनित्र की शक्ति का एक बड़ा अंश खपत बिंदु पर प्रेषित होता है और एक कम अंश जूल हीटिंग में खो जाता है।

मॉडलिंग और पारेषण मैट्रिक्स

पारेषण लाइन

अक्सर, हम केवल संचरण लाइन की टर्मिनल विशेषताओं में रुचि रखते हैं, जो कि भेजने (एस) और प्राप्त करने (आर) सिरों पर वोल्टेज और करंट होते हैं। पारेषण लाइन को तब "ब्लैक बॉक्स" के रूप में तैयार किया जाता है और इसके व्यवहार को मॉडल करने के लिए 2 बाय 2 पारेषण मैट्रिक्स का उपयोग किया जाता है:

लाइन को एक पारस्परिक, सममित प्रसार माना जाता है, जिसका अर्थ है कि प्राप्त करने और भेजने वाले लेबल को बिना किसी परिणाम के स्विच किया जा सकता है। पारेषण मैट्रिक्स T में निम्नलिखित गुण भी हैं:

पैरामीटर A, B, C और D इस बात पर निर्भर करता है कि वांछित मॉडल लाइन के प्रतिरोध (R), अधिष्ठापन (L), समाई (C), और शंट (समानांतर, रिसाव) चालकता G को कैसे संभालता है। चार मुख्य मॉडल लघु रेखा सन्निकटन, मध्यम रेखा सन्निकटन, लंबी रेखा सन्निकटन (वितरित मापदंडों के साथ), और दोषरहित रेखा हैं। वर्णित सभी मॉडलों में, एक बड़े अक्षर जैसे R का अर्थ है रेखा के ऊपर कुल योग राशि और 'c' जैसे लोअरकेस अक्षर प्रति-इकाई-लंबाई मात्रा को संदर्भित करता है।

दोषरहित रेखा

दोषरहित लाइन के लिए भेजने और प्राप्त करने पर वोल्टेज

दोषरहित लाइन सन्निकटन कम से कम सटीक मॉडल है, इसका उपयोग अक्सर छोटी लाइनों पर किया जाता है जब लाइन का इंडक्शन इसके प्रतिरोध से बहुत अधिक होता है। इस सन्निकटन के लिए, वोल्टेज और करंट भेजने और प्राप्त करने के सिरों पर समान होते हैं।

विशेषता प्रतिबाधा शुद्ध वास्तविक है, जिसका अर्थ है उस प्रतिबाधा के लिए प्रतिरोधक, और इसे अक्सर दोषरहित रेखा के लिए वृद्धि प्रतिबाधा कहा जाता है। जब दोषरहित लाइन को सर्ज प्रतिबाधा द्वारा समाप्त किया जाता है, तो कोई वोल्टेज ड्रॉप नहीं होता है। हालांकि वोल्टेज और धारा के फेज एंगल घुमाए जाते हैं, वोल्टेज और धारा का परिमाण लाइन की लंबाई के साथ स्थिर रहता है। लोड> एसआईएल के लिए, वोल्टेज अंत भेजने से गिर जाएगा और लाइन वीएआर का "उपभोग" करती है। लोड <एसआईएल के लिए, वोल्टेज अंत भेजने से बढ़ेगा, और लाइन वीएआर "उत्पन्न" करती है।






छोटी लाइन

शॉर्ट लाइन सन्निकटन आमतौर पर 80 km (50 mi) लंबा से कम लाइनों के लिए उपयोग किया जाता है। एक छोटी लाइन के लिए, केवल एक श्रृंखला प्रतिबाधा Z पर विचार किया जाता है, जबकि C और G को अनदेखा किया जाता है। अंतिम परिणाम यह है कि A = D = 1 प्रति यूनिट, B = Z Ohms, और C = 0। इस सन्निकटन के लिए संबद्ध संक्रमण मैट्रिक्स इसलिए है:

मध्यम रेखा

मध्यम रेखा सन्निकटन का उपयोग 80 and 250 km (50 and 155 mi) लंबा के बीच की रेखाओं के लिए किया जाता है। इस मॉडल में, श्रृंखला प्रतिबाधा और शंट (वर्तमान रिसाव) चालन पर विचार किया जाता है, जिसमें शंट चालन का आधा भाग लाइन के प्रत्येक छोर पर रखा जाता है। इस परिपथ को अक्सर π (पीआई) परिपथ के रूप में संदर्भित किया जाता है क्योंकि आकार (π) को तब लिया जाता है जब परिपथ आरेख के दोनों किनारों पर रिसाव चालन रखा जाता है। मध्यम रेखा का विश्लेषण निम्नलिखित परिणामों में से एक लाता है:

मध्यम-लंबाई की संचरण लाइनों के प्रति-सहज व्यवहार:

  • बिना लोड या छोटे धारा पर वोल्टेज बढ़ना (फेरांति प्रभाव)
  • रिसीविंग-एंड धारा सेंडिंग-एंड धारा से अधिक हो सकता है।

लंबी लाइन

लॉन्ग लाइन मॉडल का उपयोग तब किया जाता है जब उच्च स्तर की सटीकता की आवश्यकता होती है या जब विचाराधीन लाइन 250 km (160 mi) लंबा से अधिक होती है। श्रृंखला प्रतिरोध और शंट चालन को वितरित पैरामीटर के रूप में माना जाता है, जिसका अर्थ है कि रेखा की प्रत्येक अंतर लंबाई में एक समान अंतर श्रृंखला प्रतिबाधा और शंट प्रवेश है। निम्नलिखित परिणाम पारेषण लाइन के साथ किसी भी बिंदु पर लागू किया जा सकता है, जहां प्रसार स्थिरांक है।

लंबी लाइन के अंत में वोल्टेज और करंट को खोजने के लिए, पारेषण मैट्रिक्स के सभी मापदंडों में को (लाइन की लंबाई) से बदला जाना चाहिए।

(इस मॉडल के पूर्ण विकास के लिए, टेलीग्राफर के समीकरण देखें।)

हाई-वोल्टेज डायरेक्ट धारा

हाई-वोल्टेज डायरेक्ट करंट (एचवीडीसी) का उपयोग लंबी दूरी पर या एसिंक्रोनस ग्रिड के बीच अंतःसंबंध के लिए बड़ी मात्रा में बिजली संचारित करने के लिए किया जाता है। जब विद्युत ऊर्जा को बहुत लंबी दूरी पर प्रसारित करना होता है, तो एसी पारेषण में खोई हुई शक्ति प्रशंसनीय हो जाती है और प्रत्यावर्ती धारा के बजाय प्रत्यक्ष धारा का उपयोग करना कम खर्चीला होता है। बहुत लंबी पारेषण लाइन के लिए, ये कम नुकसान (और डीसी लाइन की कम निर्माण लागत) प्रत्येक छोर पर आवश्यक कनवर्टर स्टेशनों की अतिरिक्त लागत को ऑफसेट कर सकते हैं।

एचवीडीसी का उपयोग लंबे पनडुब्बी केबल के लिए भी किया जाता है जहाँ केबल कैपेसिटेंस के कारण एसी का उपयोग नहीं किया जा सकता है[29] इन मामलों में डीसी के लिए विशेष हाई-वोल्टेज केबल एस का उपयोग किया जाता है। पनडुब्बी एचवीडीसी प्रणाली का उपयोग अक्सर द्वीपों के बिजली ग्रिड को जोड़ने के लिए किया जाता है, उदाहरण के लिए, ग्रेट ब्रिटेन और महाद्वीपीय यूरोप के बीच, ग्रेट ब्रिटेन और आयरलैंड के बीच, तस्मानिया और ऑस्ट्रेलियाई मुख्य भूमि के बीच, उत्तर और दक्षिण द्वीपों के बीच न्यूज़ीलैंड, न्यू जर्सी और के बीच न्यू यॉर्क सिटी, और न्यू जर्सी और लॉन्ग आईलैंड के बीच 600 किलोमीटर (370 मील) तक के पनडुब्बी कनेक्शन वर्तमान में उपयोग में हैं।[30]

एसी बिजली प्रवाह के साथ ग्रिड में समस्याओं को नियंत्रित करने के लिए एचवीडीसी लिंक का उपयोग किया जा सकता है। स्रोत अंत वोल्टेज और गंतव्य छोर के बीच चरण कोण बढ़ने पर एसी लाइन द्वारा प्रेषित शक्ति बढ़ जाती है, लेकिन बहुत बड़ा चरण कोण प्रणाली को लाइन के दोनों छोर पर चरण से बाहर गिरने की अनुमति देता है। चूंकि डीसी लिंक में बिजली का प्रवाह लिंक के दोनों छोर पर एसी नेटवर्क के चरणों से स्वतंत्र रूप से नियंत्रित होता है, इसलिए यह चरण कोण सीमा मौजूद नहीं है, और एक डीसी लिंक हमेशा अपनी पूर्ण रेटेड शक्ति को स्थानांतरित करने में सक्षम होता है। एक डीसी लिंक इसलिए एसी ग्रिड को किसी भी छोर पर स्थिर करता है, क्योंकि बिजली प्रवाह और चरण कोण को स्वतंत्र रूप से नियंत्रित किया जा सकता है।

एक उदाहरण के रूप में, सिएटल और बोस्टन के बीच एक काल्पनिक रेखा पर एसी बिजली के प्रवाह को समायोजित करने के लिए दो क्षेत्रीय विद्युत ग्रिड के सापेक्ष चरण के समायोजन की आवश्यकता होगी। यह एसी प्रणाली में एक दैनिक घटना है, लेकिन एसी प्रणाली के घटकों के विफल होने और शेष कार्यशील ग्रिड प्रणाली पर अप्रत्याशित भार डालने पर बाधित हो सकता है। इसके बजाय एक एचवीडीसी लाइन के साथ, ऐसा अंतःसंबंध होगा:

  1. सिएटल में एसी को एचवीडीसी में बदलें,
  2. एचवीडीसी का प्रयोग करें 3,000 miles (4,800 km) क्रॉस-कंट्री पारेषण, और
  3. बोस्टन में एचवीडीसी को स्थानीय रूप से सिंक्रोनाइज्ड एसी में बदलें,

(और संभवतः संचरण मार्ग के साथ अन्य सहयोगी शहरों में)। इस तरह की प्रणाली के विफल होने की संभावना कम हो सकती है यदि इसके कुछ हिस्सों को अचानक बंद कर दिया जाए। एक लंबी डीसी पारेषण लाइन का एक उदाहरण पश्चिमी संयुक्त राज्य में स्थित पैसिफिक डीसी इंटरटी है।

क्षमता

पारेषण लाइन पर भेजी जा सकने वाली शक्ति की मात्रा सीमित है। सीमा की उत्पत्ति रेखा की लंबाई के आधार पर भिन्न होती है। एक छोटी लाइन के लिए, लाइन लॉस के कारण परिचालकों का ताप एक थर्मल सीमा निर्धारित करता है। यदि बहुत अधिक धारा खींची जाती है, तो परिचालक जमीन के बहुत करीब झुक सकते हैं, या अधिक गर्म होने से परिचालक और उपकरण क्षतिग्रस्त हो सकते हैं। 100 किलोमीटर (62 मील) के क्रम में मध्यवर्ती-लंबाई वाली लाइनों के लिए, लाइन में वोल्टेज ड्रॉप द्वारा सीमा निर्धारित की जाती है। लंबी एसी लाइनों के लिए, प्रणाली स्थिरता उस शक्ति की सीमा निर्धारित करती है जिसे स्थानांतरित किया जा सकता है। लगभग, एक एसी लाइन पर बहने वाली शक्ति वोल्टेज के चरण कोण के कोसाइन के समानुपाती होती है और प्राप्त करने और संचारित करने वाले सिरों पर होती है। यह कोण प्रणाली लोडिंग और पीढ़ी के आधार पर भिन्न होता है। कोण के लिए 90 डिग्री तक पहुंचना अवांछनीय है, क्योंकि बिजली का प्रवाह कम हो जाता है लेकिन प्रतिरोधक नुकसान बना रहता है। लगभग, लाइन की लंबाई और अधिकतम भार का स्वीकार्य उत्पाद प्रणाली वोल्टेज के वर्ग के समानुपाती होता है। स्थिरता में सुधार के लिए लंबी लाइनों पर श्रृंखला कैपेसिटर या चरण-स्थानांतरण ट्रांसफार्मर का उपयोग किया जाता है। उच्च-वोल्टता डीसी पारेषण केवल थर्मल और वोल्टेज ड्रॉप सीमा द्वारा प्रतिबंधित हैं, क्योंकि चरण कोण उनके संचालन के लिए सामग्री नहीं है।

अब तक, केबल मार्ग के साथ तापमान वितरण की भविष्यवाणी करना लगभग असंभव हो गया है, ताकि अधिकतम लागू वर्तमान भार आमतौर पर संचालन की स्थिति और जोखिम को कम करने की समझ के बीच एक समझौता के रूप में निर्धारित किया गया हो। इंडस्ट्रियल डिस्ट्रिब्यूटेड टेम्परेचर सेंसिंग (डीटीएस) प्रणाली की उपलब्धता जो पूरे केबल के साथ रियल टाइम तापमान में मापती है, दोलक प्रणाली क्षमता की निगरानी में पहला कदम है। यह निगरानी समाधान तापमान सेंसर के रूप में निष्क्रिय ऑप्टिकल फाइबर का उपयोग करने पर आधारित है, या तो सीधे एक उच्च वोल्टेज केबल के अंदर एकीकृत होता है या केबल इन्सुलेशन पर बाहरी रूप से लगाया जाता है। ओवरहेड लाइनों का समाधान भी उपलब्ध है। इस मामले में ऑप्टिकल फाइबर ओवरहेड दोलक लाइनों (ओपीपीसी) के एक चरण तार के मूल में एकीकृत होता है। एकीकृत डायनेमिक केबल रेटिंग (डीसीआर) या जिसे रीयल टाइम थर्मल रेटिंग (आरटीटीआर) समाधान भी कहा जाता है, न केवल वास्तविक समय में एक उच्च वोल्टेज केबल परिपथ के तापमान की निरंतर निगरानी करने में सक्षम बनाता है, बल्कि मौजूदा नेटवर्क क्षमता को अधिकतम तक सुरक्षित रूप से उपयोग करने में सक्षम बनाता है। इसके अलावा, यह ऑपरेटर को इसकी प्रारंभिक परिचालन स्थितियों में किए गए बड़े बदलावों पर दोलक प्रणाली के व्यवहार की भविष्यवाणी करने की क्षमता प्रदान करता है।

नियंत्रण

सुरक्षित और पूर्वानुमेय संचालन सुनिश्चित करने के लिए, दोलक प्रणाली के घटकों को जनित्र, स्विच, परिपथ ब्रेकर और लोड के साथ नियंत्रित किया जाता है। दोलक प्रणाली की वोल्टेज, पावर, फ्रीक्वेंसी, लोड फैक्टर और विश्वसनीयता क्षमताओं को ग्राहकों के लिए लागत प्रभावी प्रदर्शन प्रदान करने के लिए अभिकल्पना किया गया है।

भार संतुलन

दोलक प्रणाली सुरक्षा और दोष सहिष्णुता मार्जिन के साथ बेस लोड और पीक लोड क्षमता प्रदान करता है। बड़े पैमाने पर उद्योग मिश्रण के कारण क्षेत्र के अनुसार पीक लोड समय अलग-अलग होता है। बहुत गर्म और बहुत ठंडी जलवायु में घरेलू एयर कंडीशनिंग और हीटिंग लोड का समग्र भार पर प्रभाव पड़ता है। वे आम तौर पर वर्ष के सबसे गर्म भाग में देर से दोपहर में और वर्ष के सबसे ठंडे हिस्से में मध्य-सुबह और मध्य-शाम में सबसे अधिक होते हैं। इससे बिजली की आवश्यकताएं मौसम और दिन के समय के अनुसार बदलती रहती हैं। वितरण प्रणाली के अभिकल्पना हमेशा बेस लोड और पीक लोड को ध्यान में रखते हैं।

दोलक प्रणाली में आमतौर पर पीढ़ी के साथ लोड का मिलान करने के लिए बड़ी बफरिंग क्षमता नहीं होती है। इस प्रकार पीढ़ी के उपकरणों की ओवरलोडिंग विफलताओं को रोकने के लिए, उत्पादन को लोड से मिलान किया जाना चाहिए।

कई स्रोतों और भारों को पारेषण प्रणाली से जोड़ा जा सकता है और बिजली के व्यवस्थित हस्तांतरण को प्रदान करने के लिए उन्हें नियंत्रित किया जाना चाहिए। केंद्रीकृत बिजली उत्पादन में, उत्पादन का केवल स्थानीय नियंत्रण आवश्यक है, और इसमें बड़े ट्रांजिस्टर और अधिभार की स्थिति को रोकने के लिए उत्पादन इकाइयों का सिंक्रनाइज़ेशन शामिल है।

वितरित बिजली उत्पादन में जनित्र भौगोलिक रूप से वितरित किए जाते हैं और उन्हें ऑनलाइन और ऑफलाइन लाने की प्रक्रिया को सावधानीपूर्वक नियंत्रित किया जाना चाहिए। लोड नियंत्रण संकेतों को या तो अलग लाइनों पर या स्वयं बिजली लाइनों पर भेजा जा सकता है। भार को संतुलित करने के लिए वोल्टेज और आवृत्ति का उपयोग सिग्नलिंग तंत्र के रूप में किया जा सकता है।

वोल्टेज सिग्नलिंग में, वोल्टेज की भिन्नता का उपयोग पीढ़ी बढ़ाने के लिए किया जाता है। लाइन वोल्टेज कम होने पर किसी भी प्रणाली द्वारा जोड़ी गई शक्ति बढ़ जाती है। यह व्यवस्था सैद्धांतिक रूप से स्थिर है। वोल्टेज-आधारित विनियमन जाल नेटवर्क में उपयोग करने के लिए जटिल है, क्योंकि व्यक्तिगत घटकों और निर्दिष्ट बिंदू को हर बार जाल में एक नया जनित्र जोड़ने पर पुन: समनुरूप करने की आवश्यकता होती है।

आवृत्ति संकेतन में, उत्पादन इकाइयाँ विद्युत पारेषण प्रणाली की आवृत्ति से मेल खाती हैं। ड्रूप गति नियंत्रण में, यदि आवृत्ति कम हो जाती है, तो शक्ति बढ़ जाती है। (लाइन आवृति में गिरावट एक संकेत है कि बढ़ा हुआ लोड जनित्र को धीमा कर रहा है।)

पवन टरबाइन, वाहन-से-ग्रिड और अन्य स्थानीय रूप से वितरित भंडारण और उत्पादन प्रणालियों को पावर ग्रिड से जोड़ा जा सकता है, और प्रणाली संचालन में सुधार के लिए इसके साथ बातचीत कर सकते हैं। अंतरराष्ट्रीय स्तर पर, प्रवृत्ति एक भारी केंद्रीकृत बिजली प्रणाली से एक विकेंद्रीकृत बिजली प्रणाली की ओर धीमी गति से चल रही है। स्थानीय रूप से वितरित उत्पादन प्रणालियों का मुख्य आकर्षण जिसमें कई नए और अभिनव समाधान शामिल हैं, वे बिजली की खपत को उस स्थान के करीब ले जाकर दोलक नुकसान को कम करते हैं जहां इसका उत्पादन किया गया था। [31]

विफलता सुरक्षा

अतिरिक्त लोड स्थितियों के तहत, प्रणाली को एक बार में सभी के बजाय इनायत से विफल होने के लिए अभिकल्पना किया जा सकता है। ब्राउनआउट तब होता है जब आपूर्ति शक्ति मांग से कम हो जाती है। ब्लैकआउट तब होता है जब आपूर्ति पूरी तरह से विफल हो जाती है।

रोलिंग ब्लैकआउट (जिसे लोड शेडिंग भी कहा जाता है) जानबूझकर विद्युत पावर आउटेज को इंजीनियर किया जाता है, जब बिजली की मांग आपूर्ति से अधिक हो जाती है, तो अपर्याप्त बिजली वितरित करने के लिए उपयोग किया जाता है।

संचार

लंबी पारेषण लाइनों के ऑपरेटरों को पावर ग्रिड के नियंत्रण के लिए विश्वसनीय संचार और, अक्सर, संबद्ध उत्पादन और वितरण सुविधाएं की आवश्यकता होती है। लाइन के प्रत्येक छोर पर फॉल्ट-सेंसिंग सुरक्षात्मक रिले को संरक्षित लाइन सेक्शन में और बाहर बिजली के प्रवाह की निगरानी के लिए संचार करना चाहिए ताकि दोषपूर्ण परिचालक या उपकरण को जल्दी से डी-एनर्जेट किया जा सके और प्रणाली का संतुलन बहाल हो सके। शॉर्ट परिपथ और अन्य दोषों से दोलक लाइन की सुरक्षा आमतौर पर इतनी महत्वपूर्ण होती है कि सामान्य वाहक दूरसंचार अपर्याप्त रूप से विश्वसनीय होते हैं, और दूरस्थ क्षेत्रों में एक सामान्य वाहक उपलब्ध नहीं हो सकता है। एक पारेषण परियोजना से जुड़ी संचार प्रणालियाँ उपयोग कर सकती हैं:

  • सूक्ष्म तरंग
  • पावर-लाइन संचार
  • प्रकाशित रेशे

शायद ही कभी, और कम दूरी के लिए, एक उपयोगिता दोलक लाइन पथ के साथ फंसे पायलट-तारों का उपयोग करेगी। सामान्य वाहकों से लीज्ड परिपथों को प्राथमिकता नहीं दी जाती है क्योंकि उपलब्धता विद्युत विद्युत पारेषण संगठन के नियंत्रण में नहीं है।

डेटा ले जाने के लिए पारेषण लाइनों का भी उपयोग किया जा सकता है: इसे पावर-लाइन कैरियर, या पावर लाइन संचार (पीएलसी) कहा जाता है। लंबी तरंग रेंज के लिए एक रेडियो के साथ पीएलसी सिग्नल आसानी से प्राप्त किए जा सकते हैं।

केन्या में अतिरिक्त ऑप्टिकल फाइबर केबल ले जाने वाले उच्च वोल्टेज तोरण

ओवरहेड शील्ड तारों में ऑप्टिकल फाइबर को पारेषण लाइन के फंसे हुए परिचालकों में शामिल किया जा सकता है। इन केबलों को ऑप्टिकल ग्राउंड वायर (हेपीजीडब्ल्यू) के रूप में जाना जाता है। कभी-कभी एक स्टैंडअलोन केबल का उपयोग किया जाता है, ऑल-डाइलेक्ट्रिक सेल्फ-सपोर्टिंग (एडीएस) केबल, पारेषण लाइन क्रॉस आर्म्स से जुड़ी होती है।

कुछ क्षेत्राधिकार, जैसे कि मिनेसोटा, ऊर्जा संचरण कंपनियों को अधिशेष संचार बैंडविड्थ बेचने या दूरसंचार सामान्य वाहक के रूप में कार्य करने से रोकते हैं। जहां नियामक संरचना अनुमति देती है, उपयोगिता एक सामान्य वाहक को अतिरिक्त अंधेरे फाइबर में क्षमता बेच सकती है, एक और राजस्व धारा प्रदान कर सकती है।






बिजली बाजार में सुधार

कुछ नियामक इलेक्ट्रिक दोलक को एक प्राकृतिक एकाधिकार मानते हैं [32] [33] और कई देशों में दोलक को अलग से विनियमित करने के लिए कदम उठाए जा रहे हैं ( बिजली बाजार देखें)।

स्पेन एक क्षेत्रीय प्रसारण संगठन स्थापित करने वाला पहला देश था। उस देश में, पारेषण संचालन और बाजार संचालन अलग-अलग कंपनियों द्वारा नियंत्रित किया जाता है। पारेषण प्रणाली ऑपरेटर रेड इलेक्ट्रिक डी एस्पाना (आरईई) है और थोक बिजली बाजार ऑपरेटर ऑपरडोर डेल मर्काडो इबेरिको डी एनर्जिया है - पोलो एस्पानोल, एसए (ओएमईएल) ओएमईएल होल्डिंग, ओमेल होल्डिंग। स्पेन की पारेषण प्रणाली फ्रांस, पुर्तगाल और मोरक्को से जुड़ी हुई है।

संयुक्त राज्य अमेरिका में आरटीओ की स्थापना एफईआरसी के आदेश 888 द्वारा प्रेरित थी, सार्वजनिक उपयोगिताओं द्वारा ओपन एक्सेस गैर-भेदभावपूर्ण पारेषण सेवाओं के माध्यम से थोक प्रतिस्पर्धा को बढ़ावा देना; सार्वजनिक उपयोगिताओं और संचारण उपयोगिताओं द्वारा फंसे हुए लागतों की वसूली, 1996 में जारी किया गया था।[34]संयुक्त राज्य अमेरिका और कनाडा के कुछ हिस्सों में, कई इलेक्ट्रिक पारेषण कंपनियां उत्पादन कंपनियों से स्वतंत्र रूप से काम करती हैं, लेकिन अभी भी ऐसे क्षेत्र हैं - दक्षिणी संयुक्त राज्य - जहां विद्युत प्रणाली का लंबवत एकीकरण बरकरार है। अलगाव के क्षेत्रों में, पारेषण मालिक और पीढ़ी के मालिक अपने आरटीओ के भीतर मतदान के अधिकार के साथ बाजार सहभागियों के रूप में एक दूसरे के साथ बातचीत करना जारी रखते हैं। संयुक्त राज्य में आरटीओ को संघीय ऊर्जा नियामक आयोग द्वारा नियंत्रित किया जाता है।

विद्युत शक्ति संचरण की लागत

उपभोक्ता के बिजली बिल में उत्पन्न होने वाली अन्य सभी लागतों की तुलना में उच्च वोल्टेज बिजली संचरण की लागत (विद्युत बिजली वितरण की लागत के विपरीत) तुलनात्मक रूप से कम है। यूके में, लगभग 10 पी प्रति किलोवाट की घरेलू कीमत की तुलना में पारेषण लागत लगभग 0.2 पी प्रति किलोवाट है।[35]

अनुसंधान विद्युत शक्ति टी एंड डी उपकरण बाजार में पूंजीगत व्यय के स्तर का मूल्यांकन करता है जो 2011 में $ 128.9 बिलियन का होगा। [36]

मर्चेंट दोलक

मर्चेंट दोलक एक ऐसी व्यवस्था है जहां एक तीसरा पक्ष एक असंबंधित अवलंबी उपयोगिता के मताधिकार क्षेत्र के माध्यम से विद्युत पारेषण लाइनों का निर्माण और संचालन करता है।

संयुक्त राज्य में ऑपरेटिंग मर्चेंट दोलक प्रोजेक्ट्स में शोरहैम, न्यूयॉर्क से न्यू हेवन, कनेक्टिकट, नेपच्यून आरटीएस दोलक लाइन से सायरेविल, न्यू जर्सी से न्यू ब्रिज, न्यूयॉर्क और कैलिफोर्निया में पथ 15 से क्रॉस साउंड केबल शामिल हैं। अतिरिक्त परियोजनाएं विकास में हैं या संयुक्त राज्य भर में प्रस्तावित की गई हैं, जिसमें लेक एरी कनेक्टर, आईटीसी होल्डिंग्स कॉर्प द्वारा प्रस्तावित एक अंडरवाटर दोलक लाइन शामिल है, जो ओन्टारियो को पीजेएम इंटरकनेक्शन क्षेत्र में सेवारत संस्थाओं को लोड करने के लिए जोड़ती है। [37]

ऑस्ट्रेलिया में केवल एक अनियमित या बाज़ार इंटरकनेक्टर है: तस्मानिया और विक्टोरिया के बीच बासलिंक। मूल रूप से मार्केट इंटरकनेक्टर्स, डायरेक्टलिंक और मरेलिंक के रूप में लागू किए गए दो डीसी लिंक को विनियमित इंटरकनेक्टर्स में बदल दिया गया है। एनईएममको

मर्चेंट दोलक को व्यापक रूप से अपनाने में एक बड़ी बाधा यह पहचानने में कठिनाई है कि सुविधा से किसे लाभ होगा ताकि लाभार्थी टोल का भुगतान कर सकें। इसके अलावा, एक व्यापारी दोलक लाइन के लिए प्रतिस्पर्धा करना मुश्किल होता है जब एक एकाधिकार और विनियमित दर आधार के साथ मौजूदा उपयोगिता व्यवसायों द्वारा वैकल्पिक दोलक लाइनों को सब्सिडी दी जाती है। [38] संयुक्त राज्य अमेरिका में, 2010 में जारी एफईआरसी का आदेश 1000, तीसरे पक्ष के निवेश और मर्चेंट दोलक लाइनों के निर्माण में बाधाओं को कम करने का प्रयास करता है जहां एक सार्वजनिक नीति की आवश्यकता पाई जाती है। [39]

स्वास्थ्य संबंधी समस्याएं

संयुक्त राज्य अमेरिका में एक बड़े अध्ययन सहित कुछ बड़े अध्ययन, बिजली लाइनों के पास रहने और कैंसर जैसी किसी बीमारी या बीमारी के विकास के बीच कोई संबंध खोजने में विफल रहे हैं। 1997 के एक अध्ययन में पाया गया कि इससे कोई फर्क नहीं पड़ता कि कोई बिजली लाइन या सब-स्टेशन के कितना करीब था, कैंसर या बीमारी का कोई खतरा नहीं था। [40]

मुख्यधारा के वैज्ञानिक प्रमाण बताते हैं कि घरेलू धाराओं और उच्च संचरण बिजली लाइनों से जुड़े कम-शक्ति, कम-आवृत्ति, विद्युत चुम्बकीय विकिरण एक अल्पकालिक या दीर्घकालिक स्वास्थ्य खतरे का गठन नहीं करते हैं। हालांकि, कुछ अध्ययनों में विभिन्न बीमारियों और बिजली लाइनों के पास रहने या काम करने के बीच सांख्यिकीय संबंध पाए गए हैं। बिजली लाइनों के पास नहीं रहने वाले लोगों के स्वास्थ्य पर कोई प्रतिकूल प्रभाव साबित नहीं हुआ है। [41]

न्यूयॉर्क राज्य लोक सेवा आयोग ने विद्युत क्षेत्रों के संभावित स्वास्थ्य प्रभावों का मूल्यांकन करने के लिए राय संख्या 78-13 (19 जून, 1978 को जारी) में प्रलेखित एक अध्ययन किया। आयोग के ऑनलाइन डेटाबेस, डीएमएम में केस नंबर के रूप में सूचीबद्ध होने के लिए अध्ययन की केस संख्या बहुत पुरानी है, और इसलिए मूल अध्ययन को खोजना मुश्किल हो सकता है। अध्ययन ने विद्युत क्षेत्र की ताकत का उपयोग करने के लिए चुना, जिसे न्यूयॉर्क से कनाडा तक 765 केवी पारेषण लाइन पर मौजूदा (लेकिन नव निर्मित) दाहिने रास्ते के किनारे पर मापा गया था, 1.6 केवी / एम, अंतरिम मानक अधिकतम के रूप में आदेश जारी होने के बाद न्यूयॉर्क राज्य में निर्मित किसी भी नई पारेषण लाइन के किनारे पर विद्युत क्षेत्र। राय ने न्यूयॉर्क में निर्मित सभी नई पारेषण लाइनों के वोल्टेज को 345 kV तक सीमित कर दिया था। 11 सितंबर 1990 को, चुंबकीय क्षेत्र की ताकत के समान अध्ययन के बाद, एनवाईएसपीएससी ने चुंबकीय क्षेत्र पर अपना अंतरिम नीति वक्तव्य जारी किया। इस अध्ययन ने शीतकालीन-सामान्य परिचालक रेटिंग का उपयोग करके दाएं रास्ते के किनारे पर 200 मिलीग्राम के चुंबकीय क्षेत्र अंतरिम मानक की स्थापना की। यह बाद का दस्तावेज़ एनवाईएसपीएससी के ऑनलाइन डेटाबेस पर खोजना भी मुश्किल हो सकता है, क्योंकि यह ऑनलाइन डेटाबेस प्रणाली से पहले का है। रोजमर्रा की वस्तुओं की तुलना में, एक हेयर ड्रायर या इलेक्ट्रिक कंबल 100 मिलीग्राम - 500 मिलीग्राम चुंबकीय क्षेत्र उत्पन्न करता है। एक इलेक्ट्रिक रेजर 2.6 kV/m उत्पन्न कर सकता है। जबकि विद्युत क्षेत्रों को परिरक्षित किया जा सकता है, चुंबकीय क्षेत्रों को परिरक्षित नहीं किया जा सकता है, लेकिन आमतौर पर क्रॉस-सेक्शन में एक परिपथ के प्रत्येक चरण के स्थान को अनुकूलित करके कम से कम किया जाता है। [42] [43]

जब लागू नियामक निकाय (आमतौर पर एक सार्वजनिक उपयोगिता आयोग) के आवेदन के भीतर एक नई दोलक लाइन प्रस्तावित की जाती है, तो अक्सर अधिकार के किनारे पर बिजली और चुंबकीय क्षेत्र के स्तर का विश्लेषण होता है। ये विश्लेषण एक उपयोगिता द्वारा या मॉडलिंग सॉफ्टवेयर का उपयोग करके एक इलेक्ट्रिकल इंजीनियरिंग सलाहकार द्वारा किया जाता है। कम से कम एक राज्य लोक उपयोगिता आयोग के पास प्रस्तावित दोलक लाइनों के लिए रास्ते के किनारे पर बिजली और चुंबकीय क्षेत्रों का विश्लेषण करने के लिए बोनेविले पावर एडमिनिस्ट्रेशन में एक इंजीनियर या इंजीनियरों द्वारा विकसित सॉफ्टवेयर तक पहुंच है। अक्सर, सार्वजनिक उपयोगिता आयोग बिजली और चुंबकीय क्षेत्रों के कारण किसी भी स्वास्थ्य प्रभाव पर टिप्पणी नहीं करेंगे और सूचना चाहने वालों को राज्य के संबद्ध स्वास्थ्य विभाग को संदर्भित करेंगे।

00 µ टी (1 जी) (1,000 मिलीग्राम) से ऊपर चुंबकीय क्षेत्रों के तीव्र उच्च स्तर के जोखिम के लिए स्थापित जैविक प्रभाव हैं। एक आवासीय सेटिंग में, "मनुष्यों में कैंसरजन्यता का सीमित प्रमाण और प्रायोगिक पशुओं में कैंसरजन्यता के लिए पर्याप्त सबूत से कम" है, विशेष रूप से, बचपन के ल्यूकेमिया, 0.3 μT (3 मिलीग्राम) से 0.4 µ टी (4 मिलीग्राम) से ऊपर आवासीय बिजली-आवृत्ति चुंबकीय क्षेत्र के औसत जोखिम से जुड़ा हुआ है।ये स्तर घरों में औसत आवासीय बिजली-आवृत्ति चुंबकीय क्षेत्र से अधिक हैं, जो यूरोप में लगभग 0.07 μT (0.7 मिलीग्राम) और उत्तरी अमेरिका में 0.11 μT (1.1 मिलीग्राम) हैं। [44] [45]

पृथ्वी की प्राकृतिक भू-चुंबकीय क्षेत्र की ताकत ग्रह की सतह पर 0.035 . के बीच भिन्न होती है एमटी और 0.07 एमटी (35 µ टी - 70 µT या 350 मिलीग्राम - 700 मिलीग्राम) जबकि निरंतर एक्सपोज़र सीमा के लिए अंतर्राष्ट्रीय मानक 40 . पर सेट है एमटी (400,000 मिलीग्राम या 400 .) जी) आम जनता के लिए। [46]

ट्री ग्रोथ रेगुलेटर और हर्बिसाइड कंट्रोल मेथड्स का इस्तेमाल दोलक लाइन राइट ऑफ वेड्स में किया जा सकता है, [47] जिसका स्वास्थ्य पर प्रभाव पड़ सकता है।

देश द्वारा नीति

संयुक्त राज्य अमेरिका

फेडरल एनर्जी रेगुलेटरी कमीशन (एफईआरसी) संयुक्त राज्य अमेरिका के भीतर इलेक्ट्रिक पावर दोलक और थोक बिजली की बिक्री की प्राथमिक नियामक एजेंसी है। यह मूल रूप से 1920 में कांग्रेस द्वारा फेडरल पावर कमीशन के रूप में स्थापित किया गया था और तब से कई नाम और जिम्मेदारी संशोधनों से गुजरा है। जो एफईआरसी द्वारा विनियमित नहीं है, मुख्य रूप से बिजली वितरण और बिजली की खुदरा बिक्री, राज्य प्राधिकरण के अधिकार क्षेत्र में है।

विद्युत पारेषण को प्रभावित करने वाली दो अधिक उल्लेखनीय अमेरिकी ऊर्जा नीतियां आदेश संख्या 888 और ऊर्जा नीति अधिनियम 2005 हैं ।

24 अप्रैल 1996 को एफईआरसी द्वारा अपनाया गया आदेश संख्या 888, "थोक थोक बिजली बाजार में प्रतिस्पर्धा के लिए बाधाओं को दूर करने और राष्ट्र के बिजली उपभोक्ताओं के लिए अधिक कुशल, कम लागत वाली बिजली लाने के लिए अभिकल्पना किया गया था। इन नियमों की कानूनी और नीति आधारशिला है एकाधिकार के स्वामित्व वाले पारेषण तारों तक पहुंच में अनुचित भेदभाव को दूर करने के लिए जो यह नियंत्रित करते हैं कि अंतरराज्यीय वाणिज्य में बिजली का परिवहन किया जा सकता है या नहीं।" [48] आदेश संख्या 888 में सभी सार्वजनिक उपयोगिताओं की आवश्यकता है जो अंतरराज्यीय वाणिज्य में विद्युत ऊर्जा को प्रसारित करने के लिए उपयोग की जाने वाली सुविधाओं का स्वामित्व, नियंत्रण या संचालन करती हैं, जिनके पास गैर-भेदभावपूर्ण पारेषण टैरिफ हैं। ये टैरिफ किसी भी बिजली जनरेटर को पहले से मौजूद बिजली लाइनों का उपयोग उस बिजली के संचरण के लिए करने की अनुमति देते हैं जो वे उत्पन्न करते हैं। आदेश संख्या 888 सार्वजनिक उपयोगिताओं को एक खुली पहुंच सेवा के रूप में अपनी बिजली लाइनों को प्रदान करने से जुड़ी लागतों को वसूल करने की भी अनुमति देता है।[48] [49]

2005 के ऊर्जा नीति अधिनियम (ईपीएसीटी) ने 8 अगस्त 2005 को कांग्रेस द्वारा कानून में हस्ताक्षर किए, बिजली पारेषण को विनियमित करने के संघीय प्राधिकरण का और विस्तार किया था। ईपीएसीटी ने एफईआरसी को महत्वपूर्ण नई जिम्मेदारियां दीं, जिसमें इलेक्ट्रिकपारेषणविश्वसनीयता मानकों को लागू करना और इलेक्ट्रिक पारेषण में निवेश को प्रोत्साहित करने के लिए दर प्रोत्साहन की स्थापना शामिल है, लेकिन यह इन्हीं तक सीमित नहीं है। [50]

ऐतिहासिक रूप से, स्थानीय सरकारों ने ग्रिड पर अधिकार का प्रयोग किया है और उन कार्यों को प्रोत्साहित करने के लिए महत्वपूर्ण हतोत्साहन हैं जो अपने स्वयं के अलावा अन्य राज्यों को लाभान्वित करेंगे। सस्ते बिजली वाले इलाकों में बिजली के व्यापार में अंतरराज्यीय वाणिज्य को आसान बनाने के लिए प्रोत्साहित किया जाता है, क्योंकि अन्य क्षेत्र स्थानीय ऊर्जा के लिए प्रतिस्पर्धा करने और दरों को बढ़ाने में सक्षम होते हैं। उदाहरण के लिए, मेन में कुछ नियामक भीड़ की समस्याओं का समाधान नहीं करना चाहते हैं क्योंकि भीड़ मेन दरों को कम रखने का काम करती है। [51] इसके अलावा, मुखर स्थानीय निर्वाचन क्षेत्र दृश्य प्रभाव, पर्यावरण और कथित स्वास्थ्य चिंताओं की ओर इशारा करके अनुमति को अवरुद्ध या धीमा कर सकते हैं। अमेरिका में, दोलक की तुलना में उत्पादन चार गुना तेजी से बढ़ रहा है, लेकिन बड़े दोलक अपग्रेड के लिए कई राज्यों के समन्वय, इंटरलॉकिंग परमिट की भीड़ और ग्रिड के स्वामित्व वाली 500 कंपनियों के एक महत्वपूर्ण हिस्से के बीच सहयोग की आवश्यकता होती है। नीति के दृष्टिकोण से, ग्रिड का नियंत्रण संतुलित है, और यहां तक कि पूर्व ऊर्जा सचिव बिल रिचर्डसन भी इसे तीसरी दुनिया के ग्रिड के रूप में संदर्भित करते हैं। इस समस्या का सामना करने के लिए यूरोपीय संघ और अमेरिका में प्रयास किए गए हैं। उल्लेखनीय रूप से बढ़ती संचरण क्षमता में अमेरिकी राष्ट्रीय सुरक्षा हित ने 2005 के ऊर्जा अधिनियम को पारित कर दिया, जिससे ऊर्जा विभाग को दोलक को मंजूरी देने का अधिकार मिला, यदि राज्य कार्य करने से इनकार करते हैं। हालांकि, जल्द ही ऊर्जा विभाग ने दो राष्ट्रीय हित इलेक्ट्रिक दोलक कॉरिडोर नामित करने के लिए अपनी शक्ति का इस्तेमाल किया, 14 सीनेटरों ने एक पत्र पर हस्ताक्षर किए, जिसमें कहा गया था कि डीओई बहुत आक्रामक था। [52]

विशेष प्रसारण

रेलवे के लिए ग्रिड

कुछ देशों में जहां इलेक्ट्रिक लोकोमोटिव या इलेक्ट्रिक मल्टीपल यूनिट्स लो फ्रीक्वेंसी एसी पावर पर चलती हैं, वहां रेलवे द्वारा संचालित अलग सिंगल फेज ट्रैक्शन पावर नेटवर्क हैं। प्रमुख उदाहरण यूरोप के देश हैं (ऑस्ट्रिया, जर्मनी और स्विटजरलैंड सहित) जो 16 2/3 हर्ट्ज पर आधारित पुरानी एसी तकनीक का उपयोग करते हैं (नॉर्वे और स्वीडन भी इस आवृत्ति का उपयोग करते हैं लेकिन 50 हर्ट्ज सार्वजनिक आपूर्ति से रूपांतरण का उपयोग करते हैं,स्वीडन में 16 2/3 हर्ट्ज ट्रैक्शन ग्रिड है लेकिन केवल प्रणाली के हिस्से के लिए)।

अतिचालक केबल

उच्च तापमान वाले अतिचालक (एचटीएस) विद्युत शक्ति के दोषरहित संचरण प्रदान करके बिजली वितरण में क्रांति लाने का वादा करते हैं। तरल नाइट्रोजन के क्वथनांक से अधिक संक्रमण तापमान वाले अतिचालक के विकास ने सुपरकंडक्टिंग पावर लाइनों की अवधारणा को व्यावसायिक रूप से व्यवहार्य कम से कम उच्च-लोड अनुप्रयोगों के लिएबना दिया है। [53] यह अनुमान लगाया गया है कि इस पद्धति का उपयोग करके कचरे को आधा कर दिया जाएगा, क्योंकि आवश्यक प्रशीतन उपकरण अधिकांश प्रतिरोधक हानियों को समाप्त करके बचाई गई बिजली की लगभग आधी खपत करेंगे। कंसोलिडेटेड एडिसन और अमेरिकन अतिचालक जैसी कुछ कंपनियों ने पहले ही इस तरह के प्रणाली का व्यावसायिक उत्पादन शुरू कर दिया है। [54] सुपरग्रिड नामक एक काल्पनिक भविष्य प्रणाली में, एक तरल हाइड्रोजन पाइपलाइन के साथ पारेषण लाइन को जोड़कर शीतलन की लागत को समाप्त कर दिया जाता है।

अतिचालक केबल विशेष रूप से बड़े शहरों के व्यावसायिक जिले जैसे उच्च भार घनत्व वाले क्षेत्रों के लिए उपयुक्त हैं, जहां केबल के लिए एक आसान खरीदना बहुत महंगा होता है। [55]

स्थान लंबाई (किमी) वोल्टेज (केवी) क्षमता (जीडब्ल्यू) दिनांक
कैरोलटन, जॉर्जिया 2000
अल्बानी, न्यूयॉर्क [56] 0.35 34.5 0.048 2006
होलब्रुक, लॉन्ग आइलैंड [57] 0.6 138 0.574 2008
ट्रेस अमिगास 5 प्रस्तावित 2013
मैनहट्टन: प्रोजेक्ट हाइड्रा प्रस्तावित 2014
एसेन, जर्मनी [58] [59] 1 10 0.04 2014

सिंगल वायर अर्थ रिटर्न

सिंगल-वायर अर्थ रिटर्न (एसडब्ल्यूईआर) या सिंगल वायर ग्राउंड रिटर्न, कम लागत पर दूरदराज के क्षेत्रों में विद्युत ग्रिड के लिए सिंगल-फेज विद्युत शक्ति की आपूर्ति के लिए एक सिंगल-वायर दोलक लाइन है। यह मुख्य रूप से ग्रामीण विद्युतीकरण के लिए उपयोग किया जाता है, लेकिन पानी के पंपों जैसे बड़े पृथक भार के लिए भी इसका उपयोग होता है। पनडुब्बी बिजली केबलों पर एचवीडीसी के लिए सिंगल वायर अर्थ रिटर्न का भी उपयोग किया जाता है।

वायरलेस शक्ति संचरण

निकोला टेस्ला और हिदेत्सुगु यागी दोनों ने 1800 के दशक के अंत और 1900 की शुरुआत में बड़े पैमाने पर वायरलेस पावर दोलक के लिए प्रणाली तैयार करने का प्रयास किया, जिसमें कोई व्यावसायिक सफलता नहीं मिली।

नवंबर 2009 में, लेज़र मोटिव ने एक ग्राउंड-आधारित लेज़र प्रेषित्र का उपयोग करके एक केबल पर्वतारोही को 1 किमी लंबवत शक्ति देकर नासा 2009 पावर बीमिंग चैलेंज जीता। प्रणाली ने रिसीवर के अंत में 1 kW तक बिजली का उत्पादन किया। अगस्त 2010 में, नासा ने कम पृथ्वी की कक्षा के उपग्रहों को शक्ति प्रदान करने और लेजर पावर बीम का उपयोग करके रॉकेट लॉन्च करने के लिए लेजर पावर बीमिंग प्रणाली के अभिकल्पना को आगे बढ़ाने के लिए निजी कंपनियों के साथ अनुबंध किया था। पग्रहों से पृथ्वी तक बिजली के संचरण के लिए वायरलेस पावर दोलक का अध्ययन किया गया है। सूक्ष्म तरंग या लेजर प्रेषित्रों की एक उच्च शक्ति सरणी एक रेक्टेंना को शक्ति प्रदान करेगी। प्रमुख इंजीनियरिंग और आर्थिक चुनौतियां किसी भी सौर ऊर्जा उपग्रह परियोजना का सामना करती हैं।

नियंत्रण प्रणालियों की सुरक्षा

संयुक्त राज्य की संघीय सरकार स्वीकार करती है कि पावर ग्रिड साइबर युद्ध के लिए अतिसंवेदनशील है। [60] [61] यूनाइटेड स्टेट्स डिपार्टमेंट ऑफ़ होमलैंड सिक्योरिटी कमजोरियों की पहचान करने के लिए उद्योग के साथ काम करता है और उद्योग को नियंत्रण प्रणाली नेटवर्क की सुरक्षा बढ़ाने में मदद करने के लिए, संघीय सरकार यह सुनिश्चित करने के लिए भी काम कर रही है कि जैसे ही अमेरिका 'स्मार्ट ग्रिड' की अगली पीढ़ी विकसित करता है, सुरक्षा का निर्माण किया जाता है। नेटवर्क। [62]

जून 2019 में, रूस ने माना कि यह "संभव" है कि इसका विद्युत ग्रिड संयुक्त राज्य अमेरिका द्वारा साइबर हमले के अधीन है। [63] न्यूयॉर्क टाइम्स ने बताया कि यूनाइटेड स्टेट्स साइबर कमांड के अमेरिकी हैकर्स ने मैलवेयर लगाया जो संभावित रूप से रूसी विद्युत ग्रिड को बाधित करने में सक्षम थे। [64]

अभिलेख

  • उच्चतम क्षमता प्रणाली: 12 GW Zhundong-Wannan(准东-皖南)±1100 केवी एचवीडीसी।
  • उच्चतम संचरण वोल्टेज (एसी):
    • योजना बनाई: 1.20 वर्धा-औरंगाबाद लाइन (भारत) पर एमवी (अल्ट्रा हाई वोल्टेज) - निर्माणाधीन। शुरुआत में 400 केवी पर काम करेगा।
    • दुनिया भर में: 1.15 एमवी (अल्ट्रा हाई वोल्टेज) एकिबस्तुज-कोकशेतौ लाइन ( कजाकिस्तान ) पर
  • सबसे बड़ा डबल- परिपथ दोलक, किटा-इवाकी पावरलाइन (जापान)।
  • सबसे ऊंचे टावर : यांग्त्ज़ी रिवर क्रॉसिंग (चीन) (ऊंचाई: 345 m or 1,132 ft )
  • सबसे लंबी बिजली लाइन: इंगा-शबा ( कांगो लोकतांत्रिक गणराज्य ) (लंबाई: 1,700 kilometres or 1,056 miles )
  • बिजली लाइन की सबसे लंबी अवधि: 5,376 m (17,638 ft) अमेरलिक स्पैन ( ग्रीनलैंड, डेनमार्क) में
  • सबसे लंबी पनडुब्बी केबल:
    • नॉर्थ सी लिंक, (नॉर्वे/यूनाइटेड किंगडम) - (पनडुब्बी केबल की लंबाई: 720 kilometres or 447 miles )
    • NorNed, उत्तरी सागर (नॉर्वे/नीदरलैंड) - (पनडुब्बी केबल की लंबाई: 580 kilometres or 360 miles )
    • बासलिंक, बास स्ट्रेट, (ऑस्ट्रेलिया) - (पनडुब्बी केबल की लंबाई: 290 kilometres or 180 miles, कुल लंबाई: 370.1 kilometres or 230 miles )
    • बाल्टिक केबल, बाल्टिक सागर (जर्मनी/स्वीडन) - (पनडुब्बी केबल की लंबाई: 238 kilometres or 148 miles, एचवीडीसी की लंबाई: 250 kilometres or 155 miles, कुल लंबाई: 262 kilometres or 163 miles )
  • सबसे लंबी भूमिगत केबल:
    • मुर्रेलिंक, रिवरलैंड / सनरेशिया (ऑस्ट्रेलिया) - (भूमिगत केबल की लंबाई: 170 kilometres or 106 miles )











यह सभी देखें

==

संदर्भ ==

  1. "A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets" (PDF). United States Department of Energy Federal Energy Management Program (FEMP). May 2002. Retrieved October 30, 2018. {{cite journal}}: Cite journal requires |journal= (help)
  2. हैंस डाइटर बेट्ज़, उलरिच शुमान, पियरे लारोचे (2009)। =en&ei=DFkLSt2lKJCdlQeTyPjtCw&sa=X&oi=book_result&ct=result&resnum=3#PPA203,M1 लाइटनिंग: सिद्धांत, उपकरण और अनुप्रयोग। स्प्रिंगर, पीपी। 202–203। ISBN 978-1-4020-9078-3. 13 मई 2009 को लिया गया
  3. Banerjee, Neela (September 16, 2001). "AFTER THE ATTACKS: THE WORKERS; Con Edison Crews Improvise as They Rewire a Truncated System" – via NYTimes.com.
  4. "INVESTIGATION OF THE SEPTEMBER 2013 ELECTRIC OUTAGE OF A PORTION OF METRO-NORTH RAILROAD'S NEW HAVEN LINE". documents.dps.ny.gov. 2014. Retrieved 2019-12-29.
  5. एनवाईएसपीएससी केस नं। 13-ई-052
  6. 6.0 6.1 Thomas P. Hughes (1993). Networks of Power: Electrification in Western Society, 1880–1930. Baltimore: Johns Hopkins University Press. pp. 119–122. ISBN 0-8018-4614-5.
  7. 7.0 7.1 Guarnieri, M. (2013). "The Beginning of Electric Energy Transmission: Part One". IEEE Industrial Electronics Magazine. 7 (1): 57–60. doi:10.1109/MIE.2012.2236484. S2CID 45909123.
  8. National Council on Electricity Policy. "Electricity Transmission: A primer" (PDF). Retrieved September 17, 2019. {{cite journal}}: Cite journal requires |journal= (help); |author= has generic name (help)
  9. 9.0 9.1 9.2 Guarnieri, M. (2013). "The Beginning of Electric Energy Transmission: Part Two". IEEE Industrial Electronics Magazine. 7 (2): 52–59. doi:10.1109/MIE.2013.2256297. S2CID 42790906.
  10. 10.0 10.1 "Great Barrington Experiment". edisontechcenter.org.
  11. "William Stanley - Engineering and Technology History Wiki". ethw.org.
  12. Arnold Heertje , Mark Perlman 0CEYQ6AEwBA#v=onepage&q=tesla%20motors%20sparked%20induction%20motor&f=false Evolving Technology and Market structure: Shumpeterian Economics में अध्ययन, पृष्ठ 13
  13. कार्लसन, डब्ल्यू बर्नार्ड (2013)। टेस्ला: विद्युत युग के आविष्कारक। प्रिंसटन यूनिवर्सिटी प्रेस. ISBN 1-4008-4655-2, पृष्ठ 13
  14. जोन्स, जिल (2004)। एम्पायर ऑफ लाइट: एडिसन, टेस्ला, वेस्टिंगहाउस, और रेस टू इलेक्ट्रिफाई द वर्ल्ड। रैंडम हाउस ट्रेड पेपरबैक। ISBN 978-0-375-75884-3, पृष्ठ 161
  15. 15.0 15.1 {{उद्धरण पुस्तक | प्रथम = थॉमस | अंतिम = पार्के ह्यूजेस | शीर्षक = नेटवर्क ऑफ पावर: पश्चिमी समाज में विद्युतीकरण, 1880-1930| प्रकाशक=जेएचयू प्रेस | वर्ष=1993 | पृष्ठ=120-121}
  16. Garud, Raghu; Kumaraswamy, Arun; Langlois, Richard (2009). Managing in the Modular Age: Architectures, Networks, and Organizations. John Wiley & Sons. p. 249. ISBN 9781405141949.
  17. किसलिंग एफ, नेफ्जर पी, नोलास्को जेएफ, केंटज़ीक यू। (2003)। ओवरहेड बिजली लाइनें। स्प्रिंगर, बर्लिन, हीडलबर्ग, न्यूयॉर्क, पृ.
  18. ह्यूजेस में पुनर्मुद्रित जनगणना डेटा ब्यूरो, पीपी 282–28
  19. ह्यूजेस, पीपी. 293-29
  20. avsergue/EET3390/Lectures/CHAPTER6.pdf "Distribution Substations - Michigan Technological University" (PDF). Retrieved 20 April 2019.
  21. 21.0 21.1 Paris, L.; Zini, G.; Valtorta, M.; Manzoni, G.; Invernizzi, A.; De Franco, N.; Vian, A. (1984). "Present Limits of Very Long Distance Transmission Systems" (PDF). CIGRE International Conference on Large High Voltage Electric Systems, 1984 Session, 29 August – 6 September. Global Energy Network Institute. Retrieved 29 March 2011. 4.98 एम
  22. "NYISO Zone Maps". New York Independent System Operator. Archived from the original on December 2, 2018. Retrieved 10 January 2014.
  23. अमेरिकन इलेक्ट्रिक पावर, ट्रांसमिशन फैक्ट्स, पेज 4: https://web.archive.org/web/20110604181007/https://www.aep.com/about/transmission/docs/transmission-facts.pd
  24. कैलिफोर्निया पब्लिक यूटिलिटीज कमीशन कोरोना और प्रेरित करंट
  25. Curt Harting (October 24, 2010). "AC Transmission Line Losses". Stanford University. Retrieved June 10, 2019.
  26. 26.0 26.1 "Where can I find data on electricity transmission and distribution losses?". Frequently Asked Questions – Electricity. U.S. Energy Information Administration. 19 November 2009. Archived from the original on 12 December 2012. Retrieved 29 March 2011.
  27. "How much electricity is lost in electricity transmission and distribution in the United States?". Frequently Asked Questions – Electricity. U.S. Energy Information Administration. 9 January 2019. Retrieved 27 February 2019.
  28. डोनाल्ड जी. फिंक और एच. वेन बीटी। (2007), इलेक्ट्रिकल इंजीनियर्स के लिए मानक हैंडबुक (15वां संस्करण)। मैकग्रा-हिल। ISBN 978-0-07-144146-9 खंड 18.
  29. डोनाल्ड जी. फिंक, एच. वेन बीट्टी, स्टैण्डर्ड हैंडबुक फॉर इलेक्ट्रिकल इंजीनियर्स 11वां संस्करण, मैकग्रा हिल, 1978, ISBN 0-07-020974-X, पृष्ठ 15-57 और 15-5
  30. Guarnieri, M. (2013). "The Alternating Evolution of DC Power Transmission". IEEE Industrial Electronics Magazine. 7 (3): 60–63. doi:10.1109/MIE.2013.2272238. S2CID 23610440.
  31. "The Bumpy Road to Energy Deregulation". EnPowered. 2016-03-28.
  32. Raghuvir Srinivasan (August 15, 2004). "Power transmission business is a natural monopoly". The Hindu Business Line. The Hindu. Retrieved January 31, 2008.
  33. Lynne Kiesling (18 August 2003). "Rethink the Natural Monopoly Justification of Electricity Regulation". Reason Foundation. Archived from the original on February 13, 2008. Retrieved 31 January 2008.
  34. "FERC: Landmark Orders - Order No. 888". www.ferc.gov. Archived from the original on December 19, 2016. Retrieved December 7, 2016.
  35. What is the cost per kWh of bulk transmission / National Grid in the UK (note this excludes distribution costs)
  36. "The Electric Power Transmission & Distribution (T&D) Equipment Market 2011–2021". Archived from the original on June 18, 2011. Retrieved June 4, 2011.
  37. "How ITC Holdings plans to connect PJM demand with Ontario's rich renewables". Utility Dive. 8 December 2014.
  38. Fiona Woolf (February 2003). Global Transmission Expansion. Pennwell Books. pp. 226, 247. ISBN 0-87814-862-0.
  39. "FERC: Industries - Order No. 1000 - Transmission Planning and Cost Allocation". www.ferc.gov. Archived from the original on October 30, 2018. Retrieved October 30, 2018.
  40. Power Lines and Cancer Archived April 17, 2011, at the Wayback Machine, The Health Report / ABC Science - Broadcast on 7 June 1997 (Australian Broadcasting Corporation)
  41. Electromagnetic fields and public health, World Health Organization
  42. "EMF Report for the CHPE". TRC. March 2010. pp. 1–4. Retrieved November 9, 2018.
  43. "Electric and Magnetic Field Strengths" (PDF). Transpower New Zealand Ltd. p. 2. Retrieved November 9, 2018.
  44. "Electromagnetic fields and public health". Fact sheet No. 322. World Health Organization. June 2007. Archived from the original on July 1, 2007. Retrieved 23 January 2008.
  45. "Electric and Magnetic Fields Associated with the Use of Power" (PDF). National Institute of Environmental Health Sciences. June 2002. Retrieved 29 January 2008.
  46. "Electromagnetic fields and public health". Fact sheet No. 322. World Health Organization. June 2007. Archived from the original on July 1, 2007. Retrieved 23 January 2008.
  47. "Transmission Vegetation Management NERC Standard FAC-003-2 Technical Reference Page 14/50" (PDF). nerc.com.
  48. 48.0 48.1 "Order No. 888". United States of America Federal Energy Regulatory Commission.
  49. Order No. 888, FERC. "Promoting Wholesale Competition Through Open Access Non-discriminatory Transmission Services by Public Utilities; Recovery of Stranded Costs by Public Utilities and Transmitting Utilities". Archived from the original on December 19, 2016. Retrieved December 7, 2016.
  50. Energy Policy Act of 2005 Fact Sheet (PDF). FERC Washington, D.C. 8 August 2006. Archived from the original (PDF) on December 20, 2016. Retrieved December 7, 2016.
  51. Brown, Matthew H.; Sedano, Richard P. (2004). Electricity transmission : a primer (PDF). Denver, Colorado: National Council on Electricity Policy. p. 32 (page 41 in .pdf). ISBN 1-58024-352-5. Archived from the original (PDF) on 30 July 2009. Retrieved 29 May 2022.
  52. Wald, Matthew (27 August 2008). "Wind Energy Bumps into Power Grid's Limits". The New York Times: A1. Retrieved 12 December 2008.
  53. Jacob Oestergaard (2001). "Energy losses of superconducting power transmission cables in the grid" (PDF). IEEE Transactions on Applied Superconductivity. 11 (1): 2375. Bibcode:2001ITAS...11.2375O. doi:10.1109/77.920339. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  54. Reuters, New Scientist Tech and. "Superconducting power line to shore up New York grid". New Scientist. {{cite web}}: |last= has generic name (help)
  55. "Superconducting cables will be used to supply electricity to consumers". Archived from the original on July 14, 2014. Retrieved June 12, 2014.
  56. "HTS Transmission Cable". www.superpower-inc.com.
  57. "IBM100 - High-Temperature Superconductors". www-03.ibm.com. August 10, 2017.
  58. Patel, 03/01/2012 | Sonal (March 1, 2012). "High-Temperature Superconductor Technology Stepped Up". POWER Magazine.{{cite web}}: CS1 maint: multiple names: authors list (link)
  59. "Operation of longest superconducting cable worldwide started". phys.org.
  60. Shiels, Maggie (April 9, 2009). "Spies 'infiltrate US power grid'". BBC News.
  61. "Hackers reportedly have embedded code in power grid". CNN. April 9, 2009.
  62. Holland, Steve; Mikkelsen, Randall (April 8, 2009). "UPDATE 2-US concerned power grid vulnerable to cyber-attack". Reuters.
  63. "US and Russia clash over power grid 'hack attacks". BBC News. 18 June 2019.
  64. Greenberg, Andy (18 June 2019). "How Not To Prevent a Cyberwar With Russia". Wired.