वाई-फाई पोजिशनिंग सिस्टम

From Vigyanwiki
Revision as of 15:08, 7 November 2023 by Deepak (talk | contribs) (Deepak moved page वाई-फाई पोजिशन सिस्टम to वाई-फाई पोजिशनिंग सिस्टम without leaving a redirect)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

वाई फाई पोजिशनिंग प्रणाली डबल्यूपीएस संक्षिप्त रूप में डबल्यूआईपीएस या डब्ल्यूएफपीएस एक जियोलोकेशन प्रणाली के रूप में है यह एड्रेस का पता लगाने के लिए की डिवाइस कहाँ उपलब्ध है जो पास के वाई-फाई हॉटस्पॉट और अन्य वायरलेस एक्सेस बिंदु की की विशेषताओं का उपयोग करता है। [1]

इसका उपयोग जहां कई कारणवश उपग्रह नेविगेशन के रूप में होता है जैसे कि जीपीएस अपर्याप्त वैश्विक स्थिति के रूप में होती है मल्टीपल इफेक्ट्स और संकेत रुकावट घर के अंदर त्रुटि विश्लेषण सहित विभिन्न कारणों के लिए अपर्याप्त होते है और जहां उपग्रह की स्थिति सही करने में लंबा समय लगता है।[2] इस प्रकार की प्रणालियों में हॉटस्पॉट डेटाबेस के माध्यम से सहायता प्राप्त करते है और जीपीएस शहरी पोजिशनिंग सेवाएं और इनडोर पोजिशनिंग व्यवस्था के रूप में सम्मलित होती हैं।[3] वाई-फाई पोजिशनिंग शहरी क्षेत्रों में वायरलेस एक्सेस पॉइंट्स के 21 वीं सदी की प्रारंभ में तेजी से वृद्धि हुई है।[4]

वायरलेस एक्सेस पॉइंट्स के साथ पोजीशनिंग के लिए उपयोग की जाने वाली सबसे साधारण और व्यापक स्थानीयकरण तकनीक प्राप्त होती है और जो संकेत की तीव्रता संकेत क्षमता इंडिकेशन या आरएसएसआई और फिंगर प्रिंटिंग की विधि को मापने पर आधारित होती है।[5][6][7] वायरलेस एक्सेस प्वाइंट को जियोलोकेट करने के लिए उपयोगी विशिष्ट पैरामीटर में इसके एसएसआईडी और मैक एड्रेस के रूप में सम्मलित होते है। और सटीकता पास के एक्सेस पॉइंट्स की संख्या पर निर्भर करती है जिनकी स्थिति डेटाबेस में दर्ज की गई है। वाई-फाई हॉटस्पॉट मैक एड्रेस के साथ मोबाइल डिवाइस जीपीएस स्थान डेटा को सहसंबंधित करके भरा जाता है।[8] संभावित संकेत में उतार -चढ़ाव हो सकता है उपयोगकर्ता के मार्ग में त्रुटियों और अशुद्धि को बढ़ा सकता है और प्राप्त संकेत में उतार -चढ़ाव को कम करने के लिए कुछ तकनीकें होती हैं जिनका उपयोग शोर को फ़िल्टर करने के लिए किया जा सकता है।

यदि कम परिशुद्धता के स्थिति में भौगोलिक सूचना प्रणाली और समय की सीमाओं अर्थात समय भूगोल जैसे अन्य डेटा स्रोतों के साथ वाई-फाई ट्रेस को विलय करने की कुछ तकनीकों का प्रस्ताव दिया गया है।[9]

प्रेरणा और अनुप्रयोग

सटीक इनडोर स्थानीयकरण संवर्धित वास्तविकता सामाजिक नेटवर्किंग स्वास्थ्य देखभाल व्यक्तिगत ट्रैकिंग सूची नियंत्रण और अन्य इनडोर स्थानों पर जानकारी के अनुप्रयोगों के कारण वाई फाई आधारित उपकरणों के लिए और अधिक महत्वपूर्ण बनता जा रहा है।[10][11]

वायरलेस सुरक्षा में यह एक महत्वपूर्ण कार्य है जिसका उपयोग अपकर्मी एक्सेस बिंदुओं का पता लगाने और मैप करने के लिए किया जाता है[12][13]

वाई-फाई नेटवर्क इंटरफेस कार्ड की लोकप्रियता और कम कीमत एक स्थानीयकरण प्रणाली के आधार के रूप में वाई-फाई का उपयोग करने के लिए एक आकर्षक प्रोत्साहन के रूप में है और पिछले 15 वर्षों में इस क्षेत्र में महत्वपूर्ण शोध किया गया है।[5][7][14]

समस्या कथन और बुनियादी अवधारणाएं

एक उपकरण के वाई-फाई आधारित इनडोर स्थानीयकरण की समस्या में एक्सेस पॉइंट्स के संबंध में क्लाइंट डिवाइस की स्थिति का निर्धारण करने में होती है और इसे पूरा करने के लिए अनेक तकनीकें उपलब्ध होती हैं और इन्हें चार मुख्य प्रकारों में वर्गीकृत किया जा सकता है प्राप्त संकेत शक्ति संकेत (आरएसएसआई) फिंगरप्रिंटिंग आगमन का कोण (एओए) और फ्लाइट (टीओएफ) आधारित तकनीकों के रूप में होते है।[14][15]

अधिकांश स्थितियो में डिवाइस की स्थिति को निर्धारित करने के लिए पहला कदम लक्ष्य क्लाइंट डिवाइस और कुछ एक्सेस पॉइंट्स के बीच की दूरी को निर्धारित करते है। लक्ष्य डिवाइस और एक्सेस पॉइंट्स के बीच ज्ञात दूरी के साथ ट्रायलिटिरेशन का प्रयोग लक्ष्य युक्ति की सापेक्ष स्थिति को निर्धारित करने के लिए किया जाता है[11] एक संदर्भ के रूप में एक्सेस पॉइंट्स की ज्ञात स्थिति का उपयोग किया जाता है। वैकल्पिक रूप से एक लक्ष्य क्लाइंट डिवाइस पर आने वाले संकेतों के कोण को ट्राईऐन्ग्युलेशंस कलन विधि के आधार पर डिवाइस के स्थान को निर्धारित करने के लिए उपयोग किया जा सकता है।[14]

प्रणाली की सटीकता को बढ़ाने के लिए इन तकनीकों के संयोजन का उपयोग किया जाता है।[14]

तकनीक

संकेत शक्ति आधारित

आरएसएसआई स्थानीयकरण तकनीक एक क्लाइंट डिवाइस से कई अलग अलग एक्सेस पॉइंट्स तक संकेत क्षमता को मापने पर आधारित होती है और फिर क्लाइंट डिवाइस और एक्सेस पॉइंट्स के बीच की दूरी को निर्धारित करने के लिए एक प्रचार मॉडल के साथ इस जानकारी के संयोजन पर आधारित हैं। ट्रिलेटरेशन (कभी-कभी इसे मल्टीलेटरेशन कहा जाता है) तकनीकों का उपयोग पहुंच बिंदुओं की ज्ञात स्थिति के सापेक्ष अनुमानित क्लाइंट डिवाइस स्थिति की गणना करने के लिए किया जा सकता है।[11][14]

चूंकि इसे लागू करने के सबसे सस्ते और सबसे आसान तरीकों में से एक है इसका नुकसान यह है कि यह बहुत अच्छी सटीकता (2-4 मीटर का माध्य) प्रदान नहीं करता है क्योंकि आरएसएसआई मापन पर्यावरण में परिवर्तन या मल्टीपथ फेडिंग के अनुसार उतार-चढ़ाव करते हैं।[5]

सिस्को अपने एक्सेस पॉइंट के माध्यम से उपकरणों का पता लगाने के लिए आरएसएसआई का उपयोग करता है। एक्सेस पॉइंट स्थान डेटा एकत्रित करते हैं और सिस्को क्लाउड के स्थान को अपडेट करते हैं जिसे सिस्को डीएनए रिक्त स्थान कहा जाता है।[16]

फिंगरप्रिंटिंग आधारित

पारंपरिक फिंगर प्रिंटिंग भी आरएसएसआई आधारित होते है लेकिन यह केवल एक ऑफ़लाइन चरण में क्लाइंट डिवाइस के ज्ञात निर्देशांक के साथ साथ एक डेटाबेस में कई एक्सेस पॉइंट्स से संकेत क्षमता की रिकॉर्डिंग पर निर्भर करता है। यह जानकारी नियतात्मक हो सकती है[5] या संभाव्य के रूप में हो सकती है।[7] ऑनलाइन ट्रैकिंग चरण के दौरान एक अज्ञात स्थान पर वर्तमान आरएसएसआई सदिश की तुलना फिंगरप्रिंट में संग्रहीत उन लोगों से की जाती है और निकटतम मैच को अनुमानित उपयोगकर्ता स्थान के रूप में वापस कर दिया जाता है। इस प्रकार के प्रणाली 0.6 मीटर की औसत सटीकता और 1.3 मीटर की पूंछ सटीकता प्रदान कर सकते हैं।[14][17]

इसका मुख्य नुकसान यह है कि पर्यावरण में कोई भी परिवर्तन जैसे कि फर्नीचर या इमारतों को जोड़ना या हटाना, फिंगरप्रिंट को बदलना जो प्रत्येक स्थान से मेल खाती है फिंगरप्रिंट डेटाबेस को अपडेट करने की आवश्यकता होती है। चूंकि अन्य सेंसर जैसे कैमरों के साथ एकीकरण का उपयोग बदलते वातावरण से निपटने के लिए किया जाता है।[18]

आगमन का कोण

एक संकेत प्राप्त करने वाले एंटेना के रैखिक सरणी।एंटेना में प्राप्त संकेत के चरण-शिफ्ट अंतर को एक डी दूरी से समान रूप से अलग किया जाता है, संकेत के आगमन के कोण की गणना करने के लिए उपयोग किया जाता है। चित्र से पुन: पेश किया गया [14]

मीमो वाई-फाई इंटरफेस के आगमन के साथ जो कई एंटेना का उपयोग करते हैं एक्सेस पॉइंट्स में एंटीना सरणियों में प्राप्त मल्टीपथ संकेत के आगमन कोण का अनुमान लगाना संभव होता है और क्लाइंट उपकरणों के स्थान की गणना करने के लिए त्रिकोणीयता को लागू करते है। स्पॉटफी[14] अरेट्रैक[10] और लेटेये[19] प्रस्तावित समाधान के रूप में होते है जो इस प्रकार की तकनीक को नियोजित करते हैं।

एओए की विशिष्ट गणना संगीत कलन विधि के साथ की जाती है। मान लें कि एंटीना की एक ऐन्टेना सरणी की दूरी से समान रूप से दूरी पर है और प्रसार पथ के माध्यम से ऐन्टेना सरणी पर आने वाला एक सिग्नल सरणी के दूसरे एंटीना तक पहुंचने के लिए संकेत द्वारा यात्रा की जाती है।[14]

यह देखते हुए कि -th प्रसार पथ कोण के साथ आता है एक्सेस प्वाइंट के एंटीना सरणी के सामान्य के संबंध में, सरणी के किसी भी एंटीना पर अनुभव किया गया क्षीणन होता है। प्रत्येक एंटीना में क्षीणन समान रूप में होते है, एक चरण शिफ्ट को छोड़कर जो संकेत द्वारा यात्रा की गई अतिरिक्त दूरी के कारण प्रत्येक एंटीना के लिए बदलता है। इसका मतलब है कि संकेत अतिरिक्त चरण के साथ आता है

दूसरे एंटीना पर और

m वें एंटीना पर है।[14]

इसलिए निम्नलिखित जटिल घातीय का उपयोग प्रत्येक एंटीना द्वारा अनुभव किए गए चरण बदलावों के सरलीकृत प्रतिनिधित्व के रूप में किया जाता है, जो प्रसार पथ के एओए के एक फलन के रूप में होते है[14]

एओए को के कारण प्राप्त संकेतों के सदिश के रूप में व्यक्त किया जा सकता है -th प्रसार पथ, जहां स्टीयरिंग सदिश है और इसके द्वारा दिया गया है[14]
प्रत्येक प्रसार पथ के लिए एक स्टीयरिंग सदिश होते है और स्टीयरिंग मैट्रिक्स आयामों की के रूप में परिभाषित किया गया है[14]
और प्राप्त संकेत सदिश के रूप में होते है[14]
जहाँ पथों के साथ सदिश जटिल क्षीणन होते है।[14] समकोणकार आवृति विभाजन बहुसंकेतन (ओएफडीएम) कई अलग-अलग उप वाहकों पर डेटा प्रसारित करता है इसलिए मापा गया संकेत प्रत्येक उप वाहक के अनुरूप मैट्रिक्स के रूप में के रूप में व्यक्त किया जाता है[14]


मैट्रिक्स चैनल स्टेट सूचना (चैनल स्टेट इंफॉर्मेशन) मैट्रिक्स द्वारा दिया गया है, जिसे लिनक्स 802.11 एन सीएसआई टूल जैसे विशेष उपकरणों के साथ आधुनिक वायरलेस कार्ड से निकाला जा सकता है।[20]

यह वह जगह है जहां एकाधिक संकेत वर्गीकरण कलन विधि को लागू किया जाता है, सबसे पहले अभिलक्षणिक सदिश की गणना करके जहाँ का संयुग्मन ट्रांसपोज़ होते है और स्टीयरिंग सदिश और मैट्रिक्स की गणना करने के लिए अभिलक्षणिक मान शून्य के अनुरूप सदिश का उपयोग कर रहा है .[14] एओए तब इस मैट्रिक्स से निकाले जा सकते हैं और त्रिकोणासन के माध्यम से क्लाइंट डिवाइस की स्थिति का अनुमान लगाने के लिए उपयोग किया जाता है।

चूंकि यह तकनीक सामान्यतः दूसरों की तुलना में अधिक सटीक होती है, लेकिन इसे लागू करने के लिए विशेष हार्डवेयर की आवश्यकता होती है, जैसे कि छह से आठ एंटेना की एक सरणी[10] या एंटेना को घुमाना।[19] फूँक मारना[14] एक अधिवृषण कलन विधि के उपयोग का प्रस्ताव करता है जो केवल तीन एंटेना के साथ वाई-फाई कार्ड के प्रत्येक एंटेना द्वारा लिए गए मापों की संख्या का लाभ उठाता है और इसकी सटीकता में सुधार करने के लिए टीओएफ आधारित स्थानीयकरण को भी सम्मलित करता है।

उड़ान आधारित समय

एक क्लाइंट स्टेशन को डेटा फ्रेम भेजने वाले एक मापने वाले स्टेशन को दिखाने वाला आंकड़ा और एसीके प्राप्त करने तक प्रतीक्षा करता है। क्या शेड्यूलिंग देरी (ऑफसेट) लक्ष्य क्लाइंट डिवाइस पर उत्पन्न हुई है और यह इस बात पर निर्भर करता है कि एसीके को शेड्यूल करने में कितना समय लगता है। टी-पी ट्रांसमीटर और रिसीवर के बीच संकेत प्रोपेगेशन टाइम है और सामान्यतः लक्ष्य और पीठ के रास्ते पर समान माना जाता है। एसीके फ्रेम को संचारित करने के लिए आवश्यक समय है। उड़ान का समय टी मापा गया से मेल खाता है। चित्र से पुन: दर्शाया गया है [21]

उड़ान (टीओएफ) स्थानीयकरण दृष्टिकोण का समय वायरलेस इंटरफेस द्वारा प्रदान किए गए टाइमस्टैम्प्स को संकेतों के टीओएफ की गणना करने के लिए प्रदान करता है और फिर इस जानकारी का उपयोग एक ग्राहक डिवाइस की दूरी और सापेक्ष स्थिति का अनुमान लगाने के लिए उपयोग करने के संबंध में किया जाता है। ऐसे समय के माप की ग्रैन्युलरिटी नैनोसेकंड और प्रणाली के क्रम में होती है जो इस तकनीक का उपयोग करते हैं, 2 मीटर के क्रम में स्थानीयकरण त्रुटियों की सूचना दी होती है।[14] इस तकनीक के लिए विशिष्ट अनुप्रयोग इमारतों में संपत्तियों को टैग करना और उनका पता लगाना है, जिसके लिए कमरे के स्तर की सटीकता (~3m) सामान्यतः पर्याप्त होती है।[22]

वायरलेस इंटरफेस पर लिया गया समय माप इस तथ्य पर आधारित हैं कि आरएफ तरंगें प्रकाश की गति के करीब यात्रा करती हैं जो इनडोर वातावरण में अधिकांश प्रसार मीडिया में लगभग स्थिर रहती है। इसलिए संकेत प्रसार गति और परिणामस्वरूप टीओएफ पर्यावरण से इतना प्रभावित नहीं होता है क्योंकि आरएसएसआई माप के रूप में होते है।[21]

पारंपरिक टीओएफ आधारित इको तकनीकों के विपरीत, जैसे कि राडार प्रणाली में उपयोग किए जाने वाले वाई-फाई इको तकनीकें टीओएफ को मापने के लिए नियमित डेटा और पावती संचार फ्रेम का उपयोग करती हैं।[21]

आरएसएसआई दृष्टिकोण के रूप में टीओएफ का उपयोग केवल क्लाइंट डिवाइस और एक्सेस पॉइंट के बीच की दूरी का अनुमान लगाने के लिए किया जाता है। तब एक्सेस पॉइंट्स के सापेक्ष डिवाइस की अनुमानित स्थिति की गणना करने के लिए एक ट्रिलेट्रेशन तकनीक का उपयोग किया जा सकता है।[22] टीओएफ दृष्टिकोण में सबसे बड़ी चुनौतियों में घड़ी सिंक्रनाइज़ेशन मुद्दों, शोर नमूना कलाकृतियों और मल्टीपथ चैनल प्रभावों से निपटने में सम्मलित होते है।[22] कुछ तकनीकें घड़ी सिंक्रनाइज़ेशन की आवश्यकता को दूर करने के लिए गणितीय दृष्टिकोण का उपयोग करती हैं।[15]

वर्तमान में वाई-फाई राउंड ट्रिप टाइम स्टैंडर्ड ने वाईफाई को ठीक टीओएफ क्षमता प्रदान की है।

गोपनीयता चिंता

डब्ल्यूपीएस से उत्पन्न होने वाली विशिष्ट गोपनीयता चिंताओं का जिक्र करते हुए गूगल ने ऑपटिंग आउट के लिए एक एकीकृत दृष्टिकोण का सुझाव दिया। डब्ल्यूपीएस का उपयोग करके स्थान निर्धारित करने में भाग लेने से एक विशेष पहुंच बिंदु को ऑप्ट-आउट करना है।[23] एक वायरलेस एक्सेस प्वाइंट केएसएसआईडी के लिए नोमैप को जोड़कर इसे गूगल के डब्ल्यूपीएस डेटाबेस से बाहर कर दिया गया है। गूगल को उम्मीद है कि एप्पल और माइक्रोसॉफ्ट जैसे अन्य डब्ल्यूपीएस प्रदाता और डेटा कलेक्टरों की उस सिफारिश का पालन करते है जिससे यह एक स्वीकृत मानक बन जाए।[24] मोज़िला ऑनर्स नोमैप को अपनी स्थान सेवा से ऑप्ट-आउट करने की एक विधि के रूप में सम्मानित करता है।[25]

सार्वजनिक वाई-फाई स्थान डेटाबेस

कई सार्वजनिक वाई-फाई स्थान डेटाबेस उपलब्ध हैं (केवल सक्रिय परियोजनाएं):

नाम अद्वितीय वाई-फाई नेटवर्क टिप्पणियों मुफ्त डेटाबेस डाउनलोड एसएसआईडी लुकअप बीएसएसआईडी लुकअप डेटा लाइसेंस ऑप्ट- आउट नक्शा कवरेज टिप्पणी
संयोजन पोजिशनिंग सेवा[26] >2,400,000,000[27] >67,000,000,000[27] No Yes Yes Proprietary _nomap Map Archived 2015-07-06 at the Wayback Machine साथ ही सेल

आईडी डेटाबेस.

एपीआई ऑर्ग द्वारा अनवायर्ड लैब्स[28] >1,500,010,000[29] >4,100,000,000 No No Yes Proprietary No Map साथ ही सेल

आईडी डेटाबेस

मोज़िला स्थान सेवा[30] >2,397,415,000[31] 776,478,000,000[31] No No Yes Proprietary [32] _nomap[25] Map साथ ही सेल आईडी

डेटाबेस जिसका डेटा सार्वजनिक डोमेन है। साथ ही ब्लूटूथ।

मायलनिकोव जीईओ[33] 860,655,230[33] Yes[34] No Yes MIT[35] — (aggregator) Map Archived 2017-09-14 at the Wayback Machine साथ ही सेल

आईडी डेटाबेस[36]

नवज़ोन[37] 480,000,000 21,500,000,000 No No Yes Proprietary No Map भीड़-स्रोत डेटा के आधार पर। साथ ही सेल आईडी डेटाबेस.[38]
रेडियो

प्रकोष्ठों

संगठन[39]

13,610,728 Yes[40] No Yes[41] ODbL[42] _nomap Map भीड़-स्रोत डेटा के आधार पर। साथ ही सेल आईडी डेटाबेस। कच्चे डेटा सहित
ओपनडब्ल्यूलैन मैप /ओपन वाई फाई। सू [43][44] 22,010,794 Yes[45] No Yes[46] ODbL[47] _nomap, request[46] Map
विगल[48] 506,882,816[49] 7,235,376,746[49] No Yes[50] Yes[50] Proprietary _nomap,[51] request Map साथ ही सेल आईडी और ब्लूटूथ डेटाबेस।


यह भी देखें


संदर्भ

  1. Lindner, Thomas; Fritsch, Lothar; Plank, Kilian; Rannenberg, Kai (2004). Lamersdorf, Winfried; Tschammer, Volker; Amarger, Stéphane (eds.). "नए व्यापार मॉडल के लिए सार्वजनिक और निजी वाईफाई कवरेज का शोषण". Building the E-Service Society. IFIP International Federation for Information Processing (in English). Springer US. 146: 131–148. doi:10.1007/1-4020-8155-3_8. ISBN 978-1-4020-8155-2.
  2. Magda Chelly, Nel Samama. Detecting visibility in heterogeneous simulated environments for positioning purposes. IPIN 2010 : International Conference on Indoor Positioning and Indoor Navigation, Sep 2010, Hoenggerberg, Switzerland. ⟨hal-01345039⟩ [1]
  3. Magda Chelly, Nel Samama. New techniques for indoor positioning, combining deterministic and estimation methods. ENC-GNSS 2009 : European Navigation Conference - Global Navigation Satellite Systems, May 2009, Naples, Italy. pp.1 - 12. hal-01367483 [2]
  4. Magda Chelly, Anca Fluerasu, Nel Samama. A universal and autonomous positioning system based on wireless networks connectivity. ENC 2011 : European Navigation Conference, Nov 2011, London, United Kingdom. hal-01302215[3]
  5. 5.0 5.1 5.2 5.3 P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system,” in Proceedings of 19th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM ’00), vol. 2, pp. 775–784, Tel Aviv.Israel, March 2000.
  6. Y. Chen and H. Kobayashi, “Signal strength based indoor geolocation,” in Proceedings of the IEEE International Conference on Communications (ICC ’02), vol. 1, pp. 436–439, New York, NY, USA, April–May 2002.
  7. 7.0 7.1 7.2 Youssef, M. A.; Agrawala, A.; Shankar, A. Udaya (2003-03-01). क्लस्टरिंग और संभाव्यता वितरण के माध्यम से डब्ल्यूएलएएन स्थान निर्धारण. pp. 143–150. CiteSeerX 10.1.1.13.4478. doi:10.1109/PERCOM.2003.1192736. ISBN 978-0-7695-1893-0. S2CID 2096671. {{cite book}}: |journal= ignored (help)
  8. "वाई-फाई पोजिशनिंग सिस्टम".
  9. Danalet, Antonin; Farooq, Bilal; Bierlaire, Michel (2014). "वाईफाई हस्ताक्षर से पैदल यात्री गंतव्य-अनुक्रमों का पता लगाने के लिए एक बायेसियन दृष्टिकोण". Transportation Research Part C: Emerging Technologies. 44: 146–170. doi:10.1016/j.trc.2014.03.015.
  10. 10.0 10.1 10.2 J. Xiong and K. Jamieson, “Arraytrack: A fine-grained indoor location system,” NSDI ’13.
  11. 11.0 11.1 11.2 Yang, Jie; Chen, Yingying (2009-11-01). बेहतर आरएसएस-आधारित पार्श्व विधियों का उपयोग करके इनडोर स्थानीयकरण. pp. 1–6. CiteSeerX 10.1.1.386.4258. doi:10.1109/GLOCOM.2009.5425237. ISBN 978-1-4244-4148-8. S2CID 2125249. {{cite book}}: |journal= ignored (help)
  12. .Wang, C.; Zheng, X.; Chen, Y.; Yang, J. (September 2017). "Locating Rogue Access Point Using Fine-Grained Channel Information". IEEE Transactions on Mobile Computing. 16 (9): 2560–2573. doi:10.1109/TMC.2016.2629473. ISSN 1558-0660.
  13. "सिस्को प्राइम नेटवर्क कंट्रोल सिस्टम कॉन्फ़िगरेशन गाइड, रिलीज़ 1.0 - अध्याय 6: मॉनिटरिंग मैप्स [सिस्को प्राइम नेटवर्क कंट्रोल सिस्टम सीरीज़ एप्लिकेशन]". Cisco. Retrieved 19 December 2020.
  14. 14.00 14.01 14.02 14.03 14.04 14.05 14.06 14.07 14.08 14.09 14.10 14.11 14.12 14.13 14.14 14.15 14.16 14.17 14.18 Kotaru, Manikanta; Joshi, Kiran; Bharadia, Dinesh; Katti, Sachin (2015-01-01). SPOTFI: वाईफाई का उपयोग करके डेसीमीटर स्तर का स्थानीयकरण. pp. 269–282. doi:10.1145/2785956.2787487. ISBN 978-1-4503-3542-3. S2CID 8728165. {{cite book}}: |journal= ignored (help)
  15. 15.0 15.1 Youssef, Moustafa; Youssef, Adel; Rieger, Chuck; Shankar, Udaya; Agrawala, Ashok (2006-01-01). पिनपॉइंट: एक अतुल्यकालिक समय-आधारित स्थान निर्धारण प्रणाली. pp. 165–176. doi:10.1145/1134680.1134698. ISBN 978-1595931955. S2CID 232045615. {{cite book}}: |journal= ignored (help)
  16. "सिस्को में तेजी से पता लगाते हैं" (PDF). Cisco Documents.
  17. Youssef, Moustafa; Agrawala, Ashok (2007-01-04). "होरस स्थान निर्धारण प्रणाली". Wireless Networks (in English). 14 (3): 357–374. doi:10.1007/s11276-006-0725-7. ISSN 1022-0038. S2CID 62768948.
  18. Wan Mohd Yaakob Wan Bejuri, Mohd Murtadha Mohamad, Maimunah Sapri and Mohd Adly Rosly (2012). Ubiquitous WLAN/Camera Positioning using Inverse Intensity Chromaticity Space-based Feature Detection and Matching: A Preliminary Result. International Conference on Man-Machine Systems 2012 (ICOMMS 2012), Penang, MALAYSIA. See publication here, or click here if broken link
  19. 19.0 19.1 Kumar, Swarun; Hamed, Ezzeldin; Katabi, Dina; Erran Li, Li (2014-01-01). LTE रेडियो एनालिटिक्स ने आसान और सुलभ बनाया. pp. 29–30. doi:10.1145/2645884.2645891. hdl:1721.1/100518. ISBN 978-1-4503-3073-2. S2CID 53224063. {{cite book}}: |journal= ignored (help)
  20. "लिनक्स 802.11 एन सीएसआई उपकरण". dhalperi.github.io. Retrieved 2015-11-10.
  21. 21.0 21.1 21.2 Marcaletti, Andreas; Rea, Maurizio; Giustiniano, Domenico; Lenders, Vincent; Fakhreddine, Aymen (2014-01-01). फ़िल्टरिंग शोर 802.11 टाइम-ऑफ-फ्लाइट रेंजिंग माप. pp. 13–20. CiteSeerX 10.1.1.673.2243. doi:10.1145/2674005.2674998. ISBN 978-1-4503-3279-8. S2CID 11871353. {{cite book}}: |journal= ignored (help)
  22. 22.0 22.1 22.2 Lanzisera, S.; Zats, D.; Pister, K.S.J. (2011-03-01). "कम लागत वाले वायरलेस सेंसर स्थानीयकरण के लिए रेडियो फ़्रीक्वेंसी टाइम-ऑफ-फ़्लाइट डिस्टेंस माप". IEEE Sensors Journal. 11 (3): 837–845. Bibcode:2011ISenJ..11..837L. doi:10.1109/JSEN.2010.2072496. ISSN 1530-437X. S2CID 15835286.
  23. "Infosecurity ब्लॉग". Infosecurity Magazine. Retrieved 2015-09-17.
  24. Google Help - Location-based services - How do I opt out? Obtained 2012-05-30
  25. 25.0 25.1 "एमएलएस-ऑप्ट-आउट". mozilla.com. Retrieved 2 September 2014.
  26. "Combain Positioning Service". Retrieved 2019-01-03.
  27. 27.0 27.1 "Wifi Positioning | Wifi Location | Cell ID - Combain". Retrieved 2019-01-03.
  28. "Unwired LocationAPI Coverage". Retrieved 2017-06-06.
  29. API, Unwired. "Unwired Labs Location API - Geolocation API and Mobile Triangulation API, Cell Tower database". Unwired Labs Location API - Geolocation & Mobile Triangulation API. Retrieved 2017-06-06.
  30. "Mozilla Location Service". Retrieved 2015-10-26.
  31. 31.0 31.1 "MLS - Statistics". location.services.mozilla.com. Retrieved 2022-11-16.
  32. "CloudServices/Location/FAQ - MozillaWiki".
  33. 33.0 33.1 "Mylnikov GEO Wi-Fi". Retrieved 2015-05-19.
  34. "Mylnikov GEO Wi-Fi Database Download". Retrieved 2015-05-19.
  35. "Mylnikov GEO license". Retrieved 2014-12-19.
  36. "Mylnikov GEO Mobile Cells Database". Retrieved 2014-12-19.
  37. "Navizon Global Positioning System". Retrieved 2015-06-21.
  38. "Navizon WiFi Coverage Map". Retrieved 2015-06-21.
  39. "Radiocells.org". Retrieved 2018-07-06.
  40. "Radiocells.org Database Download". Retrieved 2018-07-06.
  41. "Wifi Access Point finder". Retrieved 2015-01-30.
  42. "Radiocells.org license". Retrieved 2018-07-06.
  43. "OpenWLANMap". Retrieved 2015-06-23.
  44. QXC, VWPDesign/. "Open WLAN Map - free and open WLAN-based location services". openwifi.su. Retrieved 2015-07-06.
  45. "OpenWLANMap Database Download". Retrieved 2015-02-24.
  46. 46.0 46.1 "Find WLAN network". Retrieved 2014-12-19.
  47. "OpenWLANMap license". Retrieved 2017-03-14.
  48. "WiGLE". Retrieved 2014-12-19.
  49. 49.0 49.1 "WiGLE Stats". www.wigle.net. Retrieved 2018-12-24.
  50. 50.0 50.1 "WiGLE Wireless Network Map". Retrieved 2014-12-19.
  51. "On _nomap and _optout - WiGLE.net". www.wigle.net. Retrieved 2019-09-15.
General
* एंथनी लामार्का, यतिन चवाथे, सनी कॉन्सोल्वो, जेफरी हाईटॉवर, इयान स्मिथ, जेम्स स्कॉट, टिम सोहन, जेम्स हॉवर्ड, जेफ ह्यूजेस, फ्रेड पॉटर, जेसन टैबर्ट, पॉलीन पॉवेलेज, गेटानो बोरिएलो, बिल शिलिट: प्लेस लैब: वाइल्ड में रेडियो बीकन का उपयोग करके डिवाइस पोजिशनिंग। व्यापक में (2005)