निर्वात नलिका

From Vigyanwiki
Revision as of 15:13, 11 September 2022 by alpha>Ashish kumar

बाद में थर्मियनिक वैक्यूम ट्यूब, ज्यादातर लघु शैली, कुछ उच्च वोल्टेज के लिए शीर्ष कैप कनेक्शन के साथ

एक वैक्यूम ट्यूब, इलेक्ट्रॉन ट्यूब,[1][2][3] वाल्व (ब्रिटिश उपयोग), या ट्यूब (उत्तरी अमेरिका),[4] एक ऐसा उपकरण है जो इलेक्ट्रोड के बीच एक उच्च वैक्यूम में विद्युत प्रवाह को नियंत्रित करता है जिसमें एक विद्युत संभावित अंतर लागू किया जाता है।

एक थर्मिओनिक ट्यूब या थर्मोनिक वाल्व के रूप में जाने जाना वाला प्रकार मौलिक इलेक्ट्रॉनिक कार्यों जैसे सिग्नल प्रवर्धन और धारा सुधार के लिए एक गर्म कैथोड से इलेक्ट्रॉनों के थर्मियोनिक उत्सर्जन का उपयोग करता है। गैर- फोटोइलेक्ट्रिक प्रभाव के माध्यम से इलेक्ट्रॉन उत्सर्जन को प्राप्त करते हैं, और प्रकाश तीव्रता का पता लगाने के रूप में इस तरह के उद्देश्यों के लिए उपयोग किया जाता है , उदहारण के लिए गैर-थर्मिओनिक प्रकार जैसे कि वैक्यूम फोटोट्यूब। दोनों प्रकार में, ट्यूब में विद्युत क्षेत्र द्वारा इलेक्ट्रॉनों को कैथोड से एनोड तक त्वरित किया जाता है।

ऑडियो पावर एम्पलीफायर ट्यूब का उपयोग करके, ऑपरेशन में।लाल-नारंगी चमक गर्म फिलामेंट्स से है।
एक आदिम ट्रायोड वैक्यूम ट्यूब और विशिष्ट डीसी ऑपरेटिंग क्षमता के ध्रुवीयताओं का प्रतिनिधित्व करने वाला चित्रण।नहीं दिखाया गया है कि बाधाएं (प्रतिरोध या इंडक्टर्स) हैं जो सी और बी वोल्टेज स्रोतों के साथ श्रृंखला में शामिल किए जाएंगे।

जॉन एम्ब्रोस फ्लेमिंग द्वारा 1904 में आविष्कार की गई सबसे सरल वैक्यूम ट्यूब, डायोड (यानी फ्लेमिंग वाल्व) में केवल एक गर्म इलेक्ट्रॉन-उत्सर्जक कैथोड और एक एनोड होता है।इलेक्ट्रॉन को केवल डिवाइस के माध्यम से एक दिशा में प्रवाहित कर सकते हैं - कैथोड से एनोड तक। ट्यूब के भीतर एक या एक से अधिक नियंत्रण ग्रिड जोड़ने से कैथोड और एनोड के बीच धारा को ग्रिड पर वोल्टेज द्वारा नियंत्रित किया जा सकता है।[5]

ये उपकरण बीसवीं शताब्दी के पूर्वार्द्ध के लिए इलेक्ट्रॉनिक सर्किट का एक प्रमुख घटक बन गए। वे रेडियो, टेलीविजन, रडार, ध्वनि रिकॉर्डिंग और प्रजनन, लंबी दूरी के टेलीफोन नेटवर्क और एनालॉग और शुरुआती डिजिटल कंप्यूटरों के विकास के लिए महत्वपूर्ण थे। यद्यपि कुछ अनुप्रयोगों ने पहले प्रौद्योगिकियों का उपयोग किया था जैसे कि कंप्यूटिंग के लिए रेडियो या यांत्रिक कंप्यूटर के लिए स्पार्क गैप ट्रांसमीटर, यह थर्मोनिक वैक्यूम ट्यूब का आविष्कार था जिसने इन तकनीकों को व्यापक और व्यावहारिक बना दिया, और इलेक्ट्रॉनिक्स के अनुशासन का निर्माण किया।[6]

1940 के दशक में, अर्धचालक उपकरणों के आविष्कार ने ठोस-अवस्था उपकरणों का उत्पादन करना संभव बना दिया, जो कि थर्मोनिक ट्यूबों की तुलना में छोटे, अधिक कुशल, विश्वसनीय, टिकाऊ, सुरक्षित और अधिक किफायती थे ।1960 के दशक के मध्य में, थर्मोनिक ट्यूबों को ट्रांजिस्टर द्वारा प्रतिस्थापित किया जा रहा था।हालांकि, कैथोड-रे ट्यूब {CRT(सीआरटी)} 21 वीं सदी की शुरुआत तक टेलीविजन मॉनिटर और ऑसिलोस्कोप के लिए आधार बना रहा।

थर्मोनिक ट्यूबों का उपयोग अभी भी कुछ अनुप्रयोगों में किया जाता है, जैसे कि माइक्रोवेव ओवन में उपयोग किए जाने वाले मैग्नेट्रॉन तथा कुछ उच्च आवृत्ति वाले एम्पलीफायरों, इलेक्ट्रिक संगीत वाद्ययंत्र के लिए एम्पलीफायरों जैसे कि गिटार, साथ ही साथ उच्च अंत ऑडियो एम्पलीफायरों, जो कई ऑडियो उत्साही अपने वार्मर-ट्यूब के लिए ध्वनि पसंद करते हैं।

सभी इलेक्ट्रॉनिक सर्किट वाल्व/इलेक्ट्रॉन ट्यूब वैक्यूम ट्यूब नहीं होते हैं। गैस से भरे ट्यूब समान उपकरण होते हैं, लेकिन आमतौर पर कम दबाव पर एक गैस होती है, जो आमतौर पर बिना हीटर के गैसों में विद्युत निर्वहन से संबंधित घटनाओं का फायदा उठाती है।

वर्गीकरण

वैक्यूम ट्यूब के साथ रेडियो स्टेशन सिग्नल जनरेटर

थर्मिओनिक वैक्यूम ट्यूबों का एक वर्गीकरण सक्रिय इलेक्ट्रोड की संख्या से होता है। दो सक्रिय तत्वों वाला एक उपकरण एक डायोड है, जिसे आमतौर पर सुधार के लिए उपयोग किया जाता है। तीन तत्वों वाले उपकरण प्रवर्धन और स्विचिंग के लिए उपयोग किए जाने वाले ट्रायोड हैं। अतिरिक्त इलेक्ट्रोड टेट्रोड, पेंटोडस, और इसके आगे का निर्माण करते हैं, जिनमें अतिरिक्त नियंत्रणीय इलेक्ट्रोड द्वारा संभव किए गए कई अतिरिक्त कार्य संभव होते हैं।

अन्य वर्गीकरण हैं ,

  • आवृत्ति रेंज (ऑडियो, रेडियो, वीएचएफ, यूएचएफ, माइक्रोवेव) द्वारा
  • पावर रेटिंग (छोटे-सिग्नल, ऑडियो पावर, हाई-पावर रेडियो ट्रांसमिटिंग) द्वारा
  • कैथोड/फिलामेंट प्रकार (अप्रत्यक्ष रूप से गर्म, सीधे गर्म) और एंटीक रेडियो#वार्म-अप समय द्वारा। वार्म-अप समय (उज्ज्वल-उत्सर्जक या सुस्त शामिल)
  • विशेषता घटता डिजाइन द्वारा (जैसे, तेज- बनाम रिमोट-कट-ऑफ (इलेक्ट्रॉनिक्स) #valves | कुछ पेंटोड में कटऑफ)
  • आवेदन द्वारा (ट्यूब प्राप्त करना, ट्यूबों को प्रसारित करना, प्रवर्धित या स्विचिंग, सुधार, मिश्रण करना)
  • विशेष पैरामीटर (लंबा जीवन, बहुत कम माइक्रोफोनिक संवेदनशीलता और कम-शोर ऑडियो प्रवर्धन, बीहड़ या सैन्य संस्करण)
  • विशेष कार्य (प्रकाश या विकिरण डिटेक्टर, वीडियो इमेजिंग ट्यूब)
  • जानकारी प्रदर्शित करने के लिए उपयोग की जाने वाली ट्यूब (मैजिक आई ट्यूब, वैक्यूम फ्लोरोसेंट डिस्प्ले, सीआरटी)

ट्यूबों के अलग -अलग कार्य होते हैं, जैसे कि कैथोड रे ट्यूब जो इलेक्ट्रॉन माइक्रोस्कोपी और इलेक्ट्रॉन बीम लिथोग्राफी जैसे अधिक विशिष्ट कार्यों के अलावा प्रदर्शन उद्देश्यों (जैसे टेलीविजन चित्र ट्यूब) के लिए इलेक्ट्रॉनों की एक बीम बनाते हैं। एक्स-रे ट्यूब भी वैक्यूम ट्यूब हैं। फोटोट्यूब और फोटोमल्टीप्लायर एक निर्वात के माध्यम से इलेक्ट्रॉन प्रवाह पर भरोसा करते हैं, हालांकि उन मामलों में कैथोड से इलेक्ट्रॉन उत्सर्जन थर्मोनिक उत्सर्जन के बजाय फोटॉन से ऊर्जा पर निर्भर करता है। चूंकि इस प्रकार के वैक्यूम ट्यूबों में इलेक्ट्रॉनिक प्रवर्धन और सुधार के अलावा अन्य कार्य होते हैं, इसलिए उन्हें कहीं और वर्णित किया जाता हैं।

विवरण

Diode: electrons from the hot cathode flow towards the positive anode, but not vice versa
Triode: voltage applied to the grid controls plate (anode) current.

एक वैक्यूम ट्यूब में एक एयरटाइट लिफाफे के अंदर एक वैक्यूम में दो या दो से अधिक इलेक्ट्रोड होते हैं। अधिकांश ट्यूबों में कांच के लिफाफे होते हैं, जो कोवर सील करने योग्य बोरोसिलिकेट ग्लास के आधार पर कांच-से-धातु सील के साथ होते हैं, हालांकि सिरेमिक और धातु के लिफाफे (इन्सुलेटिंग बेस के ऊपर) का उपयोग किया गया है। इलेक्ट्रोड लीड से जुड़े होते हैं जो एक एयरटाइट सील के माध्यम से लिफाफे से गुजरते हैं। फिलामेंट या हीटर जलने या अन्य विफलता मोड के कारण, अधिकांश वैक्यूम ट्यूबों में एक सीमित जीवनकाल होता है, इसलिए उन्हें बदली इकाइयों के रूप में बनाया जाता है ,इलेक्ट्रोड ट्यूब के आधार पर पिन से जुड़ता करता है जो एक ट्यूब सॉकेट में प्लग करता है। ट्यूब इलेक्ट्रॉनिक उपकरणों में विफलता का एक लगातार कारण थे, और उपभोक्ताओं से अपेक्षा की जाती थी कि वे स्वयं ट्यूबों को बदलने में सक्षम हों। बेस टर्मिनलों के अलावा, कुछ ट्यूबों में एक शीर्ष टोपी पर एक इलेक्ट्रोड समाप्त होता था। ऐसा करने का मुख्य कारण ट्यूब बेस के माध्यम से रिसाव प्रतिरोध से बचने के लिए था, विशेष रूप से उच्च प्रतिबाधा ग्रिड इनपुट के लिए।[7]: 580 [8] बेस आमतौर पर फेनोलिक इन्सुलेशन के साथ बनाए जाते थे जो आर्द्र परिस्थितियों में एक इन्सुलेटर के रूप में खराब प्रदर्शन करते हैं। शीर्ष कैप का उपयोग करने के अन्य कारणों में ग्रिड-टू-एनोड कैपेसिटेंस को कम करके स्थिरता में सुधार करना शामिल है,[9] उच्च-आवृत्ति प्रदर्शन में सुधार, एक बहुत ही उच्च प्लेट वोल्टेज को कम वोल्टेज से दूर रखना, और आधार द्वारा अनुमत एक से अधिक इलेक्ट्रोड को समायोजित करना। यहां तक ​​कि एक सामयिक डिजाइन भी था जिसमें दो शीर्ष कैप कनेक्शन थे।

सबसे पहले वैक्यूम ट्यूब गरमागरम प्रकाश बल्बों से विकसित हुए, जिसमें एक खाली ग्लास लिफाफे में सील किया गया फिलामेंट होता है। एक खाली कांच के लिफाफे में सील किया गया। गर्म होने पर, फिलामेंट इलेक्ट्रॉनों को निर्वात में छोड़ता है, यह एक प्रक्रिया जिसे थर्मोनिक उत्सर्जन कहा जाता है, जिसे मूल रूप से एडिसन प्रभाव के रूप में जाना जाता है। जिसे मूल रूप से एडिसन प्रभाव के रूप में जाना जाता है। एक दूसरा इलेक्ट्रोड, एनोड या प्लेट, उन इलेक्ट्रॉनों को आकर्षित करेगा यदि यह अधिक सकारात्मक वोल्टेज पर है। परिणाम फिलामेंट से प्लेट तक इलेक्ट्रॉनों का शुद्ध प्रवाह है। हालांकि, इलेक्ट्रॉन विपरीत दिशा में प्रवाहित नहीं हो सकते क्योंकि प्लेट गर्म नहीं होती है और इलेक्ट्रॉनों का उत्सर्जन नहीं करती है। फिलामेंट (कैथोड) में एक दोहरी कार्य होता है, यह गर्म होने पर इलेक्ट्रॉनों का उत्सर्जन करता है और, प्लेट के साथ मिलकर, यह उनके बीच संभावित अंतर के कारण एक विद्युत क्षेत्र बनाता है। केवल दो इलेक्ट्रोड के साथ इस तरह की ट्यूब को एक डायोड कहा जाता है, और इसका उपयोग सुधार के लिए किया जाता है। चूँकि करंट केवल एक ही दिशा में गुजर सकता है, ऐसा डायोड (या रेक्टिफायर) प्रत्यावर्ती धारा एसी(AC) को स्पंदित DC (डीसी) में बदल देगा। इसलिए डायोड का उपयोग डीसी (DC) बिजली की आपूर्ति में किया जा सकता है, आयाम संशोधित (एएम) रेडियो संकेतों के एक डिमोडुलेटर के रूप में और इसी तरह के कार्यों के लिए।

शुरुआती ट्यूबों ने कैथोड के रूप में फिलामेंट का उपयोग किया तथा इसे सीधे गर्म ट्यूब कहा जाता है। अधिकांश आधुनिक ट्यूबों को एक धातु ट्यूब के अंदर "हीटर" तत्व द्वारा "अप्रत्यक्ष रूप से गर्म" किया जाता है जो कि कैथोड है। हीटर को आसपास के कैथोड से विद्युत रूप से पृथक किया जाता है और केवल इलेक्ट्रॉनों के ऊष्मीय उत्सर्जन के लिए कैथोड को पर्याप्त रूप से गर्म करने का कार्य करता है। विद्युत अलगाव विभिन्न ट्यूबों में कैथोड को विभिन्न वोल्टेज पर संचालित करने की अनुमति देते हुए सभी ट्यूबों के हीटरों को एक सामान्य सर्किट (जो बिना कूबड़ के एसी हो सकता है) से आपूर्ति करने की अनुमति देता है। एच जे राउंड( H. J. Round) ने 1913 के आसपास अप्रत्यक्ष रूप से गर्म ट्यूब का आविष्कार किया।[10]

माइक्रोवाट स्तर पर संकेतों को प्रवर्धित करते हुए भी, फिलामेंट्स को निरंतर और अक्सर काफी शक्ति की आवश्यकता होती है। जब कैथोड से इलेक्ट्रॉन एनोड (प्लेट) में पटकते हैं और इसे गर्म करते हैं तो शक्ति भी समाप्त हो जाती है तथा रैखिकता और कम विरूपण सुनिश्चित करने के लिए आवश्यक मौन धारा के कारण यह एक निष्क्रिय एम्पलीफायर में भी हो सकता है। एक पावर एम्पलीफायर में, यह ताप काफी हो सकता है और अगर इसकी सुरक्षित सीमा से परे संचालित हो तो ट्यूब को नष्ट कर सकता है। चूंकि ट्यूब में एक वैक्यूम होता है, इसलिए अधिकांश छोटे और मध्यम पावर ट्यूबों में एनोड को कांच के लिफाफे के माध्यम से विकिरण द्वारा ठंडा किया जाता है। कुछ विशेष उच्च शक्ति अनुप्रयोगों में, एनोड एक बाहरी गर्मी सिंक में गर्मी का संचालन करने के लिए वैक्यूम लिफाफे का हिस्सा बनाता है, जिसे आमतौर पर एक ब्लोअर, या पानी-जैकेट द्वारा ठंडा किया जाता है।

क्लाइस्ट्रॉन(Klystrons और मैग्नेट्रोन(magnetrons) अक्सर अपने एनोड्स (क्लिस्ट्रॉन में संग्राहक कहलाते हैं) को उच्च वोल्टेज इन्सुलेशन के बिना, विशेष रूप से पानी के साथ ठंडा करने की सुविधा के लिए जमीनी क्षमता पर संचालित करते हैं। ये ट्यूब इसके बजाय फिलामेंट और कैथोड पर उच्च नकारात्मक वोल्टेज के साथ काम करते हैं।

डायोड को छोड़कर, अतिरिक्त इलेक्ट्रोड कैथोड और प्लेट (एनोड) के बीच स्थित होते हैं। इन इलेक्ट्रोड को ग्रिड के रूप में संदर्भित किया जाता है क्योंकि वे ठोस इलेक्ट्रोड नहीं होते हैं, लेकिन विरल तत्व होते हैं जिनके माध्यम से इलेक्ट्रॉन प्लेट में अपने रास्ते पर जा सकते हैं। वैक्यूम ट्यूब को तब ग्रिड की संख्या के आधार पर ट्रायोड, टेट्रोड, पेंटोड, आदि के रूप में जाना जाता है। एक ट्रायोड में तीन इलेक्ट्रोड होते हैं , एनोड, कैथोड, और इसी तरह का एक ग्रिड, । पहला ग्रिड, जिसे नियंत्रण ग्रिड के रूप में जाना जाता है, (और कभी-कभी अन्य ग्रिड) डायोड को वोल्टेज-नियंत्रित डिवाइस में बदल देता है ,नियंत्रण ग्रिड पर लागू वोल्टेज कैथोड और प्लेट के बीच धारा को प्रभावित करता है। जब कैथोड के संबंध में नकारात्मक आयोजित किया जाता है, तो नियंत्रण ग्रिड एक विद्युत क्षेत्र बनाता है जो कैथोड द्वारा उत्सर्जित इलेक्ट्रॉनों को पीछे हटाता है, इस प्रकार कैथोड और एनोड के बीच धारा को कम करता या रोकता है। जब तक नियंत्रण ग्रिड कैथोड के सापेक्ष नकारात्मक है, अनिवार्य रूप से इसमें कोई धारा नहीं बहती है, फिर भी नियंत्रण ग्रिड पर कई वोल्ट का परिवर्तन प्लेट करंट में एक बड़ा अंतर लाने के लिए पर्याप्त है, संभवतः आउटपुट को सैकड़ों वोल्ट से बदल देता है (सर्किट के आधार पर)। सॉलिड-स्टेट डिवाइस जो सबसे अधिक पेंटोड ट्यूब की तरह संचालित होता है, वह जंक्शन फील्ड-इफेक्ट ट्रांजिस्टर जेऍफ़ईटी(JFET) है, हालांकि वैक्यूम ट्यूब आमतौर पर अधिकांश अनुप्रयोगों में अधिकांश अर्धचालकों के विपरीत, सौ वोल्ट से अधिक पर काम करते हैं।

इतिहास और विकास

एडिसन के प्रयोगात्मक बल्बों में से एक

उन्नीसवीं शताब्दी में गीस्लर और क्रुक्स ट्यूब जैसे खाली ट्यूबों के साथ अनुसंधान में वृद्धि देखी गई। इस तरह की ट्यूबों के साथ प्रयोग करने वाले कई वैज्ञानिकों और आविष्कारकों में थॉमस एडिसन, यूजेन गोल्डस्टीन, निकोला टेस्ला और जोहान विल्हेम हिटॉर्फ शामिल हैं।प्रारंभिक प्रकाश बल्बों के अपवाद के साथ, इस तरह की ट्यूबों का उपयोग केवल वैज्ञानिक अनुसंधान में या नवीनतम के रूप में किया गया था।हालांकि, इन वैज्ञानिकों और आविष्कारकों द्वारा रखी गई नींव, बाद की वैक्यूम ट्यूब प्रौद्योगिकी के विकास के लिए महत्वपूर्ण थी।

यद्यपि ऊष्मीय उत्सर्जन मूल रूप से 1873 में फ्रेडरिक गुथरी द्वारा सूचित किया गया था,[11] यह थॉमस एडिसन की 1883 में घटना की स्पष्ट रूप से स्वतंत्र खोज थी जो प्रसिद्ध हो गई। हालांकि एडिसन को फिलामेंट और एनोड के बीच धारा प्रवाह की यूनिडायरेक्शनल प्रॉपर्टी के बारे में पता था, लेकिन उनकी रुचि (और पेटेंट)[12] फिलामेंट (और इस प्रकार फिलामेंट तापमान) के माध्यम से धारा के लिए एनोड करंट की संवेदनशीलता पर केंद्रित थी। यह वर्षों बाद था कि जॉन एम्ब्रोस फ्लेमिंग ने एडिसन प्रभाव की सुधारात्मक संपत्ति को चुंबकीय डिटेक्टर पर सुधार के रूप में रेडियो संकेतों का पता लगाने के लिए लागू किया।[13]

वैक्यूम ट्यूब द्वारा प्रवर्धन केवल ली डे फॉरेस्ट के तीन-टर्मिनल ऑडियन ट्यूब के 1907 के आविष्कार के साथ व्यावहारिक हो गया, जो कि ट्रायोड बनने के लिए एक कच्चा रूप था।[14] अनिवार्य रूप से पहला इलेक्ट्रॉनिक एम्पलीफायर होने के नाते,[15] इस तरह की ट्यूब लंबी दूरी के टेलीफोनी (जैसे कि अमेरिका में पहली तट-से-तट टेलीफोन लाइन) और सार्वजनिक पते प्रणालियों में महत्वपूर्ण भूमिका निभाई थी, और रेडियो ट्रांसमीटर और रिसीवर में उपयोग के लिए एक बेहतर और बहुमुखी तकनीक पेश की। 20वीं सदी की इलेक्ट्रॉनिक क्रांति की शुरुआत यकीनन ट्रायोड वैक्यूम ट्यूब के आविष्कार से हुई।

डायोड्स

फ्लेमिंग का पहला डायोड

19 वीं शताब्दी के अंत में, रेडियो या वायरलेस तकनीक विकास के शुरुआती चरण में थी और मार्कोनी कंपनी रेडियो संचार प्रणालियों के विकास और निर्माण में लगी हुई थी। गुग्लिल्मो मार्कोनी ने 1899 में अंग्रेजी भौतिक विज्ञानी जॉन एम्ब्रोस फ्लेमिंग को वैज्ञानिक सलाहकार के रूप में नियुक्त किया था। फ्लेमिंग एडिसन टेलीफोन (1879) के वैज्ञानिक सलाहकार के रूप में कार्यरत थे ,एडिसन इलेक्ट्रिक लाइट (1882) में वैज्ञानिक सलाहकार के रूप में, और एडिसन-स्वान के तकनीकी सलाहकार भी थे।[16] मार्कोनी की जरूरतों में से एक डिटेक्टर के सुधार के लिए थी। मार्कोनी ने एक चुंबकीय डिटेक्टर विकसित किया था, जो कि सहकर्मी की तुलना में रेडियो आवृत्ति हस्तक्षेप के प्राकृतिक स्रोतों के लिए कम प्रतिक्रियाशील था, लेकिन चुंबकीय डिटेक्टर ने केवल एक टेलीफोन रिसीवर को एक ऑडियो आवृत्ति संकेत प्रदान किया। एक विश्वसनीय डिटेक्टर की आवश्यकता थी जो मुद्रण यंत्र को चला सके। एडिसन प्रभाव बल्बों पर किए गए प्रयोगों के परिणामस्वरूप,[13]फ्लेमिंग ने एक वैक्यूम ट्यूब विकसित की जिसे उन्होंने दोलन वाल्व कहा क्योंकि यह केवल एक दिशा में प्रवाहित होती है।[17] कैथोड एक कार्बन लैंप फिलामेंट था, जिसे इसके माध्यम से प्रवाहित करके गर्म किया जाता था, जिससे इलेक्ट्रॉनों का ऊष्मीय उत्सर्जन होता था। कैथोड से उत्सर्जित होने वाले इलेक्ट्रॉन प्लेट (एनोड) की ओर आकर्षित होते थे, जब प्लेट कैथोड के संबंध में एक सकारात्मक वोल्टेज पर थी। इलेक्ट्रॉन विपरीत दिशा में नहीं जा सकते थे क्योंकि प्लेट गर्म नहीं थी और इलेक्ट्रॉनों के ऊष्मीय उत्सर्जन में सक्षम नहीं थी। फ्लेमिंग ने इन ट्यूबों के लिए एक पेटेंट दायर किया, जिसे नवंबर 1904 में यूके में मार्कोनी कंपनी को सौंपा गया था और यह पेटेंट सितंबर 1905 में जारी किया गया था।[18] बाद में फ्लेमिंग वाल्व के रूप में जाना जाता है, रेडियो रिसीवर सर्किट के डिटेक्टर घटक के रूप में रेडियो आवृत्ति धारा को ठीक करने के उद्देश्य से दोलन वाल्व विकसित किया गया था।[13][19]

क्रिस्टल डिटेक्टरों की विद्युत संवेदनशीलता पर कोई फायदा नहीं होने के दौरान,[20] फ्लेमिंग वाल्व ने क्रिस्टल डिटेक्टर के समायोजन की कठिनाई और कंपन या बंपिंग द्वारा समायोजन से विस्थापित होने के लिए क्रिस्टल डिटेक्टर की संवेदनशीलता पर विशेष रूप से शिपबोर्ड उपयोग में लाभ की पेशकश की।[21]

बिजली की आपूर्ति सर्किट में रेक्टिफायर एप्लिकेशन के लिए डिज़ाइन किए गए पहले वैक्यूम ट्यूब डायोड को अप्रैल 1915 में जनरल इलेक्ट्रिक के शाऊल दुशमैन ( Saul Dushman) द्वारा पेश किया गया था।[22][23]


ट्रायोड्स

पहला ट्रायोड, द डे फॉरेस्ट ऑडियन, का आविष्कार 1906 में किया गया
1918 में RE16 से 1918 में 1960 के दशक के ईआरए लघु ट्यूब तक, 40 साल से अधिक ट्यूब निर्माण के रूप में ट्रायोड्स विकसित हुए
ट्रायोड प्रतीक।ऊपर से नीचे तक: प्लेट (एनोड), कंट्रोल ग्रिड, कैथोड, हीटर (फिलामेंट)

19वीं सदी में, टेलीग्राफ और टेलीफोन इंजीनियरों ने उस दूरी को बढ़ाने की आवश्यकता को पहचाना था जिससे संकेतों को प्रेषित किया जा सकता था, प्रवर्धन नहीं। 1906 में, रॉबर्ट वॉन लिबेन ने कैथोड-रे ट्यूब के लिए एक पेटेंट के लिए दायर किया, जो एक बाहरी चुंबकीय विक्षेपण कॉइल का उपयोग करता था और टेलीफोनी उपकरण में एक एम्पलीफायर के रूप में उपयोग के लिए अभिप्रेत था।[24] विक्षेपण कुंडल द्वारा उपयोग की जाने वाली शक्ति के कारण यह वॉन लिबेन चुंबकीय विक्षेपण ट्यूब एक सफल प्रवर्धक नहीं थी।[25] वॉन लिबेन बाद में वैक्यूम ट्यूबों को ट्रायोड करने के लिए शोधन करेंगे।

1907 में अपने मूल (डायोड) ऑडियोन को बेहतर बनाने के लिए प्रयोग करते हुए ट्रायोड ट्यूब का आविष्कार करने का श्रेय ली डे फॉरेस्ट को दिया जाता है।[26] फिलामेंट (कैथोड) और प्लेट (एनोड) के बीच एक अतिरिक्त इलेक्ट्रोड रखकर, उन्होंने संकेतों को बढ़ाने के लिए परिणामी डिवाइस की क्षमता की खोज की। चूंकि नियंत्रण ग्रिड (या बस "ग्रिड") पर लागू वोल्टेज कैथोड के वोल्टेज से कुछ अधिक नकारात्मक वोल्टेज तक कम हो गया था इसलिए फिलामेंट से प्लेट तक धारा की मात्रा कम हो जाएगी। कैथोड के आसपास ग्रिड द्वारा निर्मित नकारात्मक इलेक्ट्रोस्टैटिक क्षेत्र उत्सर्जित इलेक्ट्रॉनों के मार्ग को बाधित करेगा और प्लेट में धारा को कम करेगा। कैथोड की तुलना में कम ग्रिड के वोल्टेज के साथ, कैथोड से ग्रिड तक कोई प्रत्यक्ष धारा नहीं जा सकती थी।

इस प्रकार ग्रिड पर लागू वोल्टेज में बदलाव, जिसके लिए ग्रिड में बहुत कम बिजली इनपुट की आवश्यकता होती है, प्लेट धारा में बदलाव कर सकता है और प्लेट में बहुत बड़ा वोल्टेज परिवर्तन हो सकता है जोकि परिणाम वोल्टेज और बिजली प्रवर्धन था। 1908 में, डे फॉरेस्ट को रेडियो संचार में इलेक्ट्रॉनिक एम्पलीफायर के रूप में उपयोग के लिए अपने मूल ऑडियन के ऐसे तीन-इलेक्ट्रोड संस्करण के लिए एक पेटेंट (U.S. Patent 879,532) प्रदान किया गया था। तब से यह अंततः ट्रायोड के रूप में जाना जाने लगा।

जनरल इलेक्ट्रिक कंपनी प्लोट्रॉन, विज्ञान इतिहास संस्थान

डी फॉरेस्ट का मूल उपकरण पारंपरिक वैक्यूम तकनीक के साथ बनाया गया था।वैक्यूम एक कठिन वैक्यूम नहीं था, बल्कि बहुत कम मात्रा में अवशिष्ट गैस छोड़ता था।डिवाइस के संचालन के पीछे भौतिकी भी तय नहीं की गई थी। प्लेट वोल्टेज उच्च (लगभग 60 वोल्ट से ऊपर) होने पर अवशिष्ट गैस एक नीली चमक (दृश्यमान आयनीकरण) का कारण बनेगी। 1912 में, डे फॉरेस्ट और जॉन स्टोन स्टोन दोनों मिलकर ऑडियन को एटी एंड टी के इंजीनियरिंग विभाग में प्रदर्शन के लिए लाए। एटी एंड टी के डॉ. हेरोल्ड डी. अर्नोल्ड ने माना कि नीली चमक आयनित गैस के कारण होती है। अर्नोल्ड ने सिफारिश की कि एटी एंड टी पेटेंट खरीदें, और एटी एंड टी ने उनकी सिफारिश का पालन किया।अर्नोल्ड ने उच्च-वैक्यूम ट्यूब विकसित किए, जिन्हें 1913 की गर्मियों में एटी एंड टी की लंबी दूरी के नेटवर्क पर परीक्षण किया गया था। [27] उच्च-वैक्यूम ट्यूब नीली चमक के बिना उच्च प्लेट वोल्टेज पर काम कर सकते हैं।

फ़िनिश आविष्कारक एरिक टाइगरस्टेड ने 1914 में बर्लिन, जर्मनी में अपनी ध्वनि-पर-फ़िल्म प्रक्रिया पर काम करते हुए मूल ट्रायोड डिज़ाइन में काफी सुधार किया। टाइगरस्टेड का नवाचार केंद्र में कैथोड के साथ इलेक्ट्रोड संकेंद्रित सिलेंडर बनाना था, इस प्रकार एनोड पर उत्सर्जित इलेक्ट्रॉनों के संग्रह में काफी वृद्धि हुई।[28]

जनरल इलेक्ट्रिक रिसर्च लेबोरेटरी (स्केनेक्टैडी, न्यूयॉर्क) में इरविंग लैंगमुइर ने वोल्फगैंग गेडे के हाई-वैक्यूम डिफ्यूजन पंप में सुधार किया था और इसका इस्तेमाल वैक्यूम में थर्मोनिक उत्सर्जन और चालन के सवाल को निपटाने के लिए किया था। नतीजतन, जनरल इलेक्ट्रिक ने 1915 में हार्ड वैक्यूम ट्रायोड (जिन्हें प्लियोट्रॉन ब्रांडेड किया गया था) का उत्पादन शुरू किया।[29] लैंगमुइर ने हार्ड वैक्यूम ट्रायोड का पेटेंट कराया, लेकिन डी फॉरेस्ट और एटी एंड टी ने सफलतापूर्वक प्राथमिकता पर जोर दिया और पेटेंट को अमान्य कर दिया।

प्लियोट्रॉन का फ्रांसीसी प्रकार 'टीएम' (TM) और बाद में अंग्रेजी प्रकार 'आर'(R) द्वारा बारीकी से पालन किया गया था जो कि 1916 तक संबद्ध सेना द्वारा व्यापक रूप से उपयोग किया गया था। ऐतिहासिक रूप से, उत्पादन वैक्यूम ट्यूबों में वैक्यूम स्तर आमतौर पर 10 µPa से लेकर 10 nPa तक (8×10-8 Torr नीचे से 8×10-11 Torr तक) होता था। [30]

ट्रायोड और इसके डेरिवेटिव (टेट्रोड्स और पेंटोड्स) ट्रांसकॉन्डक्टेंस डिवाइस हैं, जिसमें ग्रिड पर लागू नियंत्रित सिग्नल एक वोल्टेज है, और एनोड पर दिखाई देने वाला परिणामी प्रवर्धित सिग्नल एक धारा है।[31] इसकी तुलना बाइपोलर जंक्शन ट्रांजिस्टर के व्यवहार से करें, जिसमें कंट्रोलिंग सिग्नल धारा होती है और आउटपुट भी धारा होती है।

वैक्यूम ट्यूबों के लिए, ट्रांसकंडक्टेंस या आपसी चालन (जीएम) को प्लेट (एनोड) / कैथोड करंट में परिवर्तन के रूप में परिभाषित किया जाता है, जो कि कैथोड वोल्टेज के लिए एक स्थिर प्लेट (एनोड) के साथ कैथोड वोल्टेज में ग्रिड में संबंधित परिवर्तन से विभाजित होता है। एक छोटे सिग्नल वाली वैक्यूम ट्यूब के लिए जीएम्(gm) के विशिष्ट मान 1 से 10 मिलीसीमेन्स होते हैं। यह वैक्यूम ट्यूब के तीन 'स्थिरांक' में से एक है, अन्य दो इसका लाभ μ और प्लेट प्रतिरोध Rp या Ra है । वैन डेर बिजल (BijL) समीकरण उनके संबंध को इस प्रकार परिभाषित करता है

ट्रायोड की गैर-रैखिक परिचालन विशेषता ने शुरुआती ट्यूब ऑडियो एम्पलीफायरों को कम मात्रा में हार्मोनिक विरूपण का प्रदर्शन करने के लिए प्रेरित किया। प्लॉटिंग प्लेट करंट एप्लाइड ग्रिड वोल्टेज के एक फ़ंक्शन के रूप में, यह देखा गया कि ग्रिड वोल्टेज की एक श्रृंखला थी जिसके लिए ट्रांसफर विशेषताएं लगभग रैखिक थीं।

इस सीमा का उपयोग करने के लिए, रैखिक क्षेत्र में डीसी (DC) ऑपरेटिंग बिंदु को स्थिति में करने के लिए एक नकारात्मक पूर्वाग्रह वोल्टेज को ग्रिड पर लागू किया जाना था। इसे निष्क्रिय स्थिति कहा जाता था, और इस बिंदु पर धारा प्लेट को "निष्क्रिय धारा" कहा जाता था। नियंत्रण वोल्टेज को पूर्वाग्रह वोल्टेज पर आरोपित किया गया था, जिसके परिणामस्वरूप उस बिंदु के आसपास इनपुट वोल्टेज की सकारात्मक और नकारात्मक भिन्नता के जवाब में प्लेट धारा की एक रैखिक भिन्नता थी।

इस अवधारणा को ग्रिड पूर्वाग्रह कहा जाता है। कई शुरुआती रेडियो सेटों में "सी(C) बैटरी" नामक सी(C) बैटरी थी (वर्तमान सी सेल से असंबंधित, जिसके लिए पत्र इसके आकार और आकृति को दर्शाता है)। सी बैटरी का सकारात्मक टर्मिनल ट्यूबों के कैथोड (या अधिकांश सर्किट में "ग्राउंड") से जुड़ा था और जिसका नकारात्मक टर्मिनल ट्यूबों के ग्रिड को इस पूर्वाग्रह वोल्टेज की आपूर्ति करता था।

बाद में सर्किट, ट्यूबों के बाद अपने कैथोड से पृथक हीटरों के साथ बनाया गया था,और कैथोड पूर्वाग्रह का उपयोग किया गया था ताकि एक अलग नकारात्मक बिजली की आपूर्ति की आवश्यकता से बचा जा सके। कैथोड बायसिंग के लिए, कैथोड और ग्राउंड के बीच एक अपेक्षाकृत कम मूल्य वाला रेसिस्टर जुड़ा होता है। यह ग्रिड के संबंध में कैथोड को सकारात्मक बनाता है, जो डीसी(DC) के लिए जमीनी क्षमता पर निर्भर करता है।

हालांकि सी(C) बैटरी को कुछ उपकरणों में शामिल किया जाता रहा, तब भी जब ए ("A") और बी("B") बैटरीयों को एसी (AC) मेन से बिजली द्वारा बदल दिया गया था। यह संभव था क्योंकि इन बैटरी पर अनिवार्य रूप से कोई धारा ड्रॉ नहीं थी, वे इस प्रकार कई वर्षों तक (अक्सर सभी ट्यूबों की तुलना में) प्रतिस्थापन की आवश्यकता के बिना रह सकते थे।

जब पहली बार रेडियो ट्रांसमीटर और रिसीवर में ट्रायड का उपयोग किया गया था, तो यह पाया गया कि ट्यून किए गए प्रवर्धन चरणों में तब तक दोलन करने की प्रवृत्ति थी जब तक कि उनका लाभ बहुत सीमित न हो। यह प्लेट (एम्पलीफायर के आउटपुट) और कंट्रोल ग्रिड (एम्पलीफायर के इनपुट) के बीच परजीवी समाई के कारण था, जिसे मिलर कैपेसिटेंस के रूप में जाना जाता है।

आखिरकार न्यूट्रलाइजेशन की तकनीक विकसित की गई, जिससे प्लेट (एनोड) से जुड़े आरएफ(RF) ट्रांसफार्मर में विपरीत चरण में एक अतिरिक्त घुमाव शामिल होगा। यह वाइंडिंग एक छोटे संधारित्र के माध्यम से ग्रिड से वापस से जोड़ा जाएगा , और जब ठीक से समायोजित किया जाएगा तो मिलर कैपेसिटेंस को रद्द कर देगा।इस तकनीक को नियोजित किया गया था और 1920 के दशक के दौरान न्यूट्रोडाइन रेडियो की सफलता के लिए प्रेरित किया गया था। हालांकि, न्यूट्रलाइजेशन के लिए सावधानीपूर्वक समायोजन की आवश्यकता होती है और आवृत्तियों की एक विस्तृत श्रृंखला में उपयोग किए जाने पर असंतोषजनक साबित होता है।

टेट्रोड्स और पेंटोड्स

टेट्रोड प्रतीक।ऊपर से नीचे तक: प्लेट (एनोड), स्क्रीन ग्रिड, कंट्रोल ग्रिड, कैथोड, हीटर (फिलामेंट)।

ग्रिड-टू-प्लेट कैपेसिटेंस के कारण रेडियो फ्रीक्वेंसी एम्पलीफायर के रूप में ट्रायोड की स्थिरता की समस्याओं का मुकाबला करने के लिए, भौतिक विज्ञानी वाल्टर एच शोट्की( Walter H. Schottky ) ने 1919 में टेट्रोड या स्क्रीन ग्रिड ट्यूब का आविष्कार किया ।[32] उन्होंने दिखाया कि नियंत्रण ग्रिड और प्लेट के बीच एक इलेक्ट्रोस्टैटिक ढाल को जोड़ने से समस्या का समाधान हो सकता है। जोड़ा ग्रिड को स्क्रीन ग्रिड या शील्ड ग्रिड के रूप में जाना जाता है। स्क्रीन ग्रिड को प्लेट वोल्टेज की तुलना में काफी कम सकारात्मक वोल्टेज पर संचालित किया जाता है। इस डिजाइन को हल और परिष्कृत विलियम्स द्वारा किया गया था।[33] जोड़ा गया ग्रिड स्क्रीन ग्रिड या शील्ड ग्रिड के रूप में जाना जाने लगा। स्क्रीन ग्रिड प्लेट वोल्टेज की तुलना में काफी कम सकारात्मक वोल्टेज पर संचालित होता है और इसे कम प्रतिबाधा के संधारित्र के साथ जमीन पर बायपास किया जाता है ताकि आवृत्तियों को बढ़ाया जा सके। [34] मध्यम तरंग प्रसारण आवृत्तियों पर सर्किटरी को निष्क्रिय करने की आवश्यकता को समाप्त करते हुए, यह व्यवस्था प्लेट और नियंत्रण ग्रिड को काफी हद तक अलग कर देती है। स्क्रीन ग्रिड भी कैथोड के पास स्पेस चार्ज पर प्लेट वोल्टेज के प्रभाव को काफी हद तक कम कर देता है, जिससे टेट्रोड को एम्पलीफायर सर्किट में ट्रायोड की तुलना में अधिक वोल्टेज लाभ उत्पन्न करने की अनुमति मिलती है। जबकि विशिष्ट ट्रायोड के प्रवर्धन कारक आमतौर पर दस से 100 से नीचे तक होते हैं, 500 के टेट्रोड प्रवर्धन कारक आम हैं।नतीजतन, एकल ट्यूब प्रवर्धन चरण से उच्च वोल्टेज लाभ संभव हो गया, जिससे आवश्यक ट्यूबों की संख्या कम हो गई। 1927 के अंत में स्क्रीन ग्रिड ट्यूबों को बाजार में उतारा गया था।[35]

एक एम्पलीफायर के रूप में स्क्रीन ग्रिड ट्यूब (टेट्रोड) के संचालन का उपयोगी क्षेत्र स्क्रीन ग्रिड क्षमता से अधिक विशेषता घटता के सीधे भागों में एनोड क्षमता तक सीमित है।

हालांकि, एक एम्पलीफायर के रूप में स्क्रीन ग्रिड ट्यूब के संचालन का उपयोगी क्षेत्र प्लेट से माध्यमिक उत्सर्जन के कारण, स्क्रीन ग्रिड वोल्टेज से अधिक प्लेट वोल्टेज तक सीमित था। किसी भी ट्यूब में, इलेक्ट्रॉन पर्याप्त ऊर्जा के साथ प्लेट पर प्रहार करते हैं, जिससे उसकी सतह से इलेक्ट्रॉनों का उत्सर्जन होता है। एक ट्रायोड में इलेक्ट्रॉनों का यह द्वितीयक उत्सर्जन महत्वपूर्ण नहीं है क्योंकि वे प्लेट द्वारा आसानी से पुनः कब्जा कर लिए जाते हैं। लेकिन एक टेट्रोड में उन्हें स्क्रीन ग्रिड द्वारा कैप्चर किया जा सकता है क्योंकि यह एक सकारात्मक वोल्टेज पर भी होता है, जिससे उन्हें प्लेट करंट से लूट लिया जाता है और ट्यूब के प्रवर्धन को कम कर दिया जाता है।चूंकि माध्यमिक इलेक्ट्रॉन प्लेट वोल्टेज की एक निश्चित सीमा पर प्राथमिक इलेक्ट्रॉनों को पछाड़ सकते हैं, प्लेट वोल्टेज बढ़ने के साथ प्लेट करंट घट सकता है। यह डायनाट्रॉन क्षेत्र है[36] या टेट्रोड किंक और नकारात्मक प्रतिरोध का एक उदाहरण है जो स्वयं अस्थिरता का कारण बन सकता है।[37] द्वितीयक उत्सर्जन का एक और अवांछनीय परिणाम यह है कि स्क्रीन करंट बढ़ाया जाता है, जिससे कारण स्क्रीन अपनी पावर रेटिंग से अधिक हो सकती है।

प्लेट विशेषता के अन्यथा अवांछनीय नकारात्मक प्रतिरोध क्षेत्र का उपयोग डायनाट्रॉन थरथरानवाला सर्किट के साथ किया गया था ताकि एक साधारण थरथरानवाला का उत्पादन किया जा सके, जिसके लिए प्लेट को एक गुंजयमान एलसी(LC) सर्किट से दोलन करने की आवश्यकता होती है। डायनाट्रॉन थरथरानवाला नकारात्मक प्रतिरोध के समान सिद्धांत पर कई वर्षों बाद सुरंग डायोड थरथरानवाला के रूप में संचालित होता है।

स्क्रीन ग्रिड ट्यूब के डायनाट्रॉन क्षेत्र को पेंटोड बनाने के लिए स्क्रीन ग्रिड और प्लेट के बीच एक ग्रिड जोड़कर समाप्त कर दिया गया था। पेन्टोड का सप्रेसर ग्रिड आमतौर पर कैथोड से जुड़ा होता था और इसके ऋणात्मक वोल्टेज को एनोड प्रतिकर्षित माध्यमिक इलेक्ट्रॉनों के सापेक्ष जोड़ा जाता था ताकि वे स्क्रीन ग्रिड के बजाय एनोड द्वारा एकत्र किए जा सकें। पेंटोड शब्द का मतलब है कि ट्यूब में पांच इलेक्ट्रोड होते हैं। पेंटोड का आविष्कार 1926 में बर्नार्ड डी एच टेलेगेन(Bernard D. H. Tellegen) द्वारा किया गया था और आम तौर पर साधारण टेट्रोड के पक्ष में हो गया था। पेंटोड दो वर्गों में बने होते हैं ,वे जो दबाने वाले ग्रिड के साथ आंतरिक रूप से कैथोड (जैसे EL84/6BQ5) से जुड़े होते हैं और वे जो सप्रेसर ग्रिड के साथ उपयोगकर्ता के उपयोग के लिए एक अलग पिन से जुड़े होते हैं (जैसे 803, 837) । बिजली अनुप्रयोगों के लिए एक वैकल्पिक समाधान बीम टेट्रोड या बीम पावर ट्यूब है, जिसकी चर्चा नीचे की गई है ।

मल्टीफ़ंक्शन और मल्टीसेक्शन ट्यूब्स

पेंटाग्रिड कनवर्टर में कैथोड और प्लेट (एनोड) के बीच पांच ग्रिड होते हैं

सुपरहेट्रोडाइन(Superheterodyne) रिसीवर्स को एक स्थानीय थरथरानवाला और मिक्सर की आवश्यकता होती है, जो एक एकल पेंटाग्रिड कनवर्टर ट्यूब के कार्य में संयुक्त होता है। इस उद्देश्य के लिए विभिन्न विकल्पों जैसे कि हेक्सोड के साथ ट्रायोड के संयोजन का उपयोग करना और यहां तक ​​कि एक ऑक्टोड का भी उपयोग किया गया है। अतिरिक्त ग्रिड में नियंत्रण ग्रिड (कम क्षमता पर) और स्क्रीन ग्रिड (एक उच्च वोल्टेज पर) शामिल हैं। कई डिज़ाइन थरथरानवाला फ़ंक्शन के लिए प्रतिक्रिया प्रदान करने के लिए एक अतिरिक्त एनोड के रूप में इस तरह के स्क्रीन ग्रिड का उपयोग करते हैं, जिसका करंट आने वाले रेडियो फ्रीक्वेंसी सिग्नल में जोड़ता है। पेंटाग्रिड कनवर्टर इस प्रकार एएम रिसीवर में व्यापक रूप से उपयोग किया गया, जिसमें "All American Five"("ऑल अमेरिकन फाइव") का लघु ट्यूब संस्करण भी शामिल हैं। ऑक्टोड्स, जैसे कि 7A8, संयुक्त राज्य अमेरिका में शायद ही कभी उपयोग किए जाते थे, लेकिन यूरोप में बहुत अधिक आम है, विशेष रूप से बैटरी संचालित रेडियो में जहां कम बिजली की खपत एक फायदा था।

रेडियो उपकरणों की लागत और जटिलता को और कम करने के लिए, दो अलग -अलग संरचनाएं (उदाहरण के लिए ट्रायोड और पेंटोड) को एक एकल मल्टीसेक्शन ट्यूब के बल्ब में जोड़ा जा सकता है। एक प्रारंभिक उदाहरण Loewe(लोवे )3NF है। 1920 के दशक के इस उपकरण में एक ग्लास लिफ़ाफ़े में तीन ट्रायोड होते हैं, साथ में सभी निश्चित कैपेसिटर और प्रतिरोधक होते हैं जो एक पूर्ण रेडियो रिसीवर बनाने के लिए आवश्यक होते हैं। चूंकि लोवे सेट में केवल एक ट्यूब सॉकेट था, इसलिए यह प्रतियोगिता को काफी हद तक कम करने में सक्षम था, क्योंकि जर्मनी में, सॉकेट्स की संख्या से राज्य कर लगाया गया था। हालांकि, विश्वसनीयता से समझौता किया गया था, क्योकि ट्यूब के लिए उत्पादन लागत बहुत अधिक थी। एक अर्थ में, ये एकीकृत सर्किट के समान थे। संयुक्त राज्य अमेरिका में, क्लियरट्रॉन ने एमर्सन बेबी ग्रैंड रिसीवर में उपयोग के लिए संक्षिप्त रूप से "मल्टीवाइव" ट्रिपल ट्रायोड का निर्माण किया। इस एमर्सन सेट में एक एकल ट्यूब सॉकेट भी है, क्योंकि यह चार-पिन बेस का उपयोग करता है, इसलिए अतिरिक्त तत्व कनेक्शन ट्यूब बेस के शीर्ष पर एक मेजेनाइन प्लेटफॉर्म पर बनाए जाते हैं।

1940 तक मल्टीसेक्शन ट्यूब आम हो गए थे। हालांकि, पेटेंट और अन्य लाइसेंसिंग विचारों (ब्रिटिश वाल्व एसोसिएशन देखें) के कारण बाधाएं थीं। बाहरी पिन (लीड) की संख्या के कारण बाधाओं ने अक्सर कार्यों को उन बाहरी कनेक्शनों में से कुछ को साझा करने के लिए मजबूर किया जैसे कि उनके कैथोड कनेक्शन (हीटर कनेक्शन के अलावा) आदि को। आरसीए(RCA) टाइप 55 एक डबल डायोड ट्रायोड है जिसका उपयोग डिटेक्टर के रूप में किया जाता है, प्रारंभिक एसी(AC ) संचालित रेडियो में स्वचालित लाभ नियंत्रण सुधारक और ऑडियो प्रीम्प्लीफायर आदि में किया जाता है। इन सेटों में अक्सर 53 दोहरी ट्रायोड ऑडियो आउटपुट शामिल होते हैं। एक अन्य प्रारंभिक प्रकार की मल्टी-सेक्शन ट्यूब, 6SN7, एक "डुअल ट्रायोड" है, जो दो ट्रायोड ट्यूबों का कार्य करती है, जबकि आधी जगह लेती है और लागत कम होती है। 12AX7 एक लघु बाड़े में एक दोहरी "उच्च म्यू" (उच्च वोल्टेज लाभ[38][39]) ट्रायोड है, और ऑडियो सिग्नल एम्पलीफायरों, उपकरणों और गिटार एम्पलीफायरों में व्यापक रूप से उपयोग किया जाता है।

लघु ट्यूब बेस (नीचे देखें) की शुरूआत जिसमें 9 पिन हो सकते हैं, पहले से उपलब्ध अन्य मल्टी-सेक्शन ट्यूबों को पेश करने की अनुमति दी गई है , जैसे कि 6GH8/ECF82 ट्रायोड-पेंटोड, टेलीविजन रिसीवर्स में काफी लोकप्रिय है। एक लिफाफे में और भी अधिक कार्यों को शामिल करने की इच्छा के परिणामस्वरूप जनरल इलेक्ट्रिक कॉम्पेक्ट्रॉन में 12 पिन होते हैं। एक विशिष्ट उदाहरण, 6AG11, में दो ट्रायोड और दो डायोड होते हैं।

कुछ अन्य पारंपरिक ट्यूब मानक श्रेणियों में नहीं आते हैं , 6AR8, 6JH8 और 6ME8 में कई सामान्य ग्रिड होते हैं, इसके बाद बीम विक्षेपण इलेक्ट्रोड की एक जोड़ी होती है जो दो एनोडों में से किसी एक की ओर धारा को विक्षेपित करती है। उन्हें कभी-कभी 'शीट बीम' ट्यूब के रूप में जाना जाता था और रंगीन डिमॉड्यूलेशन के लिए कुछ रंगीन टीवी सेटों में उपयोग किया जाता था। समान 7360 एक संतुलित SSB (डी) न्यूनाधिक के रूप में लोकप्रिय था।

बीम पावर ट्यूब्स

रेडियो आवृत्ति उपयोग के लिए डिज़ाइन किया गया बीम पावर ट्यूब

एक बीम पावर ट्यूब, कैथोड से कई आंशिक रूप से टकराए गए बीमों में इलेक्ट्रॉन स्ट्रीम बनाती है, जिससे एनोड और स्क्रीन ग्रिड के बीच एक कम संभावित स्पेस चार्ज क्षेत्र का निर्माण होता है, जब एनोड की क्षमता स्क्रीन की तुलना में कम होती है, तो एनोड सेकेंडरी एमिशन इलेक्ट्रॉनों को एनोड में वापस कर देता है।[40][41] बीम के निर्माण से स्क्रीन ग्रिड करंट भी कम हो जाता है। कुछ बेलनाकार सममित बीम पावर ट्यूबों में, कैथोड उत्सर्जित सामग्री के संकीर्ण पट्टियों से बनता है जो नियंत्रण ग्रिड के एपर्चर के साथ संरेखित होते हैं, नियंत्रण ग्रिड धारा को कम करते हैं।[42] यह डिज़ाइन उच्च-शक्ति, उच्च दक्षता वाले पावर ट्यूबों को डिजाइन करने में कुछ व्यावहारिक बाधाओं को दूर करने में मदद करता है।

निर्माता की डेटा शीट अक्सर बीम पावर ट्यूब के बजाय बीम पेंटोड या बीम पावर पेंटोड का उपयोग करती हैं, और बीम बनाने वाली प्लेट दिखाने वाले ग्राफिक प्रतीक के बजाय एक पेंटोड ग्राफिक प्रतीक का उपयोग करती हैं।[43]

बीम पावर ट्यूब तुलनीय पावर पेंटोड की तुलना में लंबी लोड लाइन, कम स्क्रीन करंट, उच्च ट्रांसकंडक्टेंस और कम तीसरे हार्मोनिक विरूपण के फायदे प्रदान करते हैं।।[44][45] बीम पावर ट्यूब को बेहतर ऑडियो टोनल गुणवत्ता के लिए ट्रायोड के रूप में जोड़ा जा सकता है, लेकिन ट्रायोड मोड में काफी कम बिजली उत्पादन प्रदान करता है।[46]


गैस से भरे ट्यूब

गैस से भरे ट्यूब जैसे डिस्चार्ज ट्यूब और कोल्ड कैथोड ट्यूब कठोर वैक्यूम ट्यूब नहीं होते हैं, हालांकि हमेशा समुद्र-स्तर के वायुमंडलीय दबाव से कम गैस से भरे होते हैं। वोल्टेज-नियामक ट्यूब और थायरट्रॉन जैसे प्रकार कठोर वैक्यूम ट्यूबों के समान होते हैं और वैक्यूम ट्यूबों के लिए डिज़ाइन किए गए सॉकेट में फिट होते हैं। ऑपरेशन के दौरान उनका विशिष्ट नारंगी, लाल या बैंगनी चमक गैस की उपस्थिति को इंगित करता है ,एक वैक्यूम में बहने वाले इलेक्ट्रॉन उस क्षेत्र के भीतर प्रकाश का उत्पादन नहीं करते हैं। इन प्रकारों को अभी भी इलेक्ट्रॉन ट्यूब के रूप में संदर्भित किया जा सकता है क्योंकि वे इलेक्ट्रॉनिक कार्य करते हैं। उच्च-शक्ति वाले रेक्टिफायर उच्च-वैक्यूम ट्यूबों की तुलना में कम फॉरवर्ड वोल्टेज ड्रॉप प्राप्त करने के लिए पारा वाष्प का उपयोग करते हैं।

लघु ट्यूब

पुरानी अष्टक शैली की तुलना में लघु ट्यूब (दाएं)।पिन सहित, बड़ी ट्यूब, एक 5U4GB, है 93 mm एक के साथ उच्च 35 mm व्यास का आधार, जबकि छोटा, एक 9-पिन 12ax7, है 45 mm उच्च, और 20.4 mm दायरे में।
सबमिनिएट CV4501 ट्यूब (EF72 का SQ संस्करण), 35 mm long x 10 mm diameter (लीड को छोड़कर)

प्रारंभिक ट्यूबों में एक इन्सुलेट बैकलाइट बेस के ऊपर एक धातु या कांच के लिफाफे का इस्तेमाल किया जाता था। 1938 में लिफ़ाफ़े के कांच के आधार में जुड़े हुए पिनों के साथ एक पूरी तरह से कांच के निर्माण[47] का उपयोग करने के लिए एक तकनीक विकसित की गई थी। यह एक बहुत छोटी ट्यूब रूपरेखा के डिजाइन में उपयोग किया गया था, जिसे लघु ट्यूब के रूप में जाना जाता है, जिसमें सात या नौ पिन थे। ट्यूबों को छोटे बनाने से वोल्टेज कम हो गया जहां वे सुरक्षित रूप से संचालित सकते है, और फिलामेंट के बिजली अपव्यय को भी कम कर सकते है। रेडियो रिसीवर और हाई-फाई एम्पलीफायरों जैसे उपभोक्ता अनुप्रयोगों में लघु ट्यूब प्रमुख बन गए।हालांकि, बड़ी पुरानी शैलियों का उपयोग विशेष रूप से उच्च-शक्ति वाले रेक्टिफायर के रूप में, उच्च-शक्ति ऑडियो आउटपुट चरणों में और ट्यूबों को संचारित करने के रूप में किया जाता रहा।

उप-मिनिएचर ट्यूब

RCA 6DS4 NUVISTOR ट्रायोड, सी। 20 mm high द्वारा 11 mm diameter

उप-लघु ट्यूब लगभग आधे सिगरेट के आकार के साथ उपभोक्ता अनुप्रयोगों में श्रवण-सहायता एम्पलीफायरों के रूप में उपयोग किए जाते थे। इन ट्यूबों में एक सॉकेट में प्लगिंग पिन नहीं था, लेकिन जगह-जगह टांका लगाया गया था। "एकोर्न ट्यूब" (इसके आकार के कारण नामित) भी बहुत छोटा था, जैसा कि 1959 से धातु-आवरण आरसीए नुविस्टर था, एक थिम्बल के आकार के बारे में था। न्यूविस्टर को शुरुआती ट्रांजिस्टर के साथ प्रतिस्पर्धा करने के लिए विकसित किया गया था और उन शुरुआती ट्रांजिस्टर की तुलना में उच्च आवृत्तियों पर संचालित किया जा सकता था। छोटे आकार ने विशेष रूप से उच्च आवृत्ति संचालन का समर्थन किया; ,उच्च आवृत्ति सक्षम ट्रांजिस्टर द्वारा प्रतिस्थापित किए जाने तक विमान रेडियो ट्रांसीवर, यूएचएफ( UHF) टेलीविजन ट्यूनर, और कुछ हायफ़ीई एफएम रेडियो(HiFi FM radio)ट्यूनर (संसुई 500 ए) में नुविस्टर का उपयोग किया जाता था।

निर्माण और प्रदर्शन में सुधार

20 वीं शताब्दी के उत्तरार्ध में उपयोग की जाने वाली वैक्यूम ट्यूबों के लिए वाणिज्यिक पैकेजिंग, जिसमें व्यक्तिगत ट्यूबों (नीचे दाएं) के लिए बक्से शामिल हैं, बक्से की पंक्तियों के लिए आस्तीन (बाएं), और बैग जो कि छोटी ट्यूबों को खरीदने पर एक स्टोर द्वारा डाले जाएंगे (शीर्ष)सही)

सबसे पहले वैक्यूम ट्यूब दृढ़ता से गरमागरम प्रकाश बल्बों से मिलते -जुलते थे और दीपक निर्माताओं द्वारा बनाए गए थे, जिनके पास कांच के लिफाफे के निर्माण के लिए आवश्यक उपकरण थे और बाड़ों को खाली करने के लिए आवश्यक वैक्यूम पंप थे। डी फॉरेस्ट ने हेनरिक गिस्लर के पारा विस्थापन पंप का इस्तेमाल किया, जो एक आंशिक वैक्यूम को पीछे छोड़ देता था। 1915 में प्रसार पंप के विकास और इरविंग लैंगमुइर द्वारा सुधार के कारण उच्च-वैक्यूम ट्यूबों का विकास हुआ। प्रथम विश्व युद्ध के बाद, प्रसारण रिसीवर की बढ़ती मांग को भरने के लिए अधिक किफायती निर्माण विधियों का उपयोग करने वाले विशेष निर्माताओं को स्थापित किया गया था। नंगे टंगस्टन फिलामेंट्स लगभग 2200 डिग्री सेल्सियस के तापमान पर संचालित होते थे। 1920 के दशक के मध्य में ऑक्साइड-लेपित फिलामेंट्स के विकास ने फिलामेंट ऑपरेटिंग तापमान को एक सुस्त लाल गर्मी (लगभग 700 डिग्री सेल्सियस) तक कम कर दिया, जिसने बदले में ट्यूब संरचना के थर्मल विरूपण को कम कर दिया और ट्यूब तत्वों के करीब अंतर की अनुमति दी। यह बदले में ट्यूब लाभ में सुधार करता है, क्योंकि ट्रायोड का लाभ ग्रिड और कैथोड के बीच की दूरी के व्युत्क्रमानुपाती होता है। नंगे टंगस्टन फिलामेंट छोटे संचारित ट्यूबों में उपयोग में रहते हैं, लेकिन भंगुर होते हैं और मोटे तौर पर संभाले जाने पर फ्रैक्चर हो जाते हैं- उदाहरण के लिए डाक सेवाओं में। ये ट्यूब स्थिर उपकरणों के लिए सबसे उपयुक्त हैं जहां प्रभाव और कंपन मौजूद नहीं हैं।

अप्रत्यक्ष रूप से गर्म कैथोड्स

एसी(AC) मेन पावर का उपयोग करके इलेक्ट्रॉनिक उपकरणों को पावर करने की इच्छा को ट्यूब के फिलामेंट्स की शक्ति के संबंध में एक कठिनाई का सामना करना पड़ा, क्योंकि ये प्रत्येक ट्यूब के कैथोड भी थे। एक बिजली ट्रांसफार्मर से सीधे फिलामेंट्स को पावर करने से मुख्य-आवृत्ति (50 या 60 हर्ट्ज) ह्यूम को ऑडियो चरणों में पेश किया गया। "इक्विपोटेंशियल कैथोड" के आविष्कार ने इस समस्या को कम कर दिया, फिलामेंट्स को एक संतुलित एसी(AC) पावर ट्रांसफॉर्मर वाइंडिंग द्वारा संचालित किया जा रहा है जिसमें ग्राउंडेड सेंटर टैप होता है।

एक बेहतर समाधान, और एक जो प्रत्येक कैथोड को एक अलग वोल्टेज पर तैरने की अनुमति देता था, वह अप्रत्यक्ष रूप से गर्म कैथोड था , ऑक्साइड-लेपित निकल का एक सिलेंडर एक इलेक्ट्रॉन-उत्सर्जक कैथोड के रूप में काम करता था और इसके अंदर के फिलामेंट से विद्युत रूप से पृथक होता था। अप्रत्यक्ष रूप से गर्म कैथोड कैथोड सर्किट को हीटर सर्किट से अलग करने में सक्षम बनाते हैं। फिलामेंट, जो अब ट्यूब के इलेक्ट्रोड से विद्युत रूप से जुड़ा नहीं है, बस एक हीटर के रूप में जाना जाता है, और साथ ही एसी(AC) द्वारा बिना किसी भी परिचय के संचालित किया जा सकता है।[48] 1930 के दशक में, अप्रत्यक्ष रूप से गर्म कैथोड ट्यूब एसी(AC) पावर का उपयोग करने वाले उपकरणों में व्यापक हो गए। सीधे गर्म कैथोड ट्यूबों को बैटरी से चलने वाले उपकरणों में व्यापक रूप से उपयोग किया जाता रहा, क्योंकि उनके फिलामेंट्स को अप्रत्यक्ष रूप से गर्म कैथोड के साथ आवश्यक हीटरों की तुलना में काफी कम बिजली की आवश्यकता होती है।

उच्च लाभ वाले ऑडियो अनुप्रयोगों के लिए डिज़ाइन की गई ट्यूबों में घुमावदार बिजली के क्षेत्रों को रद्द करने के लिए मुड़े हुए हीटर तार हो सकते हैं, ऐसे क्षेत्र जो कार्यक्रम सामग्री में आपत्तिजनक हुम(HUM) को प्रेरित कर सकते हैं।

हीटर या तो वैकल्पिक धारा (AC) या प्रत्यक्ष धारा (DC) के साथ सक्रिय हो सकते हैं। डीसी(DC) का उपयोग अक्सर वहां किया जाता है जहां कम ह्यूम(HUM) की आवश्यकता होती है।

इलेक्ट्रॉनिक कंप्यूटर में उपयोग करें

1946 ENIAC कंप्यूटर ने 17,468 वैक्यूम ट्यूबों का उपयोग किया और उपभोग किया 150 kW बिजली की

स्विच के रूप में उपयोग किए जाने वाले वैक्यूम ट्यूबों ने पहली बार इलेक्ट्रॉनिक कंप्यूटिंग को संभव बनाया, लेकिन लागत और ट्यूबों की विफलता के लिए अपेक्षाकृत कम औसत समय सीमित कारक थे।[49] "सामान्य ज्ञान यह था कि वाल्व - जिनमें, प्रकाश बल्बों की तरह, एक गर्म चमकता हुआ फिलामेंट होता है - का उपयोग कभी भी बड़ी संख्या में संतोषजनक ढंग से नहीं किया जा सकता है, क्योंकि वे अविश्वसनीय थे, और एक बड़ी स्थापना में बहुत से बहुत कम समय में विफल हो जाते थे"।[50] टॉमी फ्लावर्स, जिन्होंने बाद में कोलोसस को डिजाइन किया, उन्होंने पता लगाया कि, जब तक वाल्व को चालू किया गया था और उन्हें छोड़ दिया गया था, वे बहुत लंबे समय तक मज़बूती से काम कर सकते थे, खासकर अगर उनके 'हीटर' को कम करंट पर चलाया जाता था।[50] 1934 में फ्लावर्स ने छोटे स्वतंत्र मॉड्यूल में 3,000 से अधिक ट्यूबों का उपयोग करके एक सफल प्रयोगात्मक स्थापना का निर्माण किया ,जब एक ट्यूब विफल हो जाती थी, तो एक मॉड्यूल को बंद करना और दूसरों को चालू रखना संभव था, जिससे एक और ट्यूब की विफलता का खतरा कम हो जाता था ,इस स्थापना को डाकघर (जिन्होंने टेलीफोन एक्सचेंजों का संचालन किया) द्वारा स्वीकार किया गया था। फ्लावर्स भी बहुत तेजी से (इलेक्ट्रोमैकेनिकल डिवाइसों की तुलना में) इलेक्ट्रॉनिक स्विच के रूप में ट्यूबों का उपयोग करने में अग्रणी थे। बाद में काम ने पुष्टि की कि ट्यूब अविश्वसनीयता उतनी गंभीर समस्या नहीं थी जितना कि आम तौर पर माना जाता था ,1946 ईएनआईएसी (ENIAC) में , 17,000 से अधिक ट्यूबों के साथ, औसतन हर दो दिन में एक ट्यूब फेल हो गई (जिसका पता लगाने में 15 मिनट का समय लगा)। ट्यूबों की गुणवत्ता एक कारक थी, और द्वितीय विश्व युद्ध के दौरान कुशल लोगों के विचलन ने ट्यूबों की सामान्य गुणवत्ता को कम कर दिया।।[51] युद्ध के दौरान कोलोसस ने जर्मन संहिताओं को तोड़ने में महत्वपूर्ण भूमिका निभाई थी। युद्ध के बाद, ट्यूब-आधारित कंप्यूटरों के साथ विकास जारी रहा, जिसमें सैन्य कंप्यूटर ईएनआईएसी(ENIAC) और बवंडर, फेरांति मार्क 1 (पहले व्यावसायिक रूप से उपलब्ध इलेक्ट्रॉनिक कंप्यूटरों में से एक), और यूएनआईवीएसी(UNIVAC) 1, व्यावसायिक रूप से भी उपलब्ध थे।

सबमिनेट्योर ट्यूब का उपयोग करने वाले अग्रिमों में बेथेस्डा, मैरीलैंड की जैकब्स इंस्ट्रूमेंट कंपनी द्वारा निर्मित मशीनों की जैनकॉम्प श्रृंखला शामिल थी।इसके जैनकॉम्प-बी जैसे मॉडल ने डेस्कटॉप-आकार की इकाई में सिर्फ 300 ऐसी ट्यूबों को नियोजित किया, जो तत्कालीन कमरे के आकार की मशीनों में से कई को प्रतिद्वंद्वी करने के लिए प्रदर्शन की पेशकश की।[52]


कोलोसस

इंग्लैंड के बेलेचले पार्क में द्वितीय विश्व युद्ध के अंत में द्वितीय विश्व युद्ध के युग के कोलोसस कंप्यूटर के एक मनोरंजन में देखा गया वैक्यूम ट्यूब

फ्लॉवर्स कोलोसस और इसके उत्तराधिकारी कोलोसस एमके(Mk) 2 को द्वितीय विश्व युद्ध के दौरान ब्रिटिशों द्वारा जर्मन उच्च स्तर के लोरेंज एन्क्रिप्शन को तोड़ने के कार्य को काफी हद तक गति देने के लिए बनाया गया था। लगभग 1,500 वैक्यूम ट्यूब (एमके 2 के लिए 2,400) का उपयोग करते हुए, कोलोसस ने रिले और स्विच लॉजिक (हीथ रॉबिन्सन) के आधार पर एक पहले की मशीन को बदल दिया। कोलोसस कुछ ही घंटों के संदेशों को तोड़ने में सक्षम था जो पहले कई सप्ताह ले चुके थे ,और यह बहुत अधिक विश्वसनीय भी था।[50] कोलोसस एकल मशीन के लिए इतने बड़े पैमाने पर संगीत कार्यक्रम में काम करने वाले वैक्यूम ट्यूबों का पहला उपयोग था।[50]


बवंडर और विशेष-गुणवत्ता वाले ट्यूब

व्हर्लविंड की कोर मेमोरी यूनिट से सर्किटरी

1951 के अमेरिकी डिजिटल कंप्यूटर व्हर्लविंड की विश्वसनीयता आवश्यकताओं को पूरा करने के लिए, विस्तारित जीवन के साथ विशेष-गुणवत्ता वाले ट्यूब, और विशेष रूप से एक लंबे समय तक चलने वाले कैथोड का उत्पादन किया गया था। छोटे जीवनकाल की समस्या का पता काफी हद तक सिलिकॉन के वाष्पीकरण के लिए किया गया था, जिसका उपयोग टंगस्टन मिश्र धातु में हीटर के तार को खींचने में आसान बनाने के लिए किया जाता था। सिलिकॉन निकेल स्लीव और कैथोड बेरियम ऑक्साइड कोटिंग के बीच इंटरफेस में बेरियम ऑर्थोसिलिकेट बनाता है।[7]: 301  यह कैथोड इंटरफ़ेस एक उच्च-प्रतिरोध परत (कुछ समानांतर समाई के साथ) है जो ट्यूब को चालन मोड में स्विच किए जाने पर कैथोड करंट को बहुत कम कर देता है।[53]: 224  हीटर वायर मिश्र धातु से सिलिकॉन का उन्मूलन (और वायर ड्राइंग के अधिक लगातार प्रतिस्थापन की मृत्यु) ने उन ट्यूबों के उत्पादन की अनुमति दी जो बवंडर परियोजना के लिए पर्याप्त विश्वसनीय थे। उच्च शुद्धता वाले निकल टयूबिंग और कैथोड कोटिंग्स जैसे कि सिलिकेट्स और एल्यूमीनियम जैसे सामग्रियों से मुक्त जो कि उत्सर्जन को कम कर सकते हैं, वे भी लंबे कैथोड जीवन में योगदान करते हैं।

इस तरह की पहली कंप्यूटर ट्यूब सिल्वेनिया का 1948 का 7AK7 एक पेंटोड था (ये 7AD7 को बदल दिया गया था, जिसे मानक 6AG7 की तुलना में बेहतर गुणवत्ता माना जाता था, लेकिन यह बहुत अविश्वसनीय साबित हुआ)।[54]: 59  कंप्यूटर पहले ट्यूब डिवाइस थे जो काफी विस्तारित अवधि के लिए कटऑफ पर ट्यूब चलाने के लिए (पर्याप्त नकारात्मक ग्रिड वोल्टेज उन्हें चालन बंद करने के लिए) थे। हीटर के साथ कटऑफ में चलने से कैथोड विषाक्तता तेज हो जाती है और चालन मोड में स्विच करने पर ट्यूब का आउटपुट करंट बहुत कम हो जाएगा।[53]: 224  7AK7 ट्यूबों ने कैथोड विषाक्तता की समस्या में सुधार किया, लेकिन वह आवश्यक विश्वसनीयता प्राप्त करने के लिए अकेले अपर्याप्त था।[54]: 60  आगे के उपायों में हीटर वोल्टेज को बंद करना शामिल था, जब ट्यूबों को विस्तारित अवधि के लिए संचालित करने की आवश्यकता नहीं थी, हीटर तत्व पर थर्मल शॉक से बचने के लिए एक धीमी रैंप के साथ हीटर वोल्टेज को चालू और बंद करना, हीटर तत्व पर थर्मल शॉक से बचने के लिए,[53]: 226  और कमजोर इकाइयों की शुरुआती विफलता लाने के लिए ऑफ़लाइन रखरखाव अवधि के दौरान ट्यूबों के परीक्षण पर जोर देना।[54]: 60–61 

व्हर्लविंड के लिए विकसित ट्यूबों का उपयोग बाद में विशाल सेज एयर-डिफेंस कंप्यूटर सिस्टम में इस्तेमाल किया गया था। 1950 के दशक के अंत तक, विशेष-गुणवत्ता वाले छोटे-सिग्नल ट्यूबों के लिए नियमित रूप से संचालित होने पर सैकड़ों-हजारों घंटे तक चलना नियमित था। इस बढ़ी हुई विश्वसनीयता ने पनडुब्बी केबलों में मध्य-केबल एम्पलीफायरों को भी संभव बना दिया।

हीट जनरेशन और कूलिंग

इस ट्रांसमिटिंग ट्रायोड के एनोड (प्लेट) को अप करने के लिए डिज़ाइन किया गया है 500 W गर्मी का

फिलामेंट (हीटर) और प्लेट पर बमबारी करने वाले इलेक्ट्रॉनों की धारा दोनों से, जब ट्यूब संचालित होती हैं, तो काफी मात्रा में ऊष्मा उत्पन्न होती है । शक्ति एम्पलीफायरों में, गर्मी का यह स्रोत कैथोड हीटिंग से अधिक होता है। कुछ प्रकार के ट्यूब एक सुस्त लाल गर्मी पर एनोड के साथ काम करने की अनुमति देते हैं ,अन्य प्रकारों में, लाल गर्मी गंभीर अधिभार को इंगित करती है।

गर्मी हटाने के लिए आवश्यकताएं उच्च-शक्ति वाले वैक्यूम ट्यूबों की उपस्थिति को महत्वपूर्ण रूप से बदल सकती हैं। उच्च शक्ति ऑडियो एम्पलीफायरों और रेक्टिफायर को गर्मी को खत्म करने के लिए बड़े लिफाफे की आवश्यकता होती है। ट्रांसमिटिंग ट्यूब अभी भी बहुत बड़ी हो सकती है।

एनोड (प्लेट) से ब्लैक-बॉडी रेडिएशन द्वारा इंफ्रारेड रेडिएशन के रूप में और ट्यूब लिफाफे के ऊपर हवा के संवहन द्वारा डिवाइस से गर्मी निकलती है।[55] अधिकांश ट्यूबों के अंदर संवहन संभव नहीं है क्योंकि एनोड वैक्यूम से घिरा हुआ है।

ट्यूब जो अपेक्षाकृत कम गर्मी उत्पन्न करते हैं, जैसे कि 1.4-वोल्ट फिलामेंट सीधे बैटरी-संचालित उपकरणों में उपयोग के लिए डिज़ाइन किए गए गर्म ट्यूबों को गर्म करते हैं, अक्सर चमकदार धातु एनोड होते हैं। 1T4, 1R5 और 1A7 इसके उदाहरण है। गैस से भरे ट्यूब जैसे कि थाराट्रॉन्स भी एक चमकदार धातु एनोड का उपयोग कर सकते हैं क्योंकि ट्यूब के अंदर मौजूद गैस एनोड से कांच के बाड़े तक गर्मी संवहन के लिए अनुमति देती है।

एनोड का उपचार अक्सर इसकी सतह को अधिक अवरक्त ऊर्जा उत्सर्जित करने के लिए किया जाता है। उच्च-शक्ति वाले एम्पलीफायर ट्यूबों को बाहरी एनोड के साथ डिज़ाइन किया गया है , जिन्हें संवहन मजबूर हवा या परिसंचारी पानी द्वारा ठंडा किया जा सकता है। वाटर-कूल्ड 80 किग्रा, 1.25 मेगावाट 8974 आज उपलब्ध सबसे बड़ी व्यावसायिक ट्यूबों में से एक है।

एक पानी-कूल्ड ट्यूब में, एनोड वोल्टेज सीधे ठंडा पानी की सतह पर दिखाई देता है,इस प्रकार रेडिएटर सिस्टम को ठंडा पानी के माध्यम से उच्च वोल्टेज रिसाव को रोकने के लिए पानी को विद्युत इन्सुलेटर होने की आवश्यकता होती है। आमतौर पर आपूर्ति किए जाने वाले पानी में आयन होते हैं जो बिजली का संचालन करते हैं ,विआयनीकृत पानी, एक अच्छा इन्सुलेटर, आवश्यक है। इस तरह की प्रणालियों में आमतौर पर एक अंतर्निहित जल-चालन मॉनिटर होता है जो उच्च तनाव की आपूर्ति को बंद कर देता है यदि चालकता बहुत अधिक हो जाती है।

स्क्रीन ग्रिड भी काफी गर्मी उत्पन्न कर सकता है। स्क्रीन ग्रिड अपव्यय की सीमा, प्लेट अपव्यय के अलावा, बिजली उपकरणों के लिए सूचीबद्ध हैं। यदि ये अधिक हो जाते हैं तो ट्यूब के खराब होने की संभावना होती है।

ट्यूब पैकेज

ऑक्टल बेस के साथ धातु-कैद ट्यूब
ट्रायोड ट्यूब प्रकार GS-9B;2000 मेगाहर्ट्ज तक रेडियो आवृत्तियों पर उपयोग के लिए डिज़ाइन किया गया और 300 वाट एनोड पावर अपव्यय के लिए रेटेड।[56] फिन्ड हीट सिंक एनोड से एयर स्ट्रीम तक गर्मी का चालन प्रदान करता है।

अधिकांश आधुनिक ट्यूबों में कांच के लिफाफे होते हैं, लेकिन धातु, फ्यूज्ड क्वार्ट्ज (सिलिका) और सिरेमिक का भी उपयोग किया गया है। 6L6 के पहले संस्करण ने कांच के मोतियों के साथ सील किए गए एक धातु के लिफाफे का उपयोग किया था, जबकि बाद के संस्करणों में धातु से जुड़ी एक ग्लास डिस्क का इस्तेमाल किया गया था। धातु और सिरेमिक का उपयोग लगभग विशेष रूप से 2kW अपव्यय से ऊपर बिजली ट्यूबों के लिए किया जाता है। न्यूविस्टर एक बहुत छोटी धातु और सिरेमिक पैकेज का उपयोग करके एक आधुनिक प्राप्त करने वाली ट्यूब थी।

ट्यूबों के आंतरिक तत्वों को हमेशा बाहरी सर्किटरी से उनके आधार पर पिन के माध्यम से जोड़ा जाता है जो एक सॉकेट में प्लग होता है। सबमिनेचर ट्यूबों को सॉकेट्स के बजाय वायर लीड्स का उपयोग करके तैयार किया गया था, हालांकि, ये विशेष अनुप्रयोगों तक ही सीमित थे। ट्यूब के आधार पर कनेक्शन के अलावा, कई शुरुआती ट्रायोड्स ने ट्यूब के शीर्ष पर एक धातु टोपी का उपयोग करके ग्रिड को जोड़ा , यह ग्रिड और प्लेट लीड के बीच आवारा समाई को कम करता है। ट्यूब कैप्स का उपयोग प्लेट (एनोड) कनेक्शन के लिए भी किया जाता था, विशेष रूप से बहुत अधिक प्लेट वोल्टेज का उपयोग करके ट्यूब और ट्यूब को ट्रांसमिट करने में।

उच्च शक्ति वाली ट्यूब जैसे ट्रांसमिटिंग ट्यूब में हीट ट्रांसफर को बढ़ाने के लिए अधिक डिज़ाइन किए गए पैकेज होते हैं। कुछ ट्यूबों में, धातु का लिफाफा भी एनोड होता है। 4CX1000A इस प्रकार का एक बाहरी एनोड ट्यूब है। एनोड से जुड़े पंखों की एक सरणी के माध्यम से हवा को उड़ा दिया जाता है, और इस प्रकार इसे ठंडा किया जाता है। इस शीतलन योजना का उपयोग करने वाले पावर ट्यूब 150 kW अपव्यय तक उपलब्ध हैं। उस स्तर के ऊपर,पानी या जल-वाष्प कूलिंग का उपयोग किया जाता है। वर्तमान में उपलब्ध उच्चतम-शक्ति ट्यूब ईआईएम्एसी (EIMAC) 4CM2500KG है, जो 2.5 मेगावाट को नष्ट करने में सक्षम एक मजबूर वाटर-कूल्ड पावर टेट्रोड है।[57] तुलना करके, सबसे बड़ा पावर ट्रांजिस्टर केवल लगभग 1 किलोवाट का प्रसार कर सकता है।

नाम

यूके में उपयोग किया जाने वाला सामान्य नाम [थर्मियोनिक] वाल्व एक पानी के पाइप में एक गैर-रिटर्न वाल्व के साथ सादृश्य द्वारा एक गर्म फिलामेंट से इलेक्ट्रॉनों का उत्सर्जन करने वाले थर्मिओनिक डायोड द्वारा किए गए थर्मायोनिक डायोड,जल्द से जल्द डिवाइस द्वारा अनुमत यूनिडायरेक्शनल करंट फ्लो से निकला है।[58] अमेरिकी नाम "वैक्यूम ट्यूब", "इलेक्ट्रॉन ट्यूब", और "थर्मिओनिक ट्यूब" सभी बस एक ट्यूबलर लिफाफे का वर्णन करते हैं जिसे खाली कर दिया गया है ("वैक्यूम"), एक हीटर है और इलेक्ट्रॉन प्रवाह को नियंत्रित करता है।

कई मामलों में, निर्माताओं और सेना ने ट्यूबों को पदनाम दिए, जिन्होंने उनके उद्देश्य के बारे में कुछ भी नहीं कहा (जैसे, 1614)। शुरुआती दिनों में कुछ निर्माताओं ने मालिकाना नामों का उपयोग किया जो कुछ जानकारी दे सकते थे, लेकिन केवल उनके उत्पादों के बारे में , KT66 और KT88 किंकलेस टेट्रोड्स थे। बाद में, उपभोक्ता ट्यूबों को ऐसे नाम दिए गए थे, जिन्होंने कुछ जानकारी दी थी, एक ही नाम के साथ अक्सर कई निर्माताओं द्वारा उदारता से उपयोग किया जाता था। अमेरिका में, रेडियो इलेक्ट्रॉनिक्स टेलीविजन निर्माता एसोसिएशन आरईटीएमए(RETMA) पदनामों में एक नंबर शामिल था, और इसके बाद एक या दो अक्षर, और एक संख्या शामिल होती थी। पहला नंबर (गोल) हीटर वोल्टेज , पत्र एक विशेष ट्यूब को नामित करत है, लेकिन इसकी संरचना के बारे में कुछ नहीं कहते हैं , और अंतिम संख्या इलेक्ट्रोड की कुल संख्या है (उदाहरण के लिए, कई इलेक्ट्रोड के साथ एक ट्यूब, या एक लिफाफे में इलेक्ट्रोड के दो सेट-एक डबल ट्रायोड के बीच अंतर किए बिना)। उदाहरण के लिए, 12AX7 12.6V हीटर के साथ एक डबल ट्रायोड (तीन इलेक्ट्रोड प्लस हीटर के दो सेट) है (जो, जैसा कि होता है, 6.3V से चलाने के लिए भी जोड़ा जा सकता है)। इस विशेष ट्यूब को इसकी विशेषताओं के अनुसार नामित करने के अलावा "AX" का कोई अर्थ नहीं है । इसी तरह एक सामान, नहीं है ,ये ट्यूब 12AD7, 12AE7 ... 12AT7, 12AU7, 12AV7, 12AV7 (दुर्लभ!), 12ay7, और 12AZ7 हैं।

यूरोप में व्यापक रूप से उपयोग की जाने वाली एक प्रणाली जिसे मुलार्ड -फिलिप्स ट्यूब पदनाम के रूप में जाना जाता है, जिसे ट्रांजिस्टर तक भी बढ़ाया जाता है, एक पत्र का उपयोग करता है ,उसके बाद एक या अधिक अक्षर और एक संख्या होती है। टाइप डिज़ाइनर हीटर वोल्टेज या करंट (एक अक्षर), ट्यूब के सभी वर्गों (एक अक्षर प्रति खंड), सॉकेट प्रकार (पहले अंक), और विशेष ट्यूब (शेष अंक) के कार्यों को निर्दिष्ट करता है। उदाहरण के लिए, ECC83 (12AX7 के बराबर) एक लघु आधार (8) के साथ 6.3V (E) डबल ट्रायोड (CC) है। इस प्रणाली में विशेष-गुणवत्ता वाले ट्यूब (जैसे, लंबे समय तक कंप्यूटर के उपयोग के लिए) को पहले अक्षर के तुरंत बाद संख्या को स्थानांतरित करके इंगित किया जाता है, E83CC ECC83 के एक विशेष-गुणवत्ता के बराबर है, E55L एक पावर पेंटोड जिसमें कोई उपभोक्ता समतुल्य नहीं है।

विशेष-उद्देश्य ट्यूब

ऑपरेशन में वोल्टेज-नियामक ट्यूब।वर्तमान प्रवाह के कारण ट्यूब चमक के भीतर कम दबाव वाली गैस।

लिफाफे में विशेष गैसों के साथ कुछ विशेष प्रयोजन ट्यूबों का निर्माण किया जाता है। उदाहरण के लिए, वोल्टेज-नियामक ट्यूबों में विभिन्न अक्रिय गैसें जैसे आर्गन, हीलियम या नियॉन होती हैं, जो कि पूर्वानुमानित वोल्टेज पर आयनित होती है। थायराट्रॉन एक विशेष-उद्देश्य वाली ट्यूब है जो कम दबाव वाली गैस या पारा वाष्प से भरी होती है। वैक्यूम ट्यूबों की तरह, इसमें एक गर्म कैथोड और एनोड होता है, लेकिन एक नियंत्रण इलेक्ट्रोड भी होता है जो एक ट्रायोड के ग्रिड की तरह कुछ हद तक व्यवहार करता है। जब नियंत्रण इलेक्ट्रोड चालन शुरू करता है, तो गैस आयनित होती है, जिसके बाद नियंत्रण इलेक्ट्रोड अब धारा को रोक नहीं सकता है ,जैसे ट्यूब चालन में कुंडी। एनोड (प्लेट) वोल्टेज को हटाने से गैस डी-आयनित होने की सुविधा मिलती है, जो इसकी गैर-प्रवाहकीय स्थिति को बहाल करती है।

कुछ थायराट्रॉन अपने भौतिक आकार के लिए बड़ी धाराएँ ले जा सकते हैं। एक उदाहरण लघु टाइप 2D21 है, जो अक्सर 1950 के दशक में ज्यूकबॉक्स में रिले के लिए नियंत्रण स्विच के रूप में देखा जाता है। थायराट्रॉन का एक कोल्ड-कैथोड संस्करण, जो अपने कैथोड के लिए पारा के एक पूल का उपयोग करता है, जिसको इग्नाट्रॉन कहा जाता है जिसे कुछ हजारों एम्पीयर को स्विच कर सकते हैं। हाइड्रोजन युक्त थायराट्रॉन की टर्न-ऑन पल्स और पूर्ण चालन के बीच एक बहुत ही सुसंगत समय विलंब होता है , वे आधुनिक सिलिकॉन-नियंत्रित रेक्टिफायर्स की तरह व्यवहार करते हैं, जिन्हें थाइरिस्टर भी कहा जाता है, क्योंकि थायराट्रॉन के साथ उनकी कार्यात्मक समानता होती है। रडार ट्रांसमीटरों में हाइड्रोजन थायराट्रॉन का लंबे समय से उपयोग किया जाता रहा है।

एक विशेष ट्यूब क्रिट्रॉन है, जिसका उपयोग तेजी से उच्च-वोल्टेज स्विचिंग के लिए किया जाता है। परमाणु हथियार सेट करने के लिए इस्तेमाल किए गए विस्फोटों को शुरू करने के लिए क्रिट्रोन का उपयोग किया जाता है ,अंतरराष्ट्रीय स्तर पर क्रिट्रॉन को भारी रूप से नियंत्रित किया जाता है।

एक्स-रे ट्यूब का उपयोग अन्य उपयोगों के बीच मेडिकल इमेजिंग में किया जाता है। फ्लोरोस्कोपी और सीटी इमेजिंग उपकरण में निरंतर-ड्यूटी संचालन के लिए उपयोग की जाने वाली एक्स-रे ट्यूब एक केंद्रित कैथोड और एक घूर्णन एनोड का उपयोग कर सकती है जिससे बड़ी मात्रा में गर्मी उत्पन्न होती है। इन्हें शीतलन प्रदान करने के लिए तेल से भरे एल्यूमीनियम आवास में रखा गया है।

फोटोमल्टीप्लायर ट्यूब प्रकाश का एक अत्यंत संवेदनशील डिटेक्टर है, जो विद्युत संकेतों को उत्पन्न करने और बढ़ाने के लिए थर्मिओनिक उत्सर्जन के बजाय फोटोइलेक्ट्रिक प्रभाव और माध्यमिक उत्सर्जन का उपयोग करता है। परमाणु चिकित्सा इमेजिंग उपकरण और तरल स्किनटिलेशन काउंटर आयनीकरण विकिरण के कारण कम तीव्रता वाले स्किन्टिलेशन का पता लगाने के लिए फोटोमुल्टिप्लियर ट्यूब सरणियों का उपयोग करते हैं।

1970 के दशक की शुरुआत में प्रतिरोध वेल्डिंग उपकरण में इग्नाट्रॉन ट्यूब का उपयोग किया गया था। इग्नाट्रॉन में एक कैथोड, एनोड और एक इग्नाइटर था। ट्यूब बेस पारा से भरा हुआ था और ट्यूब का उपयोग बहुत ही उच्च धारा स्विच के रूप में किया गया था। ट्यूब के एनोड और कैथोड के बीच एक बड़ी वर्तमान क्षमता रखी गई थी, लेकिन केवल तब आचरण करने की अनुमति दी गई थी जब पारा के संपर्क में आने वाले इग्नाइटर में पारा को वाष्पीकृत करने और सर्किट को पूरा करने के लिए पर्याप्त वर्तमान था। क्योंकि इसका उपयोग प्रतिरोध वेल्डिंग में किया गया था, एक एसी सर्किट के दो चरणों के लिए दो इग्नाट्रॉन थे। ट्यूब के नीचे पारा के कारण उन्हें जहाज करना बेहद मुश्किल था। इन ट्यूबों को अंततः SCRS (सिलिकॉन नियंत्रित रेक्टिफायर) द्वारा प्रतिस्थापित किया गया था।

ट्यूब को शक्ति देना

बैटरी

बैटरी ने शुरुआती रेडियो सेट में ट्यूबों द्वारा आवश्यक वोल्टेज प्रदान किए।आम तौर पर तीन अलग -अलग वोल्टेज की आवश्यकता होती थी, ए, बी और सी बैटरी के रूप में नामित तीन अलग -अलग बैटरी का उपयोग करते हुए।ए बैटरी या एलटी (कम-तनाव) बैटरी ने फिलामेंट वोल्टेज प्रदान किया।ट्यूब हीटरों को सिंगल, डबल या ट्रिपल-सेल लीड-एसिड बैटरी के लिए डिज़ाइन किया गया था। लीड-एसिड बैटरी, 2 वी, 4 वी या 6 वी के नाममात्र हीटर वोल्टेज देते हुए, पोर्टेबल रेडियो में, सूखी बैटरी का उपयोग कभी-कभी 1.5 या 1 वी के साथ किया जाता था।हीटर।फिलामेंट की खपत को कम करने से बैटरी के जीवन काल में सुधार हुआ।1955 तक ट्यूब युग के अंत तक, हीटर के लिए केवल 50 mA से 10 mA से कम का उपयोग करने वाले ट्यूब विकसित किए गए थे।[59] एनोड (प्लेट) पर लागू उच्च वोल्टेज बी बैटरी या एचटी (उच्च-तनाव) आपूर्ति या बैटरी द्वारा प्रदान किया गया था।ये आम तौर पर शुष्क सेल निर्माण के होते थे और आम तौर पर 22.5-, 45-, 67.5-, 90-, 120- या 135-वोल्ट संस्करणों में आते थे।बी-बैटरियों के उपयोग के बाद चरणबद्ध किया गया था और ट्यूब्स की प्लेटों द्वारा आवश्यक उच्च वोल्टेज का उत्पादन करने के लिए लाइन-पावर को सुधारने के लिए नियोजित किया गया था, उच्च वोल्टेज स्रोत का जिक्र करते समय बी+ शब्द अमेरिका में बने रहे।बाकी अंग्रेजी बोलने वाली दुनिया में से अधिकांश इस आपूर्ति को सिर्फ HT (उच्च तनाव) के रूप में संदर्भित करते हैं।

एक वैक्यूम-ट्यूब सर्किट के लिए बैटरी।सी बैटरी को हाइलाइट किया गया है।

शुरुआती सेटों ने ग्रिड बायस बैटरी या सी बैटरी का उपयोग किया जो एक नकारात्मक वोल्टेज प्रदान करने के लिए जुड़ा था।चूंकि एक ट्यूब के ग्रिड कनेक्शन के माध्यम से कोई वर्तमान प्रवाह नहीं होता है, इसलिए इन बैटरी में कोई वर्तमान नाली नहीं थी और सबसे लंबे समय तक चली, आमतौर पर अपने स्वयं के शेल्फ जीवन द्वारा सीमित।ग्रिड पूर्वाग्रह बैटरी से आपूर्ति शायद ही कभी थी, अगर कभी भी, जब रेडियो को बंद कर दिया गया तो डिस्कनेक्ट किया गया।एसी पावर की आपूर्ति आम होने के बाद भी, कुछ रेडियो सेट सी बैटरी के साथ बनाए जाते रहे, क्योंकि उन्हें लगभग कभी भी बदलने की आवश्यकता नहीं होगी।हालांकि अधिक आधुनिक सर्किट कैथोड पूर्वाग्रह का उपयोग करके डिज़ाइन किए गए थे, तीसरी बिजली आपूर्ति वोल्टेज की आवश्यकता को समाप्त करते हुए;यह अवरोधक/संधारित्र युग्मन के विकास के साथ कैथोड के अप्रत्यक्ष हीटिंग का उपयोग करके ट्यूबों के साथ व्यावहारिक हो गया, जो पहले के अंतराल ट्रांसफार्मर को बदल दिया गया था।

पूर्वाग्रह के लिए सी बैटरी एक पदनाम है जिसमें सी सेल बैटरी आकार का कोई संबंध नहीं है।

एसी पावर

बैटरी रिप्लेसमेंट शुरुआती रेडियो रिसीवर उपयोगकर्ताओं के लिए एक प्रमुख परिचालन लागत थी। बैटरी एलिमिनेटर का विकास, और, 1925 में, घरेलू शक्ति द्वारा संचालित बैटरी रहित रिसीवर, परिचालन लागत में कमी आई और रेडियो की बढ़ती लोकप्रियता में योगदान दिया। कई वाइंडिंग, एक या एक से अधिक रेक्टिफायर (जो स्वयं वैक्यूम ट्यूब हो सकता है) के साथ एक ट्रांसफार्मर का उपयोग करके एक बिजली की आपूर्ति, और बड़े फिल्टर कैपेसिटर ने वैकल्पिक वर्तमान स्रोत से आवश्यक प्रत्यक्ष वर्तमान वोल्टेज प्रदान किए।

लागत में कमी के उपाय के रूप में, विशेष रूप से उच्च-मात्रा वाले उपभोक्ता रिसीवरों में, सभी ट्यूब हीटरों को एसी आपूर्ति में श्रृंखला में जोड़ा जा सकता है, एक ही करंट की आवश्यकता वाले हीटरों का उपयोग करके और एक समान वार्म-अप समय के साथ। इस तरह के एक डिज़ाइन में, ट्यूब हीटर स्ट्रिंग पर एक नल ने डायल लाइट के लिए आवश्यक 6 वोल्ट की आपूर्ति की। एसी मेन से सीधे जुड़े एक हाफ-वेव रेक्टिफायर से उच्च वोल्टेज प्राप्त करके, भारी और महंगा पावर ट्रांसफार्मर को समाप्त कर दिया गया था। इसने ऐसे रिसीवरों को प्रत्यक्ष वर्तमान, एक तथाकथित एसी/डीसी रिसीवर डिजाइन पर काम करने की अनुमति दी। युग के कई अलग -अलग अमेरिकी उपभोक्ता एएम रेडियो निर्माताओं ने एक समान सर्किट का उपयोग किया, जिसे सभी अमेरिकी पांच उपनाम दिया गया।

जहां मुख्य वोल्टेज 100-120 वी रेंज में था, यह सीमित वोल्टेज केवल कम-शक्ति रिसीवर के लिए उपयुक्त साबित हुआ। टेलीविजन रिसीवर को या तो एक ट्रांसफार्मर की आवश्यकता होती है या वोल्टेज डबलिंग सर्किट का उपयोग कर सकता है। जहां 230 वी नाममात्र मेन वोल्टेज का उपयोग किया गया था, टेलीविजन रिसीवर के साथ -साथ पावर ट्रांसफार्मर के साथ भी डिस्पेंस हो सकता है।

ट्रांसफार्मर-कम बिजली की आपूर्ति उपयोगकर्ताओं को सदमे के खतरे को सीमित करने के लिए अपने डिजाइन में सुरक्षा सावधानियों की आवश्यकता होती है, जैसे कि विद्युत रूप से अछूता अलमारियाँ और एक इंटरलॉक पावर कॉर्ड को कैबिनेट को वापस बांधने के लिए, इसलिए यदि उपयोगकर्ता या सेवा व्यक्ति को खोला गया तो लाइन कॉर्ड जरूरी है। मंत्रिमंडल। एक चीटर कॉर्ड एक पावर कॉर्ड था जो सुरक्षा इंटरलॉक द्वारा उपयोग किए जाने वाले विशेष सॉकेट में समाप्त होता था; तब सेवक डिवाइस को खतरनाक वोल्टेज के साथ उजागर कर सकते हैं।

वार्म-अप देरी से बचने के लिए, टेलीविजन रिसीवर्स पर तत्काल ने अपने ट्यूबों के माध्यम से एक छोटा हीटिंग करंट पास किया, जब सेट को नाममात्र के रूप में बंद कर दिया गया था। स्विच ऑन में, पूर्ण हीटिंग करंट प्रदान किया गया था और सेट लगभग तुरंत खेल जाएगा।

विश्वसनीयता

1930 में निर्मित ट्यूब परीक्षक।

ऑक्साइड कैथोड के साथ ट्यूबों की एक विश्वसनीयता समस्या यह संभावना है कि कैथोड धीरे -धीरे ट्यूब में अन्य तत्वों से गैस अणुओं द्वारा जहर हो सकता है, जो इलेक्ट्रॉनों का उत्सर्जन करने की क्षमता को कम करता है। फंसी हुई गैसों या धीमी गैस लीक भी कैथोड या कारण प्लेट (एनोड) को नुकसान पहुंचा सकती हैं, जो मुक्त गैस अणुओं के आयनीकरण के कारण वर्तमान भगोड़ा है। वैक्यूम कठोरता और निर्माण सामग्री का उचित चयन ट्यूब जीवनकाल पर प्रमुख प्रभाव हैं। सामग्री, तापमान और निर्माण के आधार पर, कैथोड की सतह सामग्री भी अन्य तत्वों पर फैल सकती है। कैथोड को गर्म करने वाले प्रतिरोधक हीटर गरमागरम दीपक फिलामेंट्स के समान तरीके से टूट सकते हैं, लेकिन शायद ही कभी करते हैं, क्योंकि वे लैंप की तुलना में बहुत कम तापमान पर काम करते हैं।

हीटर की विफलता मोड आमतौर पर टंगस्टन तार का या एक वेल्ड बिंदु पर तनाव से संबंधित फ्रैक्चर है और आम तौर पर कई थर्मल (पावर ऑन-ऑफ) चक्रों को अर्जित करने के बाद होता है। कमरे के तापमान पर टंगस्टन तार का बहुत कम प्रतिरोध होता है। एक नकारात्मक तापमान गुणांक उपकरण, जैसे कि एक थर्मिस्टर, उपकरण की हीटर आपूर्ति में शामिल किया जा सकता है या एक रैंप-अप सर्किट को नियोजित किया जा सकता है ताकि हीटर या फिलामेंट्स को एक कदम-फ़ंक्शन में संचालित-अप की तुलना में अधिक धीरे-धीरे ऑपरेटिंग तापमान तक पहुंचने की अनुमति मिल सके। । कम लागत वाले रेडियो में श्रृंखला में जुड़े हीटरों के साथ ट्यूब थे, जिसमें कुल वोल्टेज लाइन (मुख्य) के बराबर था। द्वितीय विश्व युद्ध से पहले किए गए कुछ रिसीवरों में श्रृंखला-स्ट्रिंग हीटर थे, जिनमें कुल वोल्टेज के साथ मेन की तुलना में कम था। कुछ के पास एक प्रतिरोध तार था जो वोल्टेज को ट्यूबों को छोड़ने के लिए पावर कॉर्ड की लंबाई चला रहा था। दूसरों के पास श्रृंखला प्रतिरोधों को नियमित ट्यूबों की तरह बनाया गया था; उन्हें गिट्टी ट्यूब कहा जाता था।

द्वितीय विश्व युद्ध के बाद, सीरीज़ हीटर स्ट्रिंग्स में उपयोग किए जाने वाले ट्यूबों को सभी को फिर से डिज़ाइन किया गया था, जो एक ही (नियंत्रित) वार्म-अप समय है। पहले के डिजाइनों में काफी-विभेदक थर्मल टाइम स्थिरांक थे। उदाहरण के लिए, ऑडियो आउटपुट स्टेज में एक बड़ा कैथोड था और कम-संचालित ट्यूबों की तुलना में अधिक धीरे-धीरे गर्म किया गया था। इसका परिणाम यह था कि तेजी से गर्म होने वाले हीटर भी अस्थायी रूप से उच्च प्रतिरोध में थे, क्योंकि उनके सकारात्मक तापमान गुणांक के कारण। इस अनुपातहीन प्रतिरोध के कारण उन्हें अस्थायी रूप से हीटर वोल्टेज के साथ उनकी रेटिंग के ऊपर अच्छी तरह से काम करना पड़ा, और उनके जीवन को छोटा कर दिया।

एक और महत्वपूर्ण विश्वसनीयता समस्या ट्यूब में हवा के रिसाव के कारण होती है। आमतौर पर हवा में ऑक्सीजन गर्म फिलामेंट या कैथोड के साथ रासायनिक रूप से प्रतिक्रिया करता है, जल्दी से इसे बर्बाद कर देता है। डिजाइनरों ने ट्यूब डिजाइन विकसित किए जो मज़बूती से सील कर दिए। यही कारण है कि अधिकांश ट्यूबों का निर्माण कांच से किया गया था। धातु मिश्र धातुओं (जैसे कि क्यूनाइफ और फर्निको) और चश्मे को प्रकाश बल्बों के लिए विकसित किया गया था जो समान मात्रा में विस्तारित और अनुबंधित थे, क्योंकि तापमान बदल गया था। इनसे ग्लास के माध्यम से कनेक्शन तारों को पारित करते हुए, ग्लास के एक इन्सुलेट लिफाफे का निर्माण करना आसान हो गया।

जब एक वैक्यूम ट्यूब को ओवरलोड किया जाता है या उसके डिजाइन अपव्यय को अतीत में संचालित किया जाता है, तो इसका एनोड (प्लेट) लाल चमक सकता है। उपभोक्ता उपकरणों में, एक चमकती प्लेट सार्वभौमिक रूप से एक अतिभारित ट्यूब का संकेत है। हालांकि, कुछ बड़े संचारित ट्यूबों को लाल, नारंगी, या दुर्लभ मामलों में, सफेद गर्मी में उनके एनोड के साथ संचालित करने के लिए डिज़ाइन किया गया है।

मानक ट्यूबों के विशेष गुणवत्ता वाले संस्करण अक्सर बनाए जाते थे, जो कुछ मामलों में बेहतर प्रदर्शन के लिए डिज़ाइन किए गए थे, जैसे कि एक लंबा जीवन कैथोड, कम शोर निर्माण, यांत्रिक बीहड़ता बीहड़ फिलामेंट्स, कम माइक्रोफनी के माध्यम से, उन अनुप्रयोगों के लिए जहां ट्यूब अपने समय में कटौती करेगी बंद, आदि एक विशेष गुणवत्ता वाले भाग की विशेष विशेषताओं को जानने का एकमात्र तरीका डेटशीट पढ़कर है। नाम मानक नाम (12AU7 ==> 12AU7A, इसके समकक्ष ECC82 ==> E82CC, आदि) को प्रतिबिंबित कर सकते हैं, या बिल्कुल कुछ भी हो (एक ही ट्यूब के मानक और विशेष-गुणवत्ता वाले समकक्षों में 12AU7, ECC82, B329, CV491, E2163 शामिल हैं। , E812CC, M8136, CV4003, 6067, VX7058, 5814A और 12AU7A)।[60]

सबसे लंबे समय तक रिकॉर्ड किए गए वाल्व जीवन को एक माज़दा एसी/पी पेंटोड वाल्व (सीरियल नंबर 4418) द्वारा लिसनगरवे में बीबीसी के मुख्य उत्तरी आयरलैंड ट्रांसमीटर में संचालन में अर्जित किया गया था।वाल्व 1935 से 1961 तक सेवा में था और 232,592 घंटे का जीवन दर्ज किया गया था।बीबीसी ने अपने वाल्व के जीवन के सावधानीपूर्वक रिकॉर्ड को अपने केंद्रीय वाल्व स्टोरों में आवधिक रिटर्न के साथ बनाए रखा।[61][62]


वैक्यूम

खुली ट्यूब में गेटर;चांदी से जमा
डेड वैक्यूम फ्लोरोसेंट डिस्प्ले (हवा लीक हो गई है और गेटर स्पॉट सफेद हो गया है)

एक वैक्यूम ट्यूब को एक्स-रे शब्दावली से एक उच्च उच्च वैक्यूम (या हार्ड वैक्यूम, या हार्ड वैक्यूम की आवश्यकता होती है[63]) ट्यूब के भीतर सकारात्मक आयनों को उत्पन्न करने के परिणामों से बचने के लिए।एक इलेक्ट्रॉन द्वारा मारा जाने पर अवशिष्ट गैस परमाणु आयनित होते हैं और उत्सर्जन को कम करते हुए, कैथोड को प्रतिकूल रूप से प्रभावित कर सकते हैं।[64] बड़ी मात्रा में अवशिष्ट गैस ट्यूब इलेक्ट्रोड के बीच एक दृश्यमान चमक डिस्चार्ज बना सकती है और इलेक्ट्रोड के ओवरहीटिंग का कारण बन सकती है, अधिक गैस का उत्पादन करती है, ट्यूब को नुकसान पहुंचाती है और संभवतः अतिरिक्त वर्तमान के कारण अन्य घटकों को नुकसान पहुंचाती है।[65][66][67] इन प्रभावों से बचने के लिए, ट्यूब के भीतर अवशिष्ट दबाव काफी कम होना चाहिए कि एक इलेक्ट्रॉन का औसत मुक्त पथ ट्यूब के आकार की तुलना में अधिक लंबा है (इसलिए एक इलेक्ट्रॉन एक अवशिष्ट परमाणु पर हमला करने की संभावना नहीं है और बहुत कम आयनित परमाणु होंगेवर्तमान)।वाणिज्यिक वैक्यूम ट्यूबों को निर्माण में खाली कर दिया जाता है 0.000001 mmHg (1.0×10−6 Torr; 130 μPa; 1.3×10−6 mbar; 1.3×10−9 atm).[68][69] ट्यूब के वैक्यूम से समझौता करने से गैसों को रोकने के लिए, आधुनिक ट्यूबों का निर्माण गेटर्स के साथ किया जाता है, जो आमतौर पर धातुएं होती हैं जो जल्दी से ऑक्सीकरण करती हैं, बेरियम सबसे आम है।[69][70] ग्लास ट्यूबों के लिए, जबकि ट्यूब लिफाफे को खाली किया जा रहा है, गेट्टर को छोड़कर आंतरिक भागों को धातु भागों से किसी भी शेष गैस को विकसित करने के लिए आरएफ इंडक्शन हीटिंग द्वारा गर्म किया जाता है। ट्यूब को तब सील कर दिया जाता है और गेटर गर्त या पैन, फ्लैश गेटर्स के लिए, एक उच्च तापमान पर गर्म किया जाता है, फिर से रेडियो फ्रीक्वेंसी इंडक्शन हीटिंग द्वारा, जो गेट्टर सामग्री को किसी भी अवशिष्ट गैस के साथ वाष्पीकरण और प्रतिक्रिया करने का कारण बनता है। वाष्प को कांच के लिफाफे के अंदर जमा किया जाता है, एक चांदी के रंग के धातु पैच को छोड़ दिया जाता है जो अपने कामकाजी जीवन के दौरान ट्यूब में लीक हो सकती है जो कम मात्रा में गैस को अवशोषित करती है। यह सुनिश्चित करने के लिए वाल्व डिज़ाइन के साथ बहुत सावधानी बरती जाती है कि यह सामग्री किसी भी काम करने वाले इलेक्ट्रोड पर जमा नहीं की जाती है। यदि एक ट्यूब लिफाफे में एक गंभीर रिसाव विकसित करता है, तो यह जमा एक सफेद रंग में बदल जाता है क्योंकि यह वायुमंडलीय ऑक्सीजन के साथ प्रतिक्रिया करता है। बड़े संचारण और विशेष ट्यूब अक्सर अधिक विदेशी गेट्टर सामग्री का उपयोग करते हैं, जैसे कि ज़िरकोनियम। शुरुआती गेटेड ट्यूबों ने फॉस्फोरस-आधारित गेटर्स का उपयोग किया, और ये ट्यूब आसानी से पहचाने जाने योग्य हैं, क्योंकि फॉस्फोरस ग्लास पर एक विशेषता नारंगी या इंद्रधनुष जमा छोड़ देता है। फॉस्फोरस का उपयोग अल्पकालिक था और इसे जल्दी से बेहतर बेरियम गेटर्स द्वारा बदल दिया गया था। बेरियम गेटर्स के विपरीत, फास्फोरस ने एक बार आगे बढ़ने के बाद किसी भी आगे गैसों को अवशोषित नहीं किया।

गेटर्स रासायनिक रूप से अवशिष्ट या घुसपैठ गैसों के साथ संयोजन करके कार्य करते हैं, लेकिन काउंटरैक्ट (गैर-प्रतिक्रियाशील) अक्रिय गैसों का मुकाबला करने में असमर्थ हैं। एक ज्ञात समस्या, ज्यादातर बड़े लिफाफे जैसे कि कैथोड रे ट्यूब और कैमरा ट्यूब जैसे कि आइकोनोस्कोप, ऑर्थिकॉन और इमेज ऑर्थिकॉन जैसे वाल्व को प्रभावित करती है, हीलियम घुसपैठ से आती है।[citation needed] प्रभाव बिगड़ा हुआ या अनुपस्थित कामकाज के रूप में दिखाई देता है, और ट्यूब के अंदर इलेक्ट्रॉन स्ट्रीम के साथ एक फैलाना चमक के रूप में।इस प्रभाव को ठीक नहीं किया जा सकता है (पुनर्मूल्यांकन और पुनर्विचार की कमी), और इस तरह की ट्यूबों के दुर्लभ और दुर्लभ होने के काम के उदाहरणों के लिए जिम्मेदार है।अप्रयुक्त (नए पुराने स्टॉक) ट्यूब भी अक्रिय गैस घुसपैठ का प्रदर्शन कर सकते हैं, इसलिए भविष्य में जीवित रहने वाले इन ट्यूब प्रकारों की लंबी अवधि की गारंटी नहीं है।

ट्रांसमिटिंग ट्यूब्स

बड़ी संचारित ट्यूबों में थोरियम का एक छोटा ट्रेस (1% से 2%) होता है, टंगस्टन फिलामेंट्स होते हैं। वायर की कार्बोनेटेड परत के बाहर थोरियम परमाणुओं की एक अत्यंत पतली (आणविक) परत बनती है और गर्म होने पर, इलेक्ट्रॉनों के एक कुशल स्रोत के रूप में काम करती है। थोरियम धीरे -धीरे तार की सतह से वाष्पित हो जाता है, जबकि न्यू थोरियम परमाणु उन्हें बदलने के लिए सतह पर फैलते हैं। इस तरह के थोरियेटेड टंगस्टन कैथोड आमतौर पर हजारों घंटे में जीवनकाल देते हैं। एक थोरिएटेड-टंगस्टन फिलामेंट के लिए जीवन का अंत परिदृश्य तब होता है जब कार्बोनेटेड परत को ज्यादातर टंगस्टन कार्बाइड के दूसरे रूप में वापस बदल दिया गया है और उत्सर्जन तेजी से गिरना शुरू कर देता है; थोरियम का एक पूर्ण नुकसान कभी भी इस प्रकार के एमिटर के साथ एक ट्यूब में जीवन के जीवन में एक कारक नहीं पाया गया है। हंट्सविले में WAAY-TV, अलबामा ने अपने ट्रांसमीटर के दृश्य सर्किट में एक EIMAC बाहरी गुहा क्लेस्ट्रॉन से 163,000 घंटे (18.6 वर्ष) की सेवा हासिल की; यह इस प्रकार की ट्यूब के लिए उच्चतम प्रलेखित सेवा जीवन है।[71] कहा हेक[who?] वैक्यूम ट्यूब के साथ ट्रांसमीटर ट्रांजिस्टर ट्रांसमीटरों की तुलना में बिजली के हमलों से बचने में बेहतर हैं।हालांकि यह आमतौर पर माना जाता था कि वैक्यूम ट्यूब लगभग 20 किलोवाट से ऊपर आरएफ बिजली के स्तर पर ठोस-राज्य सर्किट की तुलना में अधिक कुशल थे, यह अब मामला नहीं है, विशेष रूप से मध्यम तरंग (एएम प्रसारण) सेवा में जहां लगभग सभी शक्ति पर ठोस-राज्य ट्रांसमीटरस्तरों में औसत रूप से उच्च दक्षता होती है।लगभग 15kW तक ठोस-राज्य पावर एम्पलीफायरों के साथ एफएम प्रसारण ट्रांसमीटर भी ट्यूब-आधारित पावर एम्पलीफायरों की तुलना में बेहतर समग्र शक्ति दक्षता दिखाते हैं।

प्राप्त ट्यूब

छोटे प्राप्त करने वाली ट्यूबों में कैथोड को बेरियम ऑक्साइड और स्ट्रोंटियम ऑक्साइड के मिश्रण के साथ लेपित किया जाता है, कभी -कभी कैल्शियम ऑक्साइड या एल्यूमीनियम ऑक्साइड के अलावा।एक इलेक्ट्रिक हीटर को कैथोड आस्तीन में डाला जाता है और एल्यूमीनियम ऑक्साइड के कोटिंग द्वारा विद्युत रूप से अछूता है।यह जटिल निर्माण लगभग 780 डिग्री सेल्सियस तक गर्म होने पर बैरियम और स्ट्रोंटियम परमाणुओं को कैथोड की सतह पर फैलने और इलेक्ट्रॉनों का उत्सर्जन करने का कारण बनता है।

विफलता मोड

भयावह विफलताएं

एक भयावह विफलता वह है जो अचानक वैक्यूम ट्यूब को अनुपयोगी बनाती है। कांच के लिफाफे में एक दरार ट्यूब में हवा की अनुमति देगा और इसे नष्ट कर देगा। दरारें कांच में तनाव, मुड़ी हुई पिन या प्रभावों से हो सकती हैं; ट्यूब सॉकेट्स को थर्मल विस्तार के लिए अनुमति देनी चाहिए, ताकि पिन पर कांच में तनाव को रोका जा सके। यदि एक धातु ढाल या अन्य ऑब्जेक्ट ट्यूब लिफाफे पर दबाता है और कांच के अंतर हीटिंग का कारण बनता है, तो तनाव जमा हो सकता है। ग्लास भी उच्च-वोल्टेज आर्किंग से क्षतिग्रस्त हो सकता है।

ट्यूब हीटर भी चेतावनी के बिना विफल हो सकते हैं, खासकर अगर ओवर वोल्टेज के संपर्क में या विनिर्माण दोषों के परिणामस्वरूप। ट्यूब हीटर आम तौर पर लैंप फिलामेंट्स की तरह वाष्पीकरण से विफल नहीं होते हैं क्योंकि वे बहुत कम तापमान पर काम करते हैं। जब हीटर पहले ऊर्जावान होता है, तो इनरश करंट का उछाल हीटर में तनाव का कारण बनता है और इसे धीरे -धीरे हीटर को गर्म करने से बचा जा सकता है, धीरे -धीरे सर्किट में शामिल एनटीसी थर्मिस्टर के साथ करंट को बढ़ाता है। आपूर्ति के दौरान हीटर के श्रृंखला-स्ट्रिंग संचालन के लिए इच्छित ट्यूबों में कुछ हीटरों पर अतिरिक्त वोल्टेज से बचने के लिए एक निर्दिष्ट नियंत्रित वार्म-अप समय होता है क्योंकि अन्य लोग वार्म अप करते हैं। बैटरी-संचालित ट्यूबों या कुछ रेक्टिफायर में उपयोग किए जाने वाले सीधे गर्म फिलामेंट-प्रकार के कैथोड्स विफल हो सकते हैं यदि फिलामेंट एसएजीएस, आंतरिक आर्किंग का कारण बनता है। अप्रत्यक्ष रूप से गर्म कैथोड में अतिरिक्त हीटर-टू-कैथोड वोल्टेज तत्वों के बीच इन्सुलेशन को तोड़ सकता है और हीटर को नष्ट कर सकता है।

ट्यूब तत्वों के बीच वृद्धि ट्यूब को नष्ट कर सकती है। कैथोड के ऑपरेटिंग तापमान तक आने से पहले, या एक रेक्टिफायर के माध्यम से अतिरिक्त करंट को खींचकर, जो उत्सर्जन कोटिंग को नुकसान पहुंचाता है, वोल्टेज को एनोड (प्लेट) पर लागू करने के कारण एक चाप हो सकता है। ARCs को ट्यूब के अंदर किसी भी ढीली सामग्री या अतिरिक्त स्क्रीन वोल्टेज द्वारा भी शुरू किया जा सकता है। ट्यूब के अंदर एक चाप गैस को ट्यूब सामग्री से विकसित करने की अनुमति देता है, और आंतरिक इन्सुलेट स्पेसर्स पर प्रवाहकीय सामग्री जमा कर सकता है।[72] ट्यूब रेक्टिफायर में सीमित वर्तमान क्षमता होती है और रेटिंग से अधिक रेटिंग अंततः एक ट्यूब को नष्ट कर देगी।

अपक्षयी विफलताएं

अपक्षयी विफलताएं समय के साथ प्रदर्शन की धीमी गिरावट के कारण होती हैं।

आंतरिक भागों की ओवरहीटिंग, जैसे कि नियंत्रण ग्रिड या माइका स्पेसर इंसुलेटर, के परिणामस्वरूप फंसी हुई गैस ट्यूब में भाग सकती है; यह प्रदर्शन को कम कर सकता है। ट्यूब ऑपरेशन के दौरान विकसित गैसों को अवशोषित करने के लिए एक गेट्टर का उपयोग किया जाता है, लेकिन इसमें केवल गैस के साथ गठबंधन करने की सीमित क्षमता होती है। लिफाफा तापमान का नियंत्रण कुछ प्रकार के गेसिंग को रोकता है। एक असामान्य रूप से उच्च स्तर के आंतरिक गैस के साथ एक ट्यूब प्लेट वोल्टेज लागू होने पर एक दृश्यमान नीले रंग की चमक प्रदर्शित कर सकती है। गेट्टर (एक अत्यधिक प्रतिक्रियाशील धातु होने के नाते) कई वायुमंडलीय गैसों के खिलाफ प्रभावी है, लेकिन हेलियम जैसी गैसों को निष्क्रिय करने के लिए कोई (या बहुत सीमित) रासायनिक प्रतिक्रिया नहीं है। एक प्रगतिशील प्रकार की विफलता, विशेष रूप से शारीरिक रूप से बड़े लिफाफे के साथ जैसे कि कैमरा ट्यूब और कैथोड-रे ट्यूब द्वारा उपयोग किए जाने वाले, हीलियम घुसपैठ से आते हैं। सटीक तंत्र स्पष्ट नहीं है: मेटल-टू-ग्लास लीड-इन सील एक संभावित घुसपैठ साइट हैं।

ट्यूब के भीतर गैस और आयन ग्रिड करंट में योगदान करते हैं जो एक वैक्यूम-ट्यूब सर्किट के संचालन को परेशान कर सकते हैं। ओवरहीटिंग का एक और प्रभाव आंतरिक स्पेसर्स पर धातु वाष्पों की धीमी जमा है, जिसके परिणामस्वरूप अंतर-तत्व रिसाव होता है।

लंबे समय तक स्टैंडबाय पर ट्यूब, हीटर वोल्टेज लागू होने के साथ, उच्च कैथोड इंटरफ़ेस प्रतिरोध विकसित कर सकते हैं और खराब उत्सर्जन विशेषताओं को प्रदर्शित कर सकते हैं। यह प्रभाव विशेष रूप से पल्स और डिजिटल सर्किट में हुआ, जहां ट्यूबों में विस्तारित समय के लिए कोई प्लेट करंट प्रवाह नहीं था। ऑपरेशन के इस मोड के लिए विशेष रूप से डिज़ाइन किए गए ट्यूब बनाए गए थे।

कैथोड की कमी सामान्य उपयोग के हजारों घंटे के बाद उत्सर्जन का नुकसान है। कभी -कभी हीटर वोल्टेज को बढ़ाकर, या तो थोड़े समय के लिए या कुछ प्रतिशत की स्थायी वृद्धि के लिए उत्सर्जन को एक समय के लिए बहाल किया जा सकता है। कैथोड की कमी सिग्नल ट्यूबों में असामान्य थी, लेकिन मोनोक्रोम टेलीविजन कैथोड-रे ट्यूब की विफलता का एक लगातार कारण था।[73] इस महंगे घटक के प्रयोग करने योग्य जीवन को कभी -कभी हीटर वोल्टेज को बढ़ाने के लिए एक बूस्ट ट्रांसफार्मर को फिट करके बढ़ाया गया था।

अन्य विफलताएं

वैक्यूम ट्यूब ऑपरेशन में दोषों को विकसित कर सकते हैं जो किसी दिए गए डिवाइस में एक व्यक्तिगत ट्यूब को अनुपयुक्त बनाते हैं, हालांकि यह किसी अन्य एप्लिकेशन में संतोषजनक ढंग से प्रदर्शन कर सकता है।माइक्रोफोनिक्स ट्यूब तत्वों के आंतरिक कंपन को संदर्भित करता है जो ट्यूब के सिग्नल को अवांछनीय तरीके से संशोधित करते हैं;ध्वनि या कंपन पिक-अप संकेतों को प्रभावित कर सकता है, या यहां तक कि अनियंत्रित हॉलिंग का कारण बन सकता है यदि एक प्रतिक्रिया पथ (एकता लाभ से अधिक के साथ) एक माइक्रोफोनिक ट्यूब के बीच विकसित होता है और उदाहरण के लिए, एक लाउडस्पीकर।एसी हीटरों और कैथोड के बीच रिसाव करंट सर्किट में युगल हो सकता है, या हीटर के सिरों से सीधे उत्सर्जित इलेक्ट्रॉनों को भी सिग्नल में एचयूएम को इंजेक्ट किया जा सकता है।आंतरिक संदूषण के कारण रिसाव वर्तमान भी शोर को इंजेक्ट कर सकता है।[74] इनमें से कुछ प्रभाव छोटे-सिग्नल ऑडियो उपयोग के लिए ट्यूबों को अनुपयुक्त बनाते हैं, हालांकि अन्य उद्देश्यों के लिए अप्राप्य हैं।महत्वपूर्ण अनुप्रयोगों के लिए नाममात्र समान ट्यूबों के एक बैच का चयन करना बेहतर परिणाम पैदा कर सकता है।

ट्यूब पिन गर्मी या गंदगी के कारण गैर-संचालन या उच्च प्रतिरोध सतह फिल्मों का विकास कर सकते हैं।चालन को बहाल करने के लिए पिन को साफ किया जा सकता है।

परीक्षण

सार्वभौमिक वैक्यूम ट्यूब परीक्षक

वैक्यूम ट्यूबों को वैक्यूम ट्यूब परीक्षक का उपयोग करके उनके सर्किटरी के बाहर परीक्षण किया जा सकता है।

अन्य वैक्यूम ट्यूब डिवाइस

अधिकांश छोटे सिग्नल वैक्यूम ट्यूब उपकरणों को अर्धचालक द्वारा सुपरसोर किया गया है, लेकिन कुछ वैक्यूम ट्यूब इलेक्ट्रॉनिक उपकरण अभी भी सामान्य उपयोग में हैं।मैग्नेट्रॉन सभी माइक्रोवेव ओवन में उपयोग की जाने वाली ट्यूब का प्रकार है।पावर सेमीकंडक्टर टेक्नोलॉजी में कला की अग्रिम स्थिति के बावजूद, वैक्यूम ट्यूब में अभी भी उच्च-आवृत्ति आरएफ बिजली उत्पादन के लिए विश्वसनीयता और लागत लाभ हैं।

कुछ ट्यूब, जैसे कि मैग्नेट्रॉन, ट्रैवलिंग-वेव ट्यूब, कार्सिनोट्रॉन और क्लेस्ट्रॉन, चुंबकीय और इलेक्ट्रोस्टैटिक प्रभावों को संयोजित करते हैं।ये कुशल (आमतौर पर संकीर्ण-बैंड) आरएफ जनरेटर हैं और अभी भी रडार, माइक्रोवेव ओवन और औद्योगिक हीटिंग में उपयोग करते हैं।ट्रैवलिंग-वेव ट्यूब (TWTS) बहुत अच्छे एम्पलीफायरों हैं और यहां तक कि कुछ संचार उपग्रहों में भी उपयोग किए जाते हैं।उच्च शक्ति वाले Klystron एम्पलीफायर ट्यूब UHF रेंज में सैकड़ों किलोवाट प्रदान कर सकते हैं।

कैथोड किरण ट्यूब

कैथोड रे ट्यूब (CRT) एक वैक्यूम ट्यूब है जिसका उपयोग विशेष रूप से प्रदर्शन उद्देश्यों के लिए किया जाता है।यद्यपि कैथोड किरण ट्यूबों का उपयोग करके अभी भी कई टेलीविजन और कंप्यूटर मॉनिटर हैं, उन्हें तेजी से फ्लैट पैनल डिस्प्ले द्वारा प्रतिस्थापित किया जा रहा है, जिनकी गुणवत्ता में भी बहुत सुधार हुआ है क्योंकि उनकी कीमतें गिरती हैं।यह डिजिटल ऑस्किलोस्कोप (आंतरिक कंप्यूटर और एनालॉग-टू-डिजिटल कन्वर्टर्स के आधार पर) के बारे में भी सच है, हालांकि पारंपरिक एनालॉग स्कोप (सीआरटी पर निर्भर) का उत्पादन जारी है, किफायती हैं, और कई तकनीशियनों द्वारा पसंद किए जाते हैं।[citation needed] एक समय में कई रेडियो ने मैजिक आई ट्यूब्स का इस्तेमाल किया, एक विशेष प्रकार का सीआरटी जो एक मीटर आंदोलन के स्थान पर उपयोग किया जाता है, एक टेप रिकॉर्डर में सिग्नल स्ट्रेंथ या इनपुट स्तर को इंगित करने के लिए।एक आधुनिक संकेतक उपकरण, वैक्यूम फ्लोरोसेंट डिस्प्ले (VFD) भी एक प्रकार का कैथोड रे ट्यूब है।

एक्स-रे ट्यूब एक प्रकार का कैथोड किरण ट्यूब है जो एक्स-रे उत्पन्न करता है जब उच्च वोल्टेज इलेक्ट्रॉनों एनोड से टकराता है।

गायरोट्रोन या वैक्यूम मासर्स, जिसका उपयोग उच्च-शक्ति मिलीमीटर बैंड तरंगों को उत्पन्न करने के लिए किया जाता है, चुंबकीय वैक्यूम ट्यूब हैं, जिसमें उच्च वोल्टेज के कारण एक छोटा सा रिलेटिविक प्रभाव, इलेक्ट्रॉनों को गुच्छा के लिए उपयोग किया जाता है।Gyrotrons बहुत उच्च शक्तियां (सैकड़ों किलोवाट) उत्पन्न कर सकते हैं। फ्री-इलेक्ट्रॉन लेजर, जिसका उपयोग उच्च-शक्ति वाले सुसंगत प्रकाश और यहां तक कि एक्स-रे उत्पन्न करने के लिए किया जाता है, उच्च-ऊर्जा कण त्वरक द्वारा संचालित अत्यधिक सापेक्षतावादी वैक्यूम ट्यूब हैं।इस प्रकार, ये कैथोड किरण ट्यूबों के प्रकार हैं।

इलेक्ट्रॉन गुणक

एक फोटोमुल्टिप्लियर एक फोटोट्यूब है जिसकी संवेदनशीलता इलेक्ट्रॉन गुणन के उपयोग के माध्यम से बहुत बढ़ जाती है। यह द्वितीयक उत्सर्जन के सिद्धांत पर काम करता है, जिससे फोटोकैथोड द्वारा उत्सर्जित एक एकल इलेक्ट्रॉन एक विशेष प्रकार के एनोड से टकराता है जिसे डायनोड के रूप में जाना जाता है, जिससे उस डायनोड से अधिक इलेक्ट्रॉनों को जारी किया जाता है। उन इलेक्ट्रॉनों को एक उच्च वोल्टेज पर एक और डायनोड की ओर त्वरित किया जाता है, अधिक माध्यमिक इलेक्ट्रॉनों को जारी करते हुए; 15 में से 15 ऐसे चरण एक विशाल प्रवर्धन प्रदान करते हैं। ठोस-राज्य फोटोडेटेक्टर्स (जैसे सिंगल-फोटॉन हिमस्खलन डायोड) में बहुत प्रगति के बावजूद, फोटोमुल्टिप्लियर ट्यूब की एकल-फोटॉन डिटेक्शन क्षमता कुछ अनुप्रयोगों में इस वैक्यूम ट्यूब डिवाइस को एक्सेल बनाती है। इस तरह की ट्यूब का उपयोग गीगर -म्यूलर ट्यूब (स्वयं एक वास्तविक वैक्यूम ट्यूब नहीं) के विकल्प के रूप में आयनीकरण विकिरण का पता लगाने के लिए भी किया जा सकता है। ऐतिहासिक रूप से, आधुनिक सीसीडी सरणियों के विकास से पहले टेलीविजन स्टूडियो में व्यापक रूप से उपयोग किए जाने वाले ऑर्टिकॉन टीवी कैमरा ट्यूब ने भी मल्टीस्टेज इलेक्ट्रॉन गुणन का उपयोग किया।

दशकों के लिए, इलेक्ट्रॉन-ट्यूब डिजाइनरों ने लाभ बढ़ाने के लिए इलेक्ट्रॉन गुणकों के साथ ट्यूबों को बढ़ाने की कोशिश की, लेकिन ये कम जीवन से पीड़ित थे क्योंकि डायनोड्स के लिए इस्तेमाल की जाने वाली सामग्री ने ट्यूब के हॉट कैथोड को जहर दिया। (उदाहरण के लिए, दिलचस्प आरसीए 1630 सेकेंडरी-एमिशन ट्यूब का विपणन किया गया था, लेकिन यह नहीं हुआ था।) हालांकि, आखिरकार, नीदरलैंड के फिलिप्स ने EFP60 ट्यूब विकसित की, जिसमें एक संतोषजनक जीवनकाल था और इसका उपयोग कम से कम एक उत्पाद, एक प्रयोगशाला पल्स में किया गया था। जनरेटर। उस समय तक, हालांकि, ट्रांजिस्टर तेजी से सुधार कर रहे थे, इस तरह के विकास को शानदार बना दिया।

चैनल इलेक्ट्रॉन गुणक नामक एक संस्करण व्यक्तिगत डायनोड्स का उपयोग नहीं करता है, लेकिन एक घुमावदार ट्यूब होता है, जैसे कि हेलिक्स, अच्छे माध्यमिक उत्सर्जन के साथ सामग्री के साथ अंदर पर लेपित। माध्यमिक इलेक्ट्रॉनों को पकड़ने के लिए एक प्रकार का फ़नल था। निरंतर डायनोड प्रतिरोधक था, और इसके छोर इलेक्ट्रॉनों के बार -बार कैस्केड बनाने के लिए पर्याप्त वोल्टेज से जुड़े थे। माइक्रोचैनल प्लेट में एक छवि विमान पर एकल चरण इलेक्ट्रॉन गुणकों की एक सरणी होती है; इनमें से कई को तब ढेर किया जा सकता है। उदाहरण के लिए, इसका उपयोग किया जा सकता है, एक छवि गहनता के रूप में, जिसमें असतत चैनल फोकसिंग के लिए स्थानापन्न करते हैं।

Tektronix ने फॉस्फोर लेयर के पीछे एक चैनल इलेक्ट्रॉन गुणक प्लेट के साथ एक उच्च-प्रदर्शन वाइडबैंड ऑसिलोस्कोप CRT बनाया। यह प्लेट एक बड़ी संख्या में छोटी व्यक्ति की एक बंडल सरणी थी। सी.ई.एम. ट्यूबों ने एक कम-वर्तमान बीम को स्वीकार किया और व्यावहारिक चमक का प्रदर्शन प्रदान करने के लिए इसे तेज कर दिया। (वाइडबैंड इलेक्ट्रॉन गन के इलेक्ट्रॉन प्रकाशिकी फॉस्फोर को सीधे उत्तेजित करने के लिए पर्याप्त वर्तमान प्रदान नहीं कर सकी।)

21 वीं सदी में वैक्यूम ट्यूब

आला अनुप्रयोग

यद्यपि वैक्यूम ट्यूबों को बड़े पैमाने पर ठोस-राज्य इलेक्ट्रॉनिक्स द्वारा प्रतिस्थापित किया गया है। अधिकांश प्रवर्धक, स्विच करने और अनुप्रयोगों को सुधारने में ठोस-राज्य उपकरण, कुछ अपवाद हैं।ऊपर उल्लिखित विशेष कार्यों के अलावा, ट्यूब still कुछ आला अनुप्रयोग हैं।

सामान्य तौर पर, वैक्यूम ट्यूब क्षणिक ओवरवॉल्टेज के लिए इसी ठोस-राज्य घटकों की तुलना में बहुत कम अतिसंवेदनशील होते हैं, जैसे कि मुख्य वोल्टेज सर्ज या बिजली, परमाणु विस्फोटों का विद्युत चुम्बकीय पल्स प्रभाव,[75] या विशाल सौर फ्लेयर्स द्वारा निर्मित भू -चुंबकीय तूफान।[76] इस संपत्ति ने उन्हें कुछ सैन्य अनुप्रयोगों के लिए उपयोग में रखा और अधिक व्यावहारिक और कम महंगी ठोस-राज्य प्रौद्योगिकी के बाद समान अनुप्रयोगों के लिए उपलब्ध था, उदाहरण के लिए, उदाहरण के लिए मिग -25 के साथ।[75]

वैक्यूम ट्यूब अभी भी हैं[when?] औद्योगिक रेडियो आवृत्ति हीटिंग, कण त्वरक, और प्रसारण ट्रांसमीटर जैसे अनुप्रयोगों में रेडियो आवृत्तियों पर उच्च शक्ति उत्पन्न करने में ठोस-राज्य उपकरणों के लिए व्यावहारिक विकल्प।यह माइक्रोवेव आवृत्तियों पर विशेष रूप से सच है, जहां क्लेस्ट्रॉन और ट्रैवलिंग-वेव ट्यूब जैसे उपकरण बिजली के स्तर पर प्रवर्धन प्रदान करते हैं, जो अप्राप्य का उपयोग करते हैं current अर्धचालक उपकरण।घरेलू माइक्रोवेव ओवन माइक्रोवेव पावर के सैकड़ों वाट को कुशलता से उत्पन्न करने के लिए एक मैग्नेट्रॉन ट्यूब का उपयोग करता है।गैलियम नाइट्राइड जैसे ठोस-राज्य उपकरण प्रतिस्थापन का वादा कर रहे हैं, लेकिन बहुत महंगे हैं और अभी भी हैं[when?] विकास में।

सैन्य अनुप्रयोगों में, एक उच्च-शक्ति वैक्यूम ट्यूब 10-100 & nbsp; मेगावाट सिग्नल उत्पन्न कर सकती है जो एक असुरक्षित रिसीवर के फ्रंटेंड को जला सकती है।ऐसे उपकरणों को गैर-परमाणु विद्युत चुम्बकीय हथियार माना जाता है;उन्हें 1990 के दशक के उत्तरार्ध में अमेरिका और रूस दोनों द्वारा पेश किया गया था।[citation needed]


ऑडीओफाइल्स

70-वाट ट्यूब-हाइब्रिड ऑडियो एम्पलीफायर

तीन क्षेत्रों में ट्यूब एम्पलीफायरों को व्यावसायिक रूप से व्यवहार्य बनाने के लिए पर्याप्त लोग ट्यूब ध्वनि पसंद करते हैं: संगीत वाद्ययंत्र (जैसे, गिटार) एम्पलीफायरों, रिकॉर्डिंग स्टूडियो में उपयोग किए जाने वाले उपकरण, और ऑडियोफाइल उपकरण।[77] कई गिटारवादक वाल्व एम्पलीफायरों का उपयोग ठोस-राज्य मॉडल के लिए पसंद करते हैं, अक्सर जिस तरह से वे ओवरड्राइव होने पर विकृत करते हैं।[78] कोई भी एम्पलीफायर केवल एक निश्चित मात्रा में एक संकेत को सटीक रूप से बढ़ा सकता है;इस सीमा को पार करें, एम्पलीफायर सिग्नल को विकृत करना शुरू कर देगा।अलग -अलग सर्किट सिग्नल को अलग -अलग तरीकों से विकृत करेंगे;कुछ गिटारवादक वैक्यूम ट्यूब की विकृति विशेषताओं को पसंद करते हैं।अधिकांश लोकप्रिय विंटेज मॉडल वैक्यूम ट्यूब का उपयोग करते हैं।[citation needed]


डिस्प्ले

कैथोड किरण ट्यूब

कैथोड रे ट्यूब 21 वीं सदी की शुरुआत में टेलीविज़न और कंप्यूटर मॉनिटर के लिए प्रमुख प्रदर्शन तकनीक थी।हालांकि, तेजी से अग्रिम और तरल-क्रिस्टल डिस्प्ले की गिरती कीमतें | एलसीडी फ्लैट पैनल तकनीक ने जल्द ही इन उपकरणों में सीआरटी की जगह ले ली।[79] 2010 तक, अधिकांश CRT उत्पादन समाप्त हो गया था।[80]


वैक्यूम ट्यूब फील्ड इलेक्ट्रॉन एमिटर्स का उपयोग करके

21 वीं सदी के शुरुआती वर्षों में वैक्यूम ट्यूबों में नए सिरे से रुचि थी, इस बार एक फ्लैट सिलिकॉन सब्सट्रेट पर गठित इलेक्ट्रॉन एमिटर के साथ, एकीकृत सर्किट प्रौद्योगिकी के रूप में।इस विषय को अब वैक्यूम नैनोइलेक्ट्रॉनिक्स कहा जाता है।[81] सबसे आम डिजाइन एक बड़े क्षेत्र के क्षेत्र इलेक्ट्रॉन स्रोत के रूप में एक ठंडे कैथोड का उपयोग करता है (उदाहरण के लिए एक क्षेत्र एमिटर सरणी)।इन उपकरणों के साथ, इलेक्ट्रॉनों को बड़ी संख्या में बारीकी से अलग-अलग उत्सर्जन साइटों से क्षेत्र-उत्सर्जित किया जाता है।

इस तरह के एकीकृत माइक्रोट्यूब्स को ब्लूटूथ और वाई-फाई ट्रांसमिशन के लिए, और रडार और सैटेलाइट संचार में मोबाइल फोन सहित माइक्रोवेव उपकरणों में एप्लिकेशन मिल सकता है।[citation needed] As of 2012, उन्हें क्षेत्र उत्सर्जन प्रदर्शन प्रौद्योगिकी में संभावित अनुप्रयोगों के लिए अध्ययन किया जा रहा था, लेकिन महत्वपूर्ण उत्पादन समस्याएं थीं।[citation needed] 2014 तक, नासा के एम्स रिसर्च सेंटर को सीएमओएस तकनीकों का उपयोग करके उत्पादित वैक्यूम-चैनल ट्रांजिस्टर पर काम करने की सूचना मिली थी।[82]


विशेषताएँ

विशिष्ट ट्रायोड प्लेट विशेषताएँ


एक वैक्यूम ट्यूब का अंतरिक्ष चार्ज

जब एक कैथोड गर्म हो जाता है और 1050 ° केल्विन (777 ° सेल्सियस) के आसपास एक ऑपरेटिंग तापमान तक पहुंचता है, तो मुक्त इलेक्ट्रॉनों को इसकी सतह से संचालित किया जाता है।ये मुक्त इलेक्ट्रॉन कैथोड और एनोड के बीच खाली जगह में एक बादल बनाते हैं, जिसे स्पेस चार्ज के रूप में जाना जाता है।यह स्पेस चार्ज क्लाउड इलेक्ट्रॉनों की आपूर्ति करता है जो कैथोड से एनोड तक वर्तमान प्रवाह बनाते हैं।चूंकि सर्किट के संचालन के दौरान इलेक्ट्रॉनों को एनोड के लिए तैयार किया जाता है, इसलिए नए इलेक्ट्रॉन स्पेस चार्ज को फिर से भरने के लिए कैथोड को उबाल देंगे।[83] अंतरिक्ष चार्ज एक विद्युत क्षेत्र का एक उदाहरण है।

वोल्टेज - वैक्यूम ट्यूब की वर्तमान विशेषताएं

एक या एक से अधिक नियंत्रण ग्रिड वाले सभी ट्यूबों को नियंत्रण ग्रिड पर लागू एक एसी (वैकल्पिक वर्तमान) इनपुट वोल्टेज द्वारा नियंत्रित किया जाता है, जबकि परिणामी प्रवर्धित सिग्नल एनोड पर एक वर्तमान के रूप में दिखाई देता है।एनोड पर रखे गए उच्च वोल्टेज के कारण, एक अपेक्षाकृत छोटा एनोड करंट मूल सिग्नल वोल्टेज के मूल्य पर ऊर्जा में काफी वृद्धि का प्रतिनिधित्व कर सकता है।गर्म कैथोड से संचालित स्पेस चार्ज इलेक्ट्रॉनों को सकारात्मक रूप से सकारात्मक एनोड को आकर्षित किया जाता है।एक ट्यूब में नियंत्रण ग्रिड (एस) ग्रिड के थोड़े नकारात्मक मूल्य के साथ छोटे एसी सिग्नल करंट को मिलाकर इस वर्तमान प्रवाह को मध्यस्थता करता है।जब सिग्नल साइन (एसी) तरंग को ग्रिड पर लागू किया जाता है, तो यह इस नकारात्मक मूल्य पर सवारी करता है, इसे सकारात्मक और नकारात्मक दोनों तरह से चलाता है क्योंकि एसी सिग्नल वेव बदल जाता है।

इस संबंध को प्लेट विशेषताओं के वक्रों के एक सेट के साथ दिखाया गया है, (ऊपर उदाहरण देखें), जो नेत्रहीन प्रदर्शित करते हैं कि एनोड से आउटपुट कैसे वर्तमान (Ia) ग्रिड पर लागू एक छोटे इनपुट वोल्टेज से प्रभावित हो सकता है (Vg), प्लेट (एनोड) पर किसी भी वोल्टेज के लिए (Va)।

हर ट्यूब में इस तरह के विशिष्ट घटता का एक अनूठा सेट होता है।वक्र ग्राफिक रूप से ग्रिड-टू-कैथोड वोल्टेज में बहुत छोटे परिवर्तन द्वारा संचालित तात्कालिक प्लेट वर्तमान में परिवर्तन से संबंधित हैं (Vgk) जैसा कि इनपुट सिग्नल भिन्न होता है।

V-I विशेषता प्लेट और कैथोड के आकार और सामग्री पर निर्भर करती है।[84] वोल्टेज प्लेट और प्लेट वर्तमान के बीच अनुपात को व्यक्त करें।[85]

  • वी-आई वक्र (फिलामेंट्स, प्लेट करंट में वोल्टेज)
  • प्लेट करंट, प्लेट वोल्टेज विशेषताओं
  • प्लेट की डीसी प्लेट प्रतिरोध - प्रत्यक्ष वर्तमान के एनोड और कैथोड के बीच के पथ की प्रतिरोध
  • प्लेट की एसी प्लेट प्रतिरोध - वैकल्पिक वर्तमान के एनोड और कैथोड के बीच के पथ की प्रतिरोध

इलेक्ट्रोस्टैटिक क्षेत्र का आकार

इलेक्ट्रोस्टैटिक क्षेत्र का आकार ट्यूब में दो या दो से अधिक प्लेटों के बीच का आकार है।

पेटेंट

  • U.S. Patent 803,684- निरंतर धाराओं में वैकल्पिक बिजली की धाराओं को परिवर्तित करने के लिए (फ्लेमिंग वाल्व पेटेंट)
  • U.S. Patent 841,387—स
  • U.S. Patent 879,532-डे वन के तीन इलेक्ट्रोड ऑडियन

यह भी देखें

  • बोगी मान- निर्माता के घोषित पैरामीटर मानों को क्लिन करें
  • Fetron- एक ठोस-राज्य, प्लग-संगत, वैक्यूम ट्यूबों के लिए प्रतिस्थापन
  • वैक्यूम ट्यूबों की सूची - प्रकार की संख्याओं की एक सूची।
  • वैक्यूम-ट्यूब कंप्यूटरों की सूची
  • मुलार्ड -फिलिप्स ट्यूब पदनाम
  • निक्सी ट्यूब- एक गैस से भरा डिस्प्ले डिवाइस कभी-कभी वैक्यूम ट्यूब के रूप में गलत तरीके से किया जाता है
  • रेटमा ट्यूब पदनाम
  • आरएमए ट्यूब पदनाम
  • रूसी ट्यूब पदनाम
  • ट्यूब कैडी
  • ट्यूब परीक्षक
  • वाल्व एम्पलीफायर
  • Zetatron


व्याख्यात्मक नोट्स


संदर्भ

  1. Reich, Herbert J. (13 April 2013). Principles of Electron Tubes (PDF). Literary Licensing, LLC. ISBN 978-1258664060. Archived (PDF) from the original on 2 April 2017.
  2. Fundamental Amplifier Techniques with Electron Tubes: Theory and Practice with Design Methods for Self Construction. Elektor Electronics. 1 January 2011. ISBN 978-0905705934.
  3. "RCA Electron Tube 6BN6/6KS6". Amazon. Retrieved 13 April 2015.
  4. John Algeo, "Types of English heteronyms", p. 23 in, Edgar Werner Schneider (ed), Englishes Around the World: General studies, British Isles, North America, John Benjamins Publishing, 1997 ISBN 9027248761.
  5. Hoddeson L., Riordan M. (1997). Crystal Fire. New York: W. W. Norton & Co. Inc. p. 58. Retrieved Oct 2021
  6. Macksey, Kenneth; Woodhouse, William (1991). "Electronics". The Penguin Encyclopedia of Modern Warfare: 1850 to the present day. Viking. p. 110. ISBN 978-0-670-82698-8. The electronics age may be said to have been ushered in with the invention of the vacuum diode valve in 1902 by the Briton John Fleming (himself coining the word 'electronics'), the immediate application being in the field of radio.
  7. 7.0 7.1 Morgan Jones, Valve Amplifiers, Elsevier, 2012 ISBN 0080966403.
  8. Olsen, George Henry (2013). Electronics: A General Introduction for the Non-Specialist. Springer. p. 391. ISBN 978-1489965356.
  9. Rogers, D. C. (1951). "Triode amplifiers in the frequency range 100 Mc/s to 420 Mc/s". Journal of the British Institution of Radio Engineers. 11 (12): 569–575. doi:10.1049/jbire.1951.0074., p.571
  10. Bray, John (2002). Innovation and the Communications Revolution: From the Victorian Pioneers to Broadband Internet. IET. ISBN 9780852962183. Archived from the original on 3 December 2016.
  11. Guthrie, Frederick (1876). Magnetism and Electricity. London and Glasgow: William Collins, Sons, & Company. p. 1.[page needed]
  12. Thomas A. Edison U.S. Patent 307,031 "Electrical Indicator", Issue date: 1884
  13. 13.0 13.1 13.2 Fleming, J. A. (1934). Memories of a Scientific Life. London, UK: Marshall, Morgan & Scott, Ltd. pp. 136 - 143. Retrieved Nov. 2021.
  14. Guarnieri, M. (2012). "The age of vacuum tubes: Early devices and the rise of radio communications". IEEE Ind. Electron. M. 6 (1): 41–43. doi:10.1109/MIE.2012.2182822. S2CID 23351454.
  15. White, Thomas, United States Early Radio History, archived from the original on 18 August 2012
  16. "Mazda Valves". Archived from the original on 28 June 2013. Retrieved 12 January 2017.
  17. Fleming (1934) pp. 138 - 143.
  18. Editors (Sept 1954) "World of Wireless" Wireless World p. 411. Retrieved Nov. 2021.
  19. Fleming, J. A. (1905). Instrument for Converting Alternating Electric Currents into Continuous Currents. U. S. patent 803,684. Retrieved Nov 2021.
  20. Robison, S. S. (1911). Manual of Wireless Telegraphy for the use of Naval Electricians. Annapolis, MD: United States Naval Institute. p. 124 fig. 84; pp. 131, 132. Retrieved Nov 2021
  21. Keen, R. (1922). Direction and Position Finding by Wireless. London: The Wireless Press, Ltd. p. 74. Retrieved Nov. 2021.
  22. Dushman, S. (1915). "A New Device for Rectifying High Tension Alternating Currents - The Kenotron" General Electric Review pp. 156 - 167. Retrieved Nov. 2021
  23. Dushman, S. (1915). Electrical Discharge Device. U. S. patent 1,287,265. Retrieved Nov. 2021.
  24. Fleming, J. A. (1919). The Thermionic Valve and its Developments in Radiotelegraphy and Telephony. London, UK: The Wireless Press Ltd. p. 115. Retrieved Oct 2021
  25. "AT&T Labs Research | AT&T". Archived from the original on 5 October 2013. Retrieved 21 August 2013.
  26. Räisänen, Antti V.; Lehto, Arto (2003). Radio Engineering for Wireless Communication and Sensor Applications. Artech House. p. 7. ISBN 978-1580536691.
  27. Edison Tech Center (2015). "General Electric Research Lab History". edisontechcenter.org. Retrieved 12 November 2018.
  28. J.Jenkins and W.H.Jarvis, "Basic Principles of Electronics, Volume 1 Thermionics", Pergamon Press (1966), Ch.1.10 p.9
  29. Departments of the Army and the Air Force (1952). Basic Theory and Application of Electron Tubes. Washington D. C.: USGPO. p. 42. Retrieved Oct 2021
  30. Guarnieri, M. (2012). "The age of vacuum tubes: the conquest of analog communications". IEEE Ind. Electron. M. 6 (2): 52–54. doi:10.1109/MIE.2012.2193274. S2CID 42357863.
  31. Beatty, R. T. (Oct. 1927) "The Shielded Plate Valve as a High-Frequency Amplifier". Wireless Engineer p. 621
  32. Landee, Davis, Albrecht (1957) Electronic Designers' Handbook. New York: McGraw-Hill. pp. 3-34 - 3-38.
  33. K. R. Thrower, (2009) British Radio Valves The Classic Years: 1926-1946, Reading, UK: Speedwell, p. 3
  34. Happell, Hesselberth (1953). Engineering Electronics. New York: McGraw-Hill. p. 88
  35. Introduction to Thermionic Valves (Vacuum Tubes) Archived 28 May 2007 at the Wayback Machine, Colin J. Seymour
  36. "Philips Historical Products: Philips Vacuum Tubes". Archived from the original on 6 November 2013. Retrieved 3 November 2013.
  37. Baker, Bonnie (2008). Analog circuits. Newnes. p. 391. ISBN 978-0-7506-8627-3.
  38. Modjeski, Roger A. "Mu, Gm and Rp and how Tubes are matched". Välljud AB. Archived from the original on 21 March 2012. Retrieved 22 April 2011.
  39. Ballou, Glen (1987). Handbook for Sound Engineers: The New Audio Cyclopedia (1st ed.). Howard W. Sams Co. p. 250. ISBN 978-0-672-21983-2. Amplification factor or voltage gain is the amount the signal at the control grid is increased in amplitude after passing through the tube, which is also referred to as the Greek letter μ (mu) or voltage gain (Vg) of the tube.
  40. Donovan P. Geppert, (1951). Basic Electron Tubes, New York: McGraw-Hill, pp. 164 - 179. Retrieved 10 June 2021
  41. Winfield G. Wagener, (May 1948). "500-Mc. Transmitting Tetrode Design Considerations" Proceedings of the I.R.E., p. 612. Retrieved 10 June 2021
  42. Staff, (2003). Care and Feeding of Power Grid Tubes, San Carlos, CA: CPI, EIMAC Div., p. 28
  43. GE Electronic Tubes, (March 1955) 6V6GT - 5V6GT Beam Pentode, Schenectady, NY: Tube Division, General Electric Co.
  44. J. F. Dreyer, Jr., (April 1936). "The Beam Power Output Tube", Electronics, Vol. 9, No. 4, pp. 18 - 21, 35
  45. R. S. Burnap (July 1936). "New Developments in Audio Power Tubes", RCA Review, New York: RCA Institutes Technical Press, pp. 101 - 108
  46. RCA, (1954). 6L6, 6L6-G Beam Power Tube. Harrison, NJ: Tube Division, RCA. pp. 1,2,6
  47. C H Gardner (1965) The Story of the Valve Archived 23 December 2015 at the Wayback Machine, Radio Constructor (See particularly the section "Glass Base Construction")
  48. L.W. Turner (ed.) Electronics Engineer's Reference Book, 4th ed. Newnes-Butterworth, London 1976 ISBN 0-408-00168-2 pages 7–2 through 7-6
  49. Guarnieri, M. (2012). "The age of Vacuum Tubes: Merging with Digital Computing". IEEE Ind. Electron. M. 6 (3): 52–55. doi:10.1109/MIE.2012.2207830. S2CID 41800914.
  50. 50.0 50.1 50.2 50.3 From part of Copeland's "Colossus" available online Archived 23 March 2012 at the Wayback Machine
  51. Randall, Alexander 5th (14 February 2006). "A lost interview with ENIAC co-inventor J. Presper Eckert". Computer World. Archived from the original on 2 April 2009. Retrieved 25 April 2011.
  52. Pentagon symposium: Commercially Available General Purpose Electronic Digital Computers of Moderate Price, Washington, D.C., 14 MAY 1952
  53. 53.0 53.1 53.2 E.S. Rich, N.H. Taylor, "Component failure analysis in computers", Proceedings of Symposium on Improved Quality Electronic Components, vol. 1, pp. 222–233, Radio-Television Manufacturers Association, 1950.
  54. 54.0 54.1 54.2 Bernd Ulmann, AN/FSQ-7: The Computer that Shaped the Cold War, Walter de Gruyter GmbH, 2014 ISBN 3486856707.
  55. RCA "Transmitting Tubes Manual" TT-5 1962, p. 10
  56. GS-9B Oscillator Ultra-High Frequency Triode Archived 25 Feb. 2021
  57. "MULTI-PHASE COOLED POWER TETRODE 4CM2500KG" (PDF). Archived (PDF) from the original on 11 October 2016. The maximum anode dissipation rating is 2500 kilowatts.
  58. The Oxford Companion to the History of Modern Science, J. L. Heilbron, Oxford University Press 2003, 9780195112290, "valve, thermionic"
  59. Okamura, Sōgo (1994). History of electron tubes. IOS Press. p. 133. ISBN 978-90-5199-145-1. Archived from the original on 22 June 2013.
  60. National Valve Museum: audio double triodes ECC81, 2, and 3 Archived 7 January 2011 at the Wayback Machine
  61. Certified by BBC central valve stores, Motspur Park
  62. Mazda Data Booklet 1968 Page 112.
  63. Dushman, S. (1922) Production and Measurement of High Vacuum New York: General Electric Review. p. 174. Retrieved Nov. 2021
  64. Hadley, C. P. (1962) "Oxide-Coated Emitters" New Jersey: Electron Tube Div., RCA. Electron Tube Design, p. 34. Retrieved 25 Oct 2021
  65. Hicks, H. J. (1943) Principles and Practice of Radio Servicing 2nd ed. pp. 252. Retrieved 25 Oct 2021
  66. Staff, (2003). Care and Feeding of Power Grid Tubes, San Carlos, CA: CPI, EIMAC Div., p. 68. Retrieved 25 Oct 2021
  67. Tomer, R. B. (1960), Getting the Most out of Vacuum Tubes, Indianapolis, Indiana, USA: Howard W. Sams, p. 23, LCCN 60-13843 Retrieved Oct 2021
  68. C. Robert Meissner (ed.), Vacuum Technology Transactions: Proceedings of the Sixth National Symposium, Elsevier, 2016,ISBN 1483223558 page 96
  69. 69.0 69.1 Thomas, C. H. (1962) "Getters" New Jersey: Electron Tube Div., RCA. Electron Tube Design, pp. 519 - 525 Retrieved 25 Oct 2021
  70. Espe, Knoll, Wilder (Oct. 1950) "Getter Materials for Electron Tubes" New York: McGraw-Hill. Electronics pp. 80 - 86 Retrieved 25 Oct 2021
  71. 31 Alumni. "The Klystron & Cactus". Archived from the original on 20 August 2013. Retrieved 29 December 2013.
  72. Tomer, R. B. (1960). pp. 17 - 20
  73. Tomer, R. B. (1960). pp. 34 - 35
  74. Tomer, R. B. (1960). pp. 30 - 33
  75. 75.0 75.1 Broad, William J. "Nuclear Pulse (I): Awakening to the Chaos Factor", Science. 29 May 1981 212: 1009–1012
  76. Y Butt, The Space Review, 2011 Archived 22 April 2012 at the Wayback Machine "... geomagnetic storms, on occasion, can induce more powerful pulses than the E3 pulse from even megaton type nuclear weapons."
  77. Barbour, E. (1998). "The cool sound of tubes—vacuum tube musical applications". IEEE Spectrum. Vol. 35, no. 8. IEEE. pp. 24–35. Archived from the original on 4 January 2012.
  78. Keeports, David (9 February 2017). "The warm, rich sound of valve guitar amplifiers". Physics Education. 52 (2): 025010. Bibcode:2017PhyEd..52b5010K. doi:10.1088/1361-6552/aa57b7.
  79. Wong, May (22 October 2006). "Flat Panels Drive Old TVs From Market". AP via USA Today. Retrieved 8 October 2006.
  80. "The Standard TV" (PDF). Veritas et Visus. Retrieved 12 June 2008.
  81. Ackerman, Evan. "Vacuum tubes could be the future of computing". Dvice. Dvice. Archived from the original on 25 March 2013. Retrieved 8 February 2013.
  82. Anthony, Sebastian. "The vacuum tube strikes back: NASA's tiny 460GHz vacuum transistor that could one day replace silicon FETs". ExtremeTech. Archived from the original on 17 November 2015.
  83. Designing Tube Preamps for Guitar and Bass, 2nd ed., Merlin Blencowe, Wem Publishing (2012), 978-0-9561545-2-1
  84. indiastudychannel.com/
  85. Basic theory and application of Electron tubes Department of the army and air force, AGO 2244-Jan


अग्रिम पठन

  • Eastman, Austin V., Fundamentals of Vacuum Tubes, McGraw-Hill, 1949
  • Millman, J. & Seely, S. Electronics, 2nd ed. McGraw-Hill, 1951.
  • Philips Technical Library. Books published in the UK in the 1940s and 1950s by Cleaver Hume Press on design and application of vacuum tubes.
  • RCA. Radiotron Designer's Handbook, 1953 (4th Edition). Contains chapters on the design and application of receiving tubes.
  • RCA. Receiving Tube Manual, RC15, RC26 (1947, 1968) Issued every two years, contains details of the technical specs of the tubes that RCA sold.
  • Shiers, George, "The First Electron Tube", Scientific American, March 1969, p. 104.
  • Spangenberg, Karl R. (1948). Vacuum Tubes. McGraw-Hill. OCLC 567981. LCC TK7872.V3.
  • Stokes, John, 70 Years of Radio Tubes and Valves, Vestal Press, New York, 1982, pp. 3–9.
  • Thrower, Keith, History of the British Radio Valve to 1940, MMA International, 1982, pp 9–13.
  • Tyne, Gerald, Saga of the Vacuum Tube, Ziff Publishing, 1943, (reprint 1994 Prompt Publications), pp. 30–83.
  • Basic Electronics: Volumes 1–5; Van Valkenburgh, Nooger & Neville Inc.; John F. Rider Publisher; 1955.
  • Wireless World. Radio Designer's Handbook. UK reprint of the above.
  • "Vacuum Tube Design"; 1940; RCA.


बाहरी संबंध

]]]