द्रव क्रिस्टल प्रादर्शी (LCD)

From Vigyanwiki
Revision as of 16:01, 8 September 2023 by Abhishekkshukla (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
चिंतनशील मुड़ नेमैटिक तरल स्फ़टिक डिस्प्ले
  1. Polarizing filter film with a vertical axis to polarize light as it enters.
  2. Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.
  3. Twisted nematic liquid crystal.
  4. Glass substrate with common electrode film (ITO) with horizontal ridges to line up with the horizontal filter.
  5. Polarizing filter film with a horizontal axis to block/pass light.
  6. Reflective surface to send light back to viewer. (In a backlit LCD, this layer is replaced or complemented with a light source.)

द्रव क्रिस्टल प्रादर्शी (एलसीडी) एक फ्लैट पैनल डिस्प्ले या अन्य इलेक्ट्रो-ऑप्टिक न्यूनाधिक ऑप्टिकल डिवाइस है जो पोलराइज़र के साथ संयुक्त लिक्विड क्रिस्टल के प्रकाश-मॉड्यूलेटिंग गुणों का उपयोग करती है। द्रव क्रिस्टल सीधे प्रकाश का उत्सर्जन नहीं करते हैं,[1] इसके अतिरिक्त रंग या मोनोक्रोम मॉनिटर में छवियों का उत्पादन करने के लिए बैकलाइट या परावर्तक (फोटोग्राफी) का उपयोग करते हैं।[2]

एलसीडी कम जानकारी वाली सामग्री के साथ मनमानी छवियों या निश्चित छवियों को प्रदर्शित करने के लिए उपलब्ध हैं, जिसे दिखाया या छिपाया जा सकता है। उदाहरण के लिए: प्रीसेट शब्द, अंक और सात खंड प्रदर्शित करता है, जैसा कि डिजिटल घड़ी में डिस्प्ले वाले उपकरणों के लिए  ये सभी अच्छे उदाहरण हैं। वे एक ही बुनियादी तकनीक का उपयोग करते हैं सिवाय इसके कि मनमाने चित्र छोटे पिक्सेल के मैट्रिक्स से बनाए जाते हैं, जबकि अन्य डिस्प्ले में बड़े तत्व होते हैं। ध्रुवीकरण व्यवस्था के आधार पर एलसीडी या तो सामान्य रूप से (सकारात्मक) या बंद (नकारात्मक) हो सकते हैं। उदाहरण के लिए, बैकलाइट वाले अक्षर पॉजिटिव एलसीडी (LCD) की बैकग्राउंड पर काले रंग के होंगे इन्हें हम बैकलाइट रंग कहेंगे, और एक अक्षर नेगेटिव एलसीडी में काला बैकग्राउंड होगा जिसमें अक्षर बैकलाइट के समान रंग के होंगे। नीले रंग के एलसीडी पर सफेद रंग में ऑप्टिकल फिल्टर जोड़े जाते हैं जिसके कारण उन्हें विशिष्ट उपस्थिति दी जा सके। एलसीडी का उपयोग अनुप्रयोगों की एक विस्तृत श्रृंखला में किया जाता है, जिसमें एलसीडी टेलीविजन, कंप्यूटर मॉनीटर, उपकरण पैनल, फ्लाइट इंस्ट्रूमेंट्स और इनडोर और आउटडोर साइनेज शामिल हैं। एलसीडी प्रॉजेक्टर और पोर्टेबल उपकरणों में छोटी एलसीडी स्क्रीन वर्तमान समय में सामान्य हैं जैसे डिजिटल कैमरा, घड़ियां, डिजिटल घड़ियां, कैलकुलेटर और मोबाइल फोन, स्मार्टफोन इत्यादि। एलसीडी स्क्रीन का उपयोग उपभोक्ता इलेक्ट्रॉनिक्स उत्पादों पर भी किया जाता है जैसे डीवीडी प्लेयर, वीडियो गेम डिवाइस और घड़ियां। एलसीडी स्क्रीन ने लगभग सभी अनुप्रयोगों में भारी कैथोड रे ट्यूब (सीआरटी) डिस्प्ले की जगह ले ली है। एलसीडी स्क्रीन सीआरटी और प्लाज्मा प्रदर्शन की तुलना में स्क्रीन आकार की एक विस्तृत श्रृंखला में उपलब्ध हैं, एलसीडी स्क्रीन के साथ छोटे डिजिटल घड़ियों से लेकर बहुत बड़े टेलीविजन रिसीवर तक के आकार में उपलब्ध हैं। एलसीडी को धीरे-धीरे ओएलईडी (OLEDs) द्वारा प्रतिस्थापित किया जा रहा है, जिसे आसानी से विभिन्न आकृतियों में बनाया जा सकता है और इसमें कम प्रतिक्रिया समय, व्यापक रंग सरगम, वस्तुतः अनंत रंग विपरीत और देखने के कोण होते हैं, किसी दिए गए डिस्प्ले साइज और स्लिमर प्रोफाइल के लिए कम वजन (क्योंकि ओएलईडी सिंगल ग्लास या प्लास्टिक पैनल का उपयोग करते हैं जबकि एलसीडी दो ग्लास पैनल का उपयोग करते हैं; पैनल की मोटाई आकार के साथ बढ़ती है लेकिन एलसीडी पर वृद्धि अधिक ध्यान देने योग्य होती है) और संभावित रूप से कम बिजली की खपत (चूंकि डिस्प्ले केवल "चालू" है जहां जरूरत है और कोई बैकलाइट नहीं है)। हालाँकि, ओएलईडी, किसी दिए गए डिस्प्ले आकार के लिए अधिक महंगे होते हैं, क्योंकि वे बहुत महंगी इलेक्ट्रोल्यूमिनसेंट सामग्री या फॉस्फोर का उपयोग करते हैं जो वे उपयोग करते हैं। इसके अलावा, फॉस्फोरस के उपयोग के कारण, ओएलईडी स्क्रीन बर्न-इन से पीड़ित होते हैं और वर्तमान में ओएलईडी डिस्प्ले को प्रतिस्थापन करने का कोई तरीका नहीं है, जबकि एलसीडी पैनलों को पुनर्नवीनीकरण किया जा सकता है, हालांकि एलसीडी को प्रतिस्थापन करने के लिए आवश्यक तकनीक अभी तक व्यापक नहीं है। एलसीडी की प्रतिस्पर्धात्मकता बनाए रखने के प्रयास मात्रा डॉट प्रदर्शन हैं, जिन्हें एसयूएचडी, क्यूएलईडी या ट्रिलुमिनोस के रूप में विपणन किया जाता है, जो नीली एलईडी बैकलाइटिंग और क्वांटम डॉट एन्हांसमेंट फिल्म (क्यूडीईएफ) के साथ प्रदर्शित होते हैं। जो नीले प्रकाश के भाग को लाल और हरे रंग में परिवर्तित करता है, जो कम कीमत पर ओएलईडी डिस्प्ले के समान प्रदर्शन की पेशकश कर रहा है, लेकिन क्वांटम डॉट परत जो इन डिस्प्ले को देता है उनकी विशेषताओं को अभी तक पुनर्नवीनीकरण नहीं किया जा सकता है।

चूँकि एलसीडी स्क्रीन में फॉस्फोरस का प्रयोग नहीं होता है, जब स्क्रीन पर एक स्थिर छवि लंबे समय तक प्रदर्शित होती है, तो वे शायद ही कभी छवि को जलाते हैं, उदाहरण के लिए, एक इनडोर साइन पर एयरलाइन फ्लाइट शेड्यूल के लिए टेबल फ्रेम। एलसीडी, हालांकि, छवि दृढ़ता के लिए अतिसंवेदनशील होते हैं।[3] एलसीडी स्क्रीन अधिक ऊर्जा कुशल है और इसे सीआरटी कैन की तुलना में अधिक सुरक्षित रूप से निपटाया जा सकता है। इसकी कम विद्युत ऊर्जा खपत इसे बैटरी (बिजली) चालित इलेक्ट्रानिक्स उपकरणों में एक सीआरटी की तुलना में अधिक कुशलता से उपयोग करने में सक्षम बनाती है। 2008 तक, एलसीडी स्क्रीन वाले टेलीविज़न की वार्षिक बिक्री दुनिया भर में सीआरटी (CRT) इकाइयों की बिक्री से अधिक हो गई, और अधिकांश उद्देश्यों के लिए सीआरटी अप्रचलित हो गया।

सामान्य विशेषताएं

एक एलसीडी स्क्रीन यात्रियों के लिए एक अधिसूचना पैनल के रूप में उपयोग की जाती है

एलसीडी के प्रत्येक पिक्सेल में आमतौर पर दो पारदर्शिता इलेक्ट्रोड के बीच संरेखित अणुओं की एक परत होती है, अक्सर इंडियम टिन ऑक्साइड (आईटीओ) और दो ध्रुवीकरण फ़िल्टर (प्रकाशिकी) (समानांतर और लंबवत ध्रुवीकरण) से बना होता है, संचरण की अक्ष (ज्यादातर मामलों में) एक दूसरे के लंबवत होती हैं। ध्रुवीकरण फिल्टर के बीच लिक्विड क्रिस्टल के बिना, पहले फिल्टर से गुजरने वाले प्रकाश को दूसरे (क्रॉस्ड) पोलराइजर द्वारा अवरुद्ध कर दिया जाएगा। विद्युत क्षेत्र लागू होने से पहले, लिक्विड क्रिस्टल अणुओं का अभिविन्यास इलेक्ट्रोड की सतहों पर संरेखण द्वारा निर्धारित किया जाता है।

ट्विस्टेड नेमैटिक (TN) डिवाइस में, दो इलेक्ट्रोड पर सतह संरेखण दिशा एक दूसरे के लंबवत हैं, और इसलिए अणु खुद को एक कुंडलित वक्रता संरचना, या ट्विस्ट में व्यवस्थित करते हैं। यह घटना प्रकाश के ध्रुवीकरण के रोटेशन को प्रेरित करता है, और डिवाइस ग्रे दिखाई देता है। यदि लागू वोल्टेज काफी बड़ा है, परत के केंद्र में लिक्विड क्रिस्टल अणु लगभग पूरी तरह से बिना मुड़े हुए होते हैं और लिक्विड क्रिस्टल परत से गुजरने पर आपतित प्रकाश का ध्रुवीकरण घुमाया नहीं जाता है। यह प्रकाश तब मुख्य रूप से दूसरे फिल्टर के लंबवत ध्रुवीकृत होगा, और इस प्रकार अवरुद्ध हो जाएगा और पिक्सेल काला दिखाई देगा। प्रत्येक पिक्सेल में लिक्विड क्रिस्टल परत पर लागू वोल्टेज को नियंत्रित करके, प्रकाश को अलग-अलग मात्रा में गुजरने दिया जा सकता है जिससे ग्रे के विभिन्न स्तर बनते हैं।

एलसीडी में प्रयुक्त लिक्विड क्रिस्टल का रासायनिक सूत्र भिन्न हो सकता है। सूत्रों का पेटेंट कराया जा सकता है।[3] एक उदाहरण 2-(4-एल्कोक्सीफेनिल)-5-एल्काइल पाइरीडीन का सायनोबिफेनिल के साथ मिश्रण है, जिसे मर्क एंड शार्प निगम ने पेटेंट कराया है। उस विशिष्ट मिश्रण को कवर करने वाला पेटेंट समाप्त हो गया।[4]

अधिकांश रंगीन एलसीडी सिस्टम रंग फिल्टर के साथ एक ही तकनीक का उपयोग करते हैं जिसका उपयोग लाल, हरे और नीले उप-पिक्सेल उत्पन्न करने के लिए किया जाता है। एलसीडी रंग फिल्टर बड़ी कांच की चादरों पर फोटोलिथोग्राफी प्रक्रिया के साथ बनाए जाते हैं जिन्हें बाद में टीएफटी ऐरे, स्पेसर्स और लिक्विड क्रिस्टल युक्त अन्य ग्लास शीट से चिपका दिया जाता है, जो कई रंगीन एलसीडी बना रहा है जिन्हें फिर एक दूसरे से काटा जाता है और पोलराइज़र शीट से लैमिनेट किया जाता है। लाल, हरे, नीले और काले रंग के फोटोरेसिस्ट (प्रतिरोध) का उपयोग किया जाता है। सभी प्रतिरोधों में बारीक पिसा हुआ पिगमेंट होता है, जिसमें कण सिर्फ 40 नैनोमीटर के पार होते हैं। काला प्रतिरोध सबसे पहले लागू किया जाता है; यह एक ब्लैक ग्रिड बनाएगा (उद्योग में ब्लैक मैट्रिक्स के रूप में जाना जाता है) जो लाल, हरे और नीले उप-पिक्सेल को एक दूसरे से अलग करेगा, यह कंट्रास्ट अनुपात को बढ़ाएगा और प्रकाश को एक उप-पिक्सेल से दूसरे उप-पिक्सेल पर लीक होने से रोकेगा।[5]

एक ओवन में काला प्रतिरोध सूख जाने के बाद और एक फोटोमास्क के माध्यम से यूवी प्रकाश के संपर्क में आने के बाद, एक ब्लैक ग्रिड बनाने, अनपेक्षित क्षेत्रों को धोया जाता है। फिर शेष प्रतिरोधों के साथ भी यही प्रक्रिया दोहराई जाती है। यह ब्लैक ग्रिड के छिद्रों को उनके संगत रंगीन प्रतिरोधों से भर देता है।[6][7][8][9][10][11][12][13][14][15][16][17][18][19] प्रारंभिक रंग पीडीए में उपयोग की जाने वाली एक अन्य रंग पीढ़ी विधि और कुछ कैलकुलेटर सुपर-ट्विस्टेड नेमेटिक एलसीडी में वोल्टेज को बदलकर किया गया था, जहां तंग दूरी वाली प्लेटों के बीच परिवर्तनशील मोड़ एक अलग डबल अपवर्तन द्विभाजन का कारण बनता है, इस प्रकार रंग बदल रहा है।[20] वे आम तौर पर प्रति पिक्सेल 3 रंगों तक सीमित थे: नारंगी, हरा और नीला।[21]

शीर्ष पोलराइज़र के साथ एक टेक्सास इंस्ट्रूमेंट्स कैलकुलेटर में एलसीडी डिवाइस से हटा दिया गया और शीर्ष पर रखा गया, जैसे कि ऊपर और नीचे के ध्रुवीकरण लंबवत हैं।नतीजतन, रंग उल्टे होते हैं।

इस स्थिति पर वोल्टेज में एक टीएन डिवाइस का ऑप्टिकल प्रभाव वोल्टेज ऑफ स्टेट की तुलना में डिवाइस की मोटाई में भिन्नता पर बहुत कम निर्भर है। इस वजह से, टीएन कम सूचना सामग्री के साथ प्रदर्शित होता है और कोई बैकलाइटिंग आमतौर पर क्रॉस किए गए पोलराइज़र के बीच संचालित नहीं होती है जैसे कि वे बिना वोल्टेज के उज्ज्वल दिखाई देते हैं (आंख उज्ज्वल अवस्था की तुलना में अंधेरे अवस्था में भिन्नता के प्रति अधिक संवेदनशील होती है)। जैसा कि 2010 के अधिकांश युग में एलसीडी का उपयोग टेलीविजन सेट, मॉनिटर और स्मार्टफोन में किया जाता है, उनके पास एक अंधेरे पृष्ठभूमि के साथ बैकलाइटिंग का उपयोग करके मनमानी छवियों को प्रदर्शित करने के लिए पिक्सेल के उच्च रिज़ॉल्यूशन मैट्रिक्स सरणी हैं। जब कोई छवि प्रदर्शित नहीं होती है, तो विभिन्न व्यवस्थाओं का उपयोग किया जाता है। इस उद्देश्य के लिए, टीएन एलसीडी को समानांतर पोलराइज़र के बीच संचालित किया जाता है, जबकि आईपीएस एलसीडी में क्रास्ड पोलराइजर्स होते हैं। कई अनुप्रयोगों में आईपीएस एलसीडी ने टीएन एलसीडी को बदल दिया है, खासकर स्मार्टफोन में। लिक्विड क्रिस्टल सामग्री और संरेखण परत सामग्री दोनों में आयनिक यौगिक होते हैं। यदि एक विशेष ध्रुवता का विद्युत क्षेत्र लंबे समय तक लागू किया जाता है, यह आयनिक पदार्थ सतहों की ओर आकर्षित होता है और डिवाइस के प्रदर्शन को खराब करता है। यह या तो एक प्रत्यावर्ती धारा लगाने से या विद्युत क्षेत्र की ध्रुवीयता को उलटने से बचा जाता है जैसा कि डिवाइस को संबोधित किया गया है (लिक्विड क्रिस्टल परत की प्रतिक्रिया समान है, लागू क्षेत्र की ध्रुवीयता की परवाह किए बिना)।

एलसीडी के साथ एक कैसियो अलार्म क्रोनो डिजिटल वॉच

व्यक्तिगत अंकों या निश्चित प्रतीकों की एक छोटी संख्या के लिए प्रदर्शित करता है (जैसे डिजिटल घड़ियों और पॉकेट पॉकेट कैलकुलेटर में) और इसे प्रत्येक खंड के लिए स्वतंत्र इलेक्ट्रोड के साथ कार्यान्वित किया जा सकता है।[22] इसके विपरीत, पूर्ण अक्षरांकीय या चर ग्राफ़िक्स डिस्प्ले आमतौर पर पिक्सेल के साथ कार्यान्वित किए जाते हैं जो एक मैट्रिक्स के रूप में व्यवस्थित होता है जिसमें एलसी परत के एक तरफ विद्युत रूप से जुड़ी पंक्तियां और दूसरी तरफ कॉलम होते हैं, जो चौराहों पर प्रत्येक पिक्सेल को संबोधित करना संभव बनाता है। मैट्रिक्स एड्रेसिंग की सामान्य विधि में मैट्रिक्स के एक तरफ क्रमिक रूप से संबोधित करना शामिल है, उदाहरण के लिए पंक्तियों को एक-एक करके चुनकर और दूसरी तरफ चित्र जानकारी को कॉलम में पंक्ति दर पंक्ति लागू करना। विभिन्न मैट्रिक्स एड्रेसिंग योजनाओं के विवरण के लिए निष्क्रिय मैट्रिक्स और सक्रिय मैट्रिक्स संबोधित एलसीडी देखें।

एलसीडी, ओएलई़डी डिस्प्ले के साथ, अर्धचालक विनिर्माण से क्लीनरूम साफ कमरा (क्लीनरूम) उधार तकनीकों में निर्मित होते हैं और कांच की बड़ी चादरों का उपयोग कर रहे हैं जिनका आकार समय के साथ बढ़ता गया है। एक ही समय में कई डिस्प्ले का निर्माण किया जाता है, और फिर कांच की शीट से काट लें, इसे मदर ग्लास या एलसीडी ग्लास सब्सट्रेट के रूप में भी जाना जाता है। आकार में वृद्धि अर्धचालक निर्माण में बढ़ते वेफर (इलेक्ट्रॉनिक्स) आकार की तरह ही अधिक डिस्प्ले या बड़े डिस्प्ले बनाने की अनुमति देती है। कांच के आकार इस प्रकार हैं:

एलसीडी-ग्लास-आकार-सृजन
पीढ़ी लंबाई [मिमी] ऊंचाई [मिमी] परिचय का वर्ष संदर्भ
पीढ़ी 1 200–300 200–400 1990 [23][24]
पीढ़ी 2 370 470
पीढ़ी 3 550 650 1996–1998 [25]
पीढ़ी 3.5 600 720 1996 [24]
पीढ़ी 4 680 880 2000–2002 [24][25]
पीढ़ी 4.5 730 920 2000–2004 [26]
पीढ़ी 5 1100 1250–1300 2002–2004 [24][25]
पीढ़ी 5.5 1300 1500
पीढ़ी 6 1500 1800–1850 2002–2004 [24][25]
पीढ़ी 7 1870 2200 2003 [27][28]
पीढ़ी 7.5 1950 2250 [24]
पीढ़ी 8 2160 2460 [28]
पीढ़ी 8.5 2200 2500 2007–2016 [29][30]
पीढ़ी 8.6 2250 2600 2016 [30]
पीढ़ी 10 2880 3130 2009 [31]
पीढ़ी 10.5 (पीढ़ी 11 के रूप में भी जाना जाता है) 2940 3370 2018[32] [33]

8 पीढ़ी तक, निर्माता सिंगल मदर ग्लास के आकार पर सहमत नहीं होंगे और इसके परिणामस्वरूप, अलग-अलग निर्माता एक ही पीढ़ी के लिए थोड़े अलग कांच के आकार का उपयोग करेंगे। कुछ निर्माताओं ने 8.6 पीढ़ी में मदर ग्लास शीट को अपनाया है जो 8.5 पीढ़ी से थोड़ा ही बड़ा है, जो प्रति मदर ग्लास में 50 और 58 इंच से अधिक एलसीडी बनाने की अनुमति दे रहा है, विशेष रूप से 58 इंच एलसीडी, जिस स्थिति में 8.6 पीढ़ी में मदर ग्लास पर 6 का उत्पादन किया जा सकता है, जबकि 8.5 पीढ़ी में मदर ग्लास पर केवल 3 का उत्पादन किया जा सकता है, जिससे कचरे को काफी कम किया जा सकता है।[30] हर पीढ़ी के साथ मदर ग्लास की मोटाई भी बढ़ती जाती है, इतने बड़े मदर ग्लास आकार बड़े डिस्प्ले के लिए बेहतर अनुकूल होते हैं। एक एलसीडी मॉड्यूल (एलसीएम) बैकलाइट के साथ एलसीडी का उपयोग करने के लिए तैयार है। इस प्रकार, एक कारखाना जो एलसीडी मॉड्यूल बनाता है, जरूरी नहीं कि वह एलसीडी बनाता है, यह केवल उन्हें मॉड्यूल में इकट्ठा कर सकता है। एलसीडी ग्लास सबस्ट्रेट्स एजीसी इंक, कॉर्निंग इंक, और निप्पॉन इलेक्ट्रिक ग्लास जैसी कंपनियों द्वारा बनाए जाते हैं।

इतिहास

लिक्विड क्रिस्टल की उत्पत्ति और जटिल इतिहास प्रारंभिक दिनों के दौरान एक अंदरूनी सूत्र के दृष्टिकोण से प्रदर्शित होता है और जोसेफ ए कैस्टेलानो द्वारा लिक्विड गोल्ड में वर्णित किया गया था: लिक्विड क्रिस्टल डिस्प्ले की कहानी और एक उद्योग का निर्माण।[34]

1991 तक एक अलग दृष्टिकोण से एलसीडी की उत्पत्ति और इतिहास पर एक और रिपोर्ट हिरोशी कावामोटो द्वारा प्रकाशित की गई है, जो आईईईई (IEEE) इतिहास केंद्र में उपलब्ध है।[35] एलसीडी विकास में स्विस योगदान का विवरण, पीटर जे वाइल्ड द्वारा लिखित, और यह अभियांत्रिकी और प्रौद्योगिकी इतिहास विकी में पाया जा सकता है।[36]

पृष्ठभूमि

1888 में,[37] फ्रेडरिक रिनिट्जर (1858-1927) ने गाजर से निकाले गए रक्तवसा की तरल क्रिस्टलीय प्रकृति की खोज की (अर्थात, दो गलनांक और रंगों की उत्पत्ति) और 3 मई, 1888 को वियना केमिकल सोसाइटी की एक बैठक में अपने निष्कर्ष प्रकाशित किए (एफ. रीनिट्जर: बेइट्रैज ज़ूर केन्टनिस डेस कोलेस्टरिन्स, मोनात्शेफ़्ट फर केमी (वीएन) 9, 421-441 (1888))[38] 1904 में, ओटो लेहमैन ने अपना काम "फ्लुसिज क्रिस्टल" (लिक्विड क्रिस्टल) प्रकाशित किया। 1911 में, चार्ल्स मौगुइन ने पहली बार पतली परतों में प्लेटों के बीच सीमित तरल क्रिस्टल के साथ प्रयोग किया।

1922 में, जार्ज फ्राइडेल ने लिक्विड क्रिस्टल की संरचना और गुणों का वर्णन किया और उन्हें तीन प्रकारों (नेमेटिक्स, स्मेक्टिक्स और कोलेस्टरिक्स) में वर्गीकृत किया। 1927 में, वसेवोलॉड फ़्रेडरिक्स (Vsevolod Frederiks) ने विद्युत रूप से स्विच किए गए प्रकाश वाल्व को तैयार किया, जिसे Friedericksz ट्रांज़िशन कहा जाता है, सभी एलसीडी प्रौद्योगिकी का आवश्यक प्रभाव। 1936 में, मार्कोनी वायरलेस टेलीग्राफ कंपनी ने प्रौद्योगिकी के पहले व्यावहारिक अनुप्रयोग, "द लिक्विड क्रिस्टल लाइट वाल्व" का पेटेंट कराया। 1962 में, डॉ. जॉर्ज डब्ल्यू. ग्रे द्वारा पहला प्रमुख अंग्रेजी भाषा प्रकाशन मॉलिक्यूलर स्ट्रक्चर एंड प्रॉपर्टीज ऑफ लिक्विड क्रिस्टल प्रकाशित किया गया था।[39] 1962 में, आरसीए के रिचर्ड विलियम्स ने पाया कि लिक्विड क्रिस्टल में कुछ दिलचस्प इलेक्ट्रो-ऑप्टिक विशेषताएं होती हैं और उन्होंने एक वोल्टेज के अनुप्रयोग द्वारा लिक्विड क्रिस्टल सामग्री की एक पतली परत में स्ट्राइप पैटर्न उत्पन्न करके एक इलेक्ट्रो ऑप्टिकल प्रभाव का एहसास किया। यह प्रभाव एक इलेक्ट्रो हाइड्रोडायनामिक अस्थिरता के गठन पर आधारित है जिसे अब लिक्विड क्रिस्टल के अंदर "विलियम्स डोमेन" कहा जाता है।[40]

मोसफेट (MOSFET) (मेटल-ऑक्साइड-अर्धचालक फील्ड-इफेक्ट ट्रांजिस्टर) का आविष्कार मोहम्मद एम अटाला और डॉन कांग ने 1959 में बेल लैब्स में किया था और 1960 में प्रस्तुत किया था।[41][42] मोसफेट के साथ अपने काम को आगे बढ़ाते हुए, RCA में पॉल के. वीमर ने 1962 में पतली फिल्म वाला ट्रांजिस्टर विकसित किया।[43] यह एक प्रकार का मोसफेट था जो मानक थोक मोसफेट से अलग था।[44]

1960S

1964 में, जॉर्ज एच. हेलमीयर, तब विलियम्स द्वारा खोजे गए प्रभाव पर आरसीए प्रयोगशालाओं में काम कर रहे थे, एक होम्योट्रोपिक रूप से उन्मुख लिक्विड क्रिस्टल में डाइक्रोइक रंगों के क्षेत्र प्रेरित पुनर्संरेखण द्वारा रंगों के स्विचिंग को प्राप्त किया। इस नए इलेक्ट्रो ऑप्टिकल प्रभाव के साथ व्यावहारिक समस्याओं ने हेइलमीयर को लिक्विड क्रिस्टल में बिखरने वाले प्रभावों पर काम करना जारी रखा और अंत में पहले परिचालन लिक्विड क्रिस्टल डिस्प्ले की उपलब्धि जो उस पर आधारित है जिसे उन्होंने गतिशील प्रकीर्णन विधा (DSM) कहा है। एक डीएसएम डिस्प्ले के लिए वोल्टेज का अनुप्रयोग शुरू में स्पष्ट पारदर्शी लिक्विड क्रिस्टल परत को दूधिया टर्बिड अवस्था में बदल देता है। DSM डिस्प्ले को ट्रांसमिसिव और रिफ्लेक्टिव मोड में संचालित किया जा सकता है लेकिन उन्हें अपने संचालन के लिए प्रवाहित होने के लिए काफी धारा की आवश्यकता थी।[45][46][47][48] जॉर्ज एच. हेइलमीयर को नेशनल इन्वेंटर्स हॉल ऑफ़ फ़ेम में शामिल किया गया था।[49] और एलसीडी के आविष्कार का श्रेय दिया जाता है। हेइलमीयर का काम एक आईईईई मील का पत्थर है।[50]

1960 के दशक के अंत में, इंग्लैंड के मालवर्न में यूके के रॉयल रडार प्रतिष्ठान द्वारा लिक्विड क्रिस्टल पर अग्रणी कार्य किया गया था। आरआरई की टीम ने जॉर्ज विलियम ग्रे द्वारा चल रहे काम का समर्थन किया और हल विश्वविद्यालय में उनकी टीम जिन्होंने अंततः साइनोबिफेनिल तरल क्रिस्टल की खोज की, जिसमें एलसीडी में आवेदन के लिए सही स्थिरता और तापमान गुण थे। टीएफटी-आधारित लिक्विड क्रिस्टल डिस्प्ले (एलसीडी) के विचार की कल्पना आरसीए प्रयोगशालाओं के बर्नार्ड लेचनर ने 1968 में की थी।[51] लेचनर, एफजे मार्लो, ई.ओ. नेस्टर और जे. टल्ट्स ने 1968 में 18x2 मैट्रिक्स गतिशील प्रकीर्णन विधा एलसीडी के साथ अवधारणा का प्रदर्शन किया। जो मानक असतत मोसफेट का उपयोग करते थे।[52]

1970S

4 दिसंबर, 1970 को, लिक्विड क्रिस्टल में ट्विस्टेड नेमैटिक फील्ड इफेक्ट को स्विटजरलैंड में हॉफमैन-लारोचे द्वारा पेटेंट के लिए दायर किया गया था, (स्विस पेटेंट नंबर 532 261) वोल्फगैंग हेलफ्रीच के साथ और मार्टिन शडट (तब केंद्रीय अनुसंधान प्रयोगशालाओं के लिए काम कर रहे थे) को आविष्कारकों के रूप में सूचीबद्ध किया गया था।[45] हॉफमैन ला रोश ने आविष्कार का लाइसेंस स्विस निर्माता ब्राउन, बोवेरी एंड सी को दिया, जो उस समय इसके संयुक्त उद्यम भागीदार थे, जिसने जापानी इलेक्ट्रॉनिक्स उद्योग सहित अंतरराष्ट्रीय बाजारों के लिए 1970 के दशक के दौरान कलाई घड़ी और अन्य अनुप्रयोगों के लिए सीआरटी डिस्प्ले का उत्पादन किया, जिसने जल्द ही टीएन एलसीडी और कई अन्य उत्पादों के साथ पहली डिजिटल क्वार्ट्ज घड़ी का उत्पादन किया। केंट स्टेट यूनिवर्सिटी तरल क्रिस्टल संस्थान में सरदारी अरोड़ा और अल्फ्रेड साउप के साथ काम करते हुए जेम्स फर्गसन ने 22 अप्रैल, 1971 को संयुक्त राज्य अमेरिका में एक समान पेटेंट दायर किया।[53] 1971 में, फर्गासन की कंपनी, इलिक्सको (अब LXD शामिल) ने टीएन-प्रभाव पर आधारित एलसीडी का उत्पादन किया, कम ऑपरेटिंग वोल्टेज और कम बिजली की खपत में सुधार के कारण जल्द ही खराब गुणवत्ता वाले डीएसएम प्रकारों को हटा दिया गया।[54] सेको के टेटसुरो हामा और इज़ुहिको निशिमुरा ने फरवरी 1971 में एक टीएन-एलसीडी को शामिल करने वाली इलेक्ट्रॉनिक कलाई घड़ी के लिए एक अमेरिकी पेटेंट प्राप्त किया। 1972 में, टीएन-एलसीडी के साथ पहली कलाई घड़ी बाजार में लॉन्च की गई थी: ग्रुएन टेलेटाइम जो चार अंकों की डिस्प्ले घड़ी थी।

1972 में, सक्रिय मैट्रिक्स पतली-फिल्म ट्रांजिस्टर (टीएफटी) लिक्विड क्रिस्टल डिस्प्ले पैनल की अवधारणा को संयुक्त राज्य अमेरिका में पिट्सबर्ग, पेनसिल्वेनिया में वेस्टिंगहाउस इलेक्ट्रिक (1886) में टी. पीटर ब्रॉडी की टीम द्वारा प्रोटोटाइप किया गया था।[55] 1973 में, वेस्टिंगहाउस रिसर्च लेबोरेटरीज में ब्रॉडी, जे.ए. असर्स और जी.डी. डिक्सन ने पहली पतली-फिल्म-ट्रांसिस्टर तरल-क्रिस्टल प्रदर्शन का प्रदर्शन किया।[56][57] 2013 तक, सभी आधुनिक उच्च रिज़ॉल्यूशन और उच्च गुणवत्ता वाले इलेक्ट्रॉनिक दृश्य प्रदर्शन डिवाइस टीएफटी आधारित सक्रिय मैट्रिक्स डिस्प्ले का उपयोग करते हैं।[58] ब्रॉडी और फेंग चेन लुओ ने 1974 में पहले फ्लैट सक्रिय-मैट्रिक्स तरल-क्रिस्टल प्रदर्शन (एएम एलसीडी) का प्रदर्शन किया, और फिर ब्रॉडी ने 1975 में "सक्रिय मैट्रिक्स" शब्द गढ़ा।[51]

1972 में नॉर्थ अमेरिकन रॉकवेल इंटरनेशनल माइक्रोइलेक्ट्रॉनिक कॉर्प ने लॉयड्स इलेक्ट्रॉनिक्स इंक द्वारा मार्केटिंग के लिए कैलकुलेटर के लिए डीएसएम एलसीडी के उपयोग की शुरुआत की, हालांकि उन्हें रोशनी के लिए एक आंतरिक प्रकाश स्रोत की आवश्यकता थी।[59] 1973 में शार्प कॉर्पोरेशन ने पॉकेट आकार के कैलकुलेटरों के लिए डीएसएम एलसीडी का अनुसरण किया [60] और फिर 1975 में घड़ियों के लिए बड़े पैमाने पर टीएन एलसीडी का उत्पादन किया।[61] अन्य जापानी कंपनियों ने जल्द ही कलाई घड़ी बाजार में अग्रणी स्थान ले लिया, जैसे सीको और इसकी पहली 6 अंकों की टीएन एलसीडी क्वार्ट्ज कलाई घड़ी, और कैसियो की 'कैसियोट्रॉन'। अतिथि मेजबान की बातचीत पर आधारित रंगीन एलसीडी का आविष्कार आरसीए की एक टीम ने 1968 में किया था।[62] इस तरह के एक विशेष प्रकार के रंगीन एलसीडी को 1970 के दशक में जापान के शार्प कॉरपोरेशन द्वारा विकसित किया गया था, जो अपने आविष्कारों के लिए पेटेंट प्राप्त कर रहा था, जैसे कि मई 1975 में शिनजी काटो और ताकाकी मियाज़ाकी द्वारा एक पेटेंट,[63] और फिर दिसंबर 1975 में फुमियाकी फुनाडा और मासाताका मत्सुउरा द्वारा सुधार किया गया।[64] टीएफटी एलसीडी 1972 में वेस्टिंगहाउस टीम द्वारा विकसित प्रोटोटाइप के समान है 1976 में फुमियाकी फुनाडा, मासाताका मत्सुउरा, और टोमियो वाडा से मिलकर शार्प की एक टीम द्वारा पेटेंट कराया गया था,[65] फिर 1977 में कोहेई किशी, हिरोसाकू नोनोमुरा, केइचिरो शिमिज़ु, और टोमियो वाडा की एक शार्प टीम द्वारा सुधार किया गया।[66] हालांकि, ये टीएफटी-एलसीडी अभी तक उत्पादों में उपयोग के लिए तैयार नहीं थे, क्योंकि टीएफटी के लिए सामग्री की समस्या अभी तक हल नहीं हुई थी।

1980S

1983 में, ब्राउन, बोवेरी एंड सी (बीबीसी) रिसर्च सेंटर, स्विट्ज़रलैंड के शोधकर्ताओं ने निष्क्रिय मैट्रिक्स संबोधित एलसीडी के लिए सुपर ट्विस्टेड नेमैटिक (एसटीएन) संरचना का आविष्कार किया। एच. अम्स्टुट्ज़ एट अल। 7 जुलाई 1983 और 28 अक्टूबर 1983 को स्विट्जरलैंड में दायर संबंधित पेटेंट आवेदनों में आविष्कारकों के रूप में सूचीबद्ध किया गया था। पेटेंट स्विट्जरलैंड सीएच 665491, यूरोप ईपी 0131216,[67] U.S. Patent 4,634,229 और कई अन्य देशों में प्रदान किए गए। 1980 में, ब्राउन बोवेरी ने विडलेक नामक डच फिलिप्स कंपनी के साथ 50/50 का संयुक्त उद्यम शुरू किया।[68] फिलिप्स के पास आवश्यक जानकारी थी कि बड़े एलसीडी पैनल के नियंत्रण के लिए एकीकृत सर्किट कैसे डिजाइन और निर्माण किया जाए। इसके अलावा, फिलिप्स की इलेक्ट्रॉनिक घटकों के बाजारों तक बेहतर पहुंच थी और इसका इरादा हाई फाई, वीडियो उपकरण और टेलीफोन की नई उत्पाद पीढ़ियों में एलसीडी का उपयोग करना था। 1984 में, फिलिप्स के शोधकर्ता थियोडोरस वेलजेन और एड्रियनस डी वान ने एक वीडियो स्पीड ड्राइव योजना का आविष्कार किया, जिसने एसटीएन एलसीडी के धीमी प्रतिक्रिया समय को हल किया, उच्च-रिज़ॉल्यूशन, उच्च-गुणवत्ता को सक्षम किया, और एसटीएन-एलसीडी पर सुचारू रूप से चलने वाली वीडियो छवियां।[69] 1985 में, फिलिप्स के आविष्कारक थियोडोरस वेलजेन और एड्रियनस डी वान ने उच्च-रिज़ॉल्यूशन एसटीएन-एलसीडी चलाने की समस्या को हल किया, उन्होंने लो-वोल्टेज (सीमास- आधारित) ड्राइव इलेक्ट्रॉनिक्स का इस्तेमाल किया, जो नोटबुक कंप्यूटर और मोबाइल फोन जैसे बैटरी संचालित पोर्टेबल उत्पादों में उच्च गुणवत्ता (उच्च रिज़ॉल्यूशन और वीडियो गति) एलसीडी पैनल के अनुप्रयोग की अनुमति देता है।[70] 1985 में, फिलिप्स ने स्विट्जरलैंड में स्थित विडलेक एजी कंपनी का 100% अधिग्रहण किया। बाद में, फिलिप्स ने विडलेक उत्पादन लाइनों को नीदरलैंड में स्थानांतरित कर दिया। वर्षों बाद, फिलिप्स ने तेजी से बढ़ते मोबाइल फोन उद्योग के लिए उच्च मात्रा में उत्पादन में पूर्ण मॉड्यूल (एलसीडी स्क्रीन, माइक्रोफोन, स्पीकर आदि से मिलकर) का सफलतापूर्वक उत्पादन और विपणन किया।

पहले रंगीन एलसीडी टेलीविजन को जापान में हैंडहेल्ड टेलीविजन के रूप में विकसित किया गया था।1980 में, सेको हट्टोरी के R&D समूह ने रंगीन एलसीडी पॉकेट टीवी पर विकास शुरू किया।[71] 1982 में, सीको एप्सान ने पहला एलसीडी टेलीविज़न, एप्सान टीवी वाच जारी किया, जो एक छोटी सक्रिय मैट्रिक्स एलसीडी टेलीविज़न से सुसज्जित कलाई घड़ी है।[72][73] शार्प कॉर्पोरेशन ने 1983 में डॉट मैट्रिक्स प्रदर्शन टीएन-एलसीडी की शुरुआत की।[61] 1984 में, एप्सान ने ईटी-10 जारी किया, पहला पूर्ण-रंगीन, पॉकेट एलसीडी टेलीविजन।[74] उसी वर्ष, नागरिक घड़ी,[75] ने सिटीजन पॉकेट टीवी,[71] एक 2.7-इंच रंगीन एलसीडी टीवी,[75] पेश किया, जिसमें पहला व्यावसायिक टीएफटी एलसीडी था।[71] 1988 में, शार्प ने 14-इंच, सक्रिय-मैट्रिक्स, पूर्ण-रंग, पूर्ण-गति टीएफटी-एलसीडी का प्रदर्शन किया। इसके कारण जापान ने एक एलसीडी उद्योग शुरू किया, जिसने टीएफटी कंप्यूटर मॉनीटर और एलसीडी टीवी सहित बड़े आकार के एलसीडी विकसित किए।[76] Epson ने 1980 के दशक में 3एलसीडी प्रोजेक्शन तकनीक विकसित की, और 1988 में प्रोजेक्टर में उपयोग के लिए इसे लाइसेंस दिया।[77] जनवरी 1989 में जारी किया गया एप्सों का वीपीजे-700, दुनिया का पहला कॉम्पैक्ट हैंडहेल्ड प्रोजेक्टर , पूर्ण-रंग का एलसीडी प्रोजेक्टर था।[73]

1990s

1990 में, विभिन्न शीर्षकों के तहत, आविष्कारकों ने ट्विस्टेड नेमैटिक फील्ड इफेक्ट एलसीडी (टीएन- और एसटीएन- एलसीडी) के विकल्प के रूप में विद्युत्त प्रकाशीय प्रभाव की कल्पना की। एक तरीका यह था कि एक ग्लास सबस्ट्रेट पर इंटरडिजिटल इलेक्ट्रोड का उपयोग केवल एक विद्युत क्षेत्र का उत्पादन करने के लिए किया जाए जो अनिवार्य रूप से ग्लास सबस्ट्रेट्स के समानांतर हो।[78][79] इन प्लेन स्विचिंग (आईपीएस (आईपीएस)) तकनीक के गुणों का पूरा लाभ उठाने के लिए और काम करने की जरूरत थी। गहन विश्लेषण के बाद, जर्मनी में गेंटर बाउर एट अल द्वारा लाभकारी अवतारों का विवरण दर्ज किया गया है। और विभिन्न देशों में पेटेंट कराया गया।[80][81] फ्रीबर्ग में फ्रौनहोफर इंस्टीट्यूट आईएसई, जहां आविष्कारकों ने काम किया, इन पेटेंटों को एलसी पदार्थों के आपूर्तिकर्ता मर्क केजीए, डार्मस्टाड को सौंपता है। 1992 में, इसके तुरंत बाद, हिताची (Hitachi) के इंजीनियरों ने एक मैट्रिक्स के रूप में पतली फिल्म ट्रांजिस्टर सरणी को आपस में जोड़ने के लिए आईपीएस तकनीक के विभिन्न व्यावहारिक विवरणों पर काम किया और पिक्सेल के बीच में अवांछित आवारा क्षेत्रों से बचने के लिए।[82][83]

हिताची ने इलेक्ट्रोड (सुपर आईपीएस) के आकार को अनुकूलित करके व्यूइंग एंगल निर्भरता में और सुधार किया। एनईसी (NEC) और हिताची आईपीएस तकनीक के आधार पर सक्रिय-मैट्रिक्स संबोधित एलसीडी के शुरुआती निर्माता बन गए। फ्लैट-पैनल कंप्यूटर मॉनीटर और टेलीविज़न स्क्रीन के लिए स्वीकार्य दृश्य प्रदर्शन वाले बड़े स्क्रीन वाले एलसीडी को लागू करने के लिए यह एक मील का पत्थर है। 1996 में, सैमसंग ने ऑप्टिकल पैटर्निंग तकनीक विकसित की जो मल्टी-डोमेन एलसीडी को सक्षम बनाती है। मल्टी-डोमेन और इन प्लेन स्विचिंग बाद में 2006 तक प्रमुख एलसीडी डिजाइन बने रहे।[84] 1990 के दशक के अंत में, एलसीडी उद्योग जापान से दूर दक्षिण कोरिया और ताइवान की ओर स्थानांतरित होने लगा,[76] जो बाद में चीन में स्थानांतरित हो गया।

2000S–2010S

2007 में एलसीडी टीवी की छवि गुणवत्ता कैथोड-रे-ट्यूब-आधारित (सीआरटी) टीवी की छवि गुणवत्ता को पार कर गई।[85] 2007 की चौथी तिमाही में, एलसीडी टीवी ने पहली बार दुनिया भर में बिक्री के मामले में सीआरटी टीवी को पीछे छोड़ दिया।[86] डिस्प्लेबैंक के अनुसार, 2006 में विश्व स्तर पर भेजे जाने वाले 200 मिलियन टीवी में से 50% एलसीडी टीवी के होने का अनुमान था।[87][88] अक्टूबर 2011 में, तोशीबा ने 6.1 इंच (155 मिमी) एलसीडी पैनल पर 2560 × 1600 पिक्सल की घोषणा की, यह टैबलेट कंप्यूटर में उपयोग के लिए उपयुक्त है,[89] विशेष रूप से चीनी चरित्र प्रदर्शन के लिए। 2010 के दशक में टीजीपी (पिक्सेल में ट्रैकिंग गेट-लाइन) को व्यापक रूप से अपनाया गया, जो ड्राइविंग सर्किटरी को डिस्प्ले के बॉर्डर से पिक्सल के बीच में ले जाता है, यह संकीर्ण बेज़ेल्स की अनुमति देता है।[90] एलसीडी को पारदर्शी और लचीला बनाया जा सकता है, लेकिन वे ओएलईडी (OLED) और सूक्ष्म-एलईडी जैसी बैकलाइट के बिना प्रकाश उत्सर्जित नहीं कर सकते, जो अन्य प्रौद्योगिकियां हैं जिन्हें लचीला और पारदर्शी भी बनाया जा सकता है।[91][92][93][94] एलसीडी के व्यूइंग एंगल को बढ़ाने के लिए विशेष फिल्मों का उपयोग किया जा सकता है।[95][96]

2016 में, पैनासोनिक ने ओएलईडी को टक्कर देते हुए 1,000,000:1 के विपरीत अनुपात के साथ आईपीएस एलसीडी विकसित किया। इस तकनीक को बाद में दोहरे परत, दोहरे पैनल या एलएमसीएल (LMCL) (लाइट मोडुलेटिंग सेल लेयर) एलसीडी के रूप में बड़े पैमाने पर उत्पादन में लगाया गया। प्रौद्योगिकी एक के बजाय 2 लिक्विड क्रिस्टल परतों का उपयोग करती है, और इसका उपयोग मिनी-एलईडी बैकलाइट और क्वांटम डॉट शीट के साथ किया जा सकता है।[97][98][99][100][101][102]

रोशनी

चूँकि एलसीडी स्वयं का कोई प्रकाश उत्पन्न नहीं करते हैं, दृश्य छवि बनाने के लिए उन्हें बाहरी प्रकाश की आवश्यकता होती है।[103][104] एक ट्रांसमिसिव प्रकार के एलसीडी में, कांच के ढेर के पीछे प्रकाश स्रोत प्रदान किया जाता है और इसे बैकलाइट कहा जाता है। सक्रिय-मैट्रिक्स एलसीडी लगभग हमेशा बैकलिट होते हैं।[105][106] निष्क्रिय एलसीडी बैकलिट हो सकते हैं लेकिन कई लोग परिवेश प्रकाश का उपयोग करने के लिए ग्लास स्टैक के पीछे एक परावर्तक का उपयोग करते हैं। ट्रांसफ्लेक्टिव तरल-क्रिस्टल डिस्प्ले रिफ्लेक्टिव डिस्प्ले की विशेषताओं को जोड़ती है।

42 इंच (106 सेमी) एलसीडी टीवी के लिए बैकलाइट के रूप में 18 समानांतर सीसीएफएल

एलसीडी बैकलाइट प्रौद्योगिकी के सामान्य कार्यान्वयन हैं:

  • सीसीएफएल: एलसीडी पैनल या तो दो ठंडे कैथोड फ्लोरोसेंट लैंप द्वारा जलाया जाता है जो डिस्प्ले के विपरीत किनारों पर या बड़े डिस्प्ले के पीछे समानांतर सीसीएफएल (CCFL) की एक सरणी पर रखा जाता है। एक विसारक (पीएमएमए एक्रिलिक प्लास्टिक से बना, जिसे वेव या लाइट गाइड/गाइडिंग प्लेट के रूप में भी जाना जाता है[107][108]) फिर पूरे डिस्प्ले में समान रूप से प्रकाश फैलाता है। कई वर्षों से, इस तकनीक का लगभग अनन्य रूप से उपयोग किया गया था। सफेद एलईडी के विपरीत, अधिकांश सीसीएफएल में एक समान-सफेद वर्णक्रमीय आउटपुट होता है जिसके परिणामस्वरूप डिस्प्ले के लिए बेहतर रंग सरगम ​​​​होता है। हालांकि, एलईडी की तुलना में सीसीएफएल कम ऊर्जा कुशल हैं और कन्वर्ट करने के लिए कुछ महंगे इन्वर्टर की आवश्यकता होती है एक सीसीएफएल को जलाने के लिए डिवाइस द्वारा उपयोग किए जाने वाले (आमतौर पर 5 या 12 V) से 1000 V तक जो भी डीसी वोल्टेज की आवश्यकता होती है।[109] इन्वर्टर परिवर्तक (ट्रांसफार्मर) की मोटाई यह भी सीमित करती है कि डिस्प्ले को कितना पतला बनाया जा सकता है।
  • ईएल-डब्ल्यूएलईडी: एलसीडी पैनल स्क्रीन के एक या अधिक किनारों पर सफेद एलईडी की एक पंक्ति से प्रकाशित होता है। एक प्रकाश विसारक (लाइट गाइड प्लेट, एलजीपी) का उपयोग तब पूरे डिस्प्ले में समान रूप से प्रकाश फैलाने के लिए किया जाता है, एज-लिटेड सीसीएफएल एलसीडी बैकलाइट्स के समान।विसारक या तो पीएमएमए (PMMA) प्लास्टिक या विशेष ग्लास से बना होता है, ज्यादातर मामलों में पीएमएमए का उपयोग किया जाता है क्योंकि यह बीहड़ होता है जबकि विशेष ग्लास का उपयोग किया जाता है जब एलसीडी की मोटाई प्राथमिक चिंता का विषय हो, क्योंकि गर्म होने या नमी के संपर्क में आने पर यह उतना नहीं फैलता है, जो एलसीडी को सिर्फ 5 मिमी मोटा होने की अनुमति देता है। क्वांटम डॉट्स को डिफ्यूज़र के ऊपर क्वांटम डॉट एन्हांसमेंट फिल्म (QDEF, जिस स्थिति में उन्हें गर्मी और नमी से बचाने के लिए एक परत की आवश्यकता होती है) या एलसीडी के रंग फिल्टर पर, जो सामान्य रूप से उपयोग किए जाने वाले प्रतिरोधों को प्रतिस्थापित करते हैं।[107] 2012 तक, यह डिज़ाइन डेस्कटॉप कंप्यूटर मॉनीटर में सबसे लोकप्रिय है। यह सबसे पतले डिस्प्ले की अनुमति देता है। इस तकनीक का उपयोग करने वाले कुछ एलसीडी मॉनीटर जिसमें एक विशेषता है जिसे गतिशील विपरीत कहा जाता है, इसका आविष्कार फिलिप्स के शोधकर्ता डगलस स्टैंटन, मार्टिनस स्ट्रोमर और एड्रियनस डी वान ने किया है[110] पीडब्लूएम (पल्स-चौड़ाई मॉडुलन, एक ऐसी तकनीक जहां एलईडी की तीव्रता को स्थिर रखा जाता है) का उपयोग करना, लेकिन चमक समायोजन इन निरंतर प्रकाश तीव्रता वाले प्रकाश स्रोतों को चमकाने के समय अंतराल को बदलकर हासिल किया जाता है[111]), बैकलाइट स्क्रीन पर दिखाई देने वाले सबसे चमकीले रंग में मंद हो जाती है एक साथ अधिकतम प्राप्त करने योग्य स्तरों के लिए एलसीडी कंट्रास्ट को बढ़ाते हुए, यह एलसीडी पैनल के 1000:1 कंट्रास्ट अनुपात को अलग-अलग प्रकाश तीव्रता में स्केल करने की इजाजत दे रहा है, जिसके परिणामस्वरूप इनमें से कुछ मॉनीटरों पर विज्ञापन में "30000:1" कंट्रास्ट अनुपात देखा गया है। चूंकि कंप्यूटर स्क्रीन छवियों में आमतौर पर छवि में कहीं पूर्ण सफेद होता है, बैकलाइट आमतौर पर पूरी तीव्रता से होगी, जो इस "फीचर" को ज्यादातर कंप्यूटर मॉनिटर के लिए मार्केटिंग नौटंकी बनाते हैं, हालांकि टीवी स्क्रीन के लिए यह कथित कंट्रास्ट अनुपात और गतिशील रेंज को काफी बढ़ा देता है, यह देखने के कोण की निर्भरता में सुधार करता है और पारंपरिक एलसीडी टीवी की बिजली की खपत को काफी कम करता है।
  • डब्ल्यूएलईडी सरणी: एलसीडी पैनल पैनल के पीछे डिफ्यूज़र के पीछे सफेद एलईडी की एक पूरी श्रृंखला द्वारा प्रकाशित होता है। इस कार्यान्वयन का उपयोग करने वाले एलसीडी में आमतौर पर प्रदर्शित होने वाली छवि के अंधेरे क्षेत्रों में एलईडी को मंद या पूरी तरह से बंद करने की क्षमता होती है, जिससे प्रदर्शन के विपरीत अनुपात को प्रभावी ढंग से बढ़ाया जा सकता है। जिस सटीकता के साथ यह किया जा सकता है वह डिस्प्ले के डिमिंग ज़ोन की संख्या पर निर्भर करेगा। जितने अधिक डिमिंग ज़ोन, उतने ही सटीक डिमिंग, कम स्पष्ट खिलने वाली कलाकृतियों के साथ जो एलसीडी के अप्रकाशित क्षेत्रों से घिरे गहरे भूरे रंग के पैच के रूप में दिखाई देते हैं। 2012 तक, इस डिज़ाइन का अधिकांश उपयोग अपस्केल, बड़े स्क्रीन वाले एलसीडी टीवी से होता है।
  • आरजीबी-एलईडी सरणी: डब्ल्यूएलईडी सरणी के समान, पैनल को छोड़कर आरजीबी एलईडी (RGB LED) की एक पूरी सरणी द्वारा जलाया जाता है। जबकि सफेद एल ई डी के साथ प्रदर्शित डिस्प्ले में आमतौर पर सीसीएफएल लिट डिस्प्ले की तुलना में खराब रंग सरगम ​​​​होता है, आरजीबी एलईडी के साथ प्रकाशित पैनल में बहुत व्यापक रंग सरगम ​​​​हैं। यह कार्यान्वयन पेशेवर ग्राफिक्स संपादन एलसीडी पर सबसे लोकप्रिय है। 2012 तक, इस श्रेणी में एलसीडी की कीमत आमतौर पर $1000 से अधिक होती है। 2016 तक इस श्रेणी की लागत में भारी कमी आई है और ऐसे एलसीडी टीवी ने पूर्व 28" (71 सेमी) सीआरटी आधारित श्रेणियों के समान मूल्य स्तर प्राप्त किए।
  • मोनोक्रोम एलईडी: जैसे लाल, हरे, पीले या नीले एलईडी का उपयोग छोटे निष्क्रिय मोनोक्रोम एलसीडी में किया जाता है जो आमतौर पर घड़ियों, घड़ियों और छोटे उपकरणों में उपयोग किया जाता है।
  • मिनी एलईडी: मिनी-एलईडी के साथ बैकलाइटिंग एक हजार से अधिक फुल-एरिया लोकल एरिया डिमिंग (FLAD) ज़ोन का समर्थन कर सकती है। यह गहरे काले और उच्च विपरीत अनुपात की अनुमति देता है।[112] (माइक्रोएलईडी के साथ भ्रमित न करें।)

आज, अधिकांश एलसीडी स्क्रीन को पारंपरिक सीसीएफएल बैकलाइट के बजाय एलईडी-बैकलिट एलसीडी के साथ डिजाइन किया जा रहा है, जबकि उस बैकलाइट को वीडियो जानकारी (डायनेमिक बैकलाइट कंट्रोल) के साथ गतिशील रूप से नियंत्रित किया जाता है। फिलिप्स के शोधकर्ता डगलस स्टैंटन, मार्टिनस स्ट्रोमर और एड्रियनस डी वान द्वारा आविष्कार किए गए गतिशील बैकलाइट नियंत्रण के साथ संयोजन, साथ ही एचडीआर, हाई डायनेमिक रेंज टेलीविजन या फुल-एरिया लोकल एरिया डिमिंग (एफएलएडी) कहे जाने वाले डिस्प्ले सिस्टम की डायनेमिक रेंज को बढ़ाता है।[113][114][110]

ऑप्टिकल फिल्मों को लागू करके एलसीडी बैकलाइट सिस्टम को अत्यधिक कुशल बनाया जाता है जैसे प्रिज्मीय संरचना (प्रिज्म शीट) वांछित दर्शक दिशाओं और प्रतिबिंबित ध्रुवीकरण फिल्मों में प्रकाश प्राप्त करने के लिए जो ध्रुवीकृत प्रकाश को पुन: चक्रित करता है जिसे पहले एलसीडी के पहले ध्रुवक द्वारा अवशोषित किया गया था (फिलिप्स के शोधकर्ता एड्रियनस डी वान और पॉलस शारेमैन द्वारा आविष्कार किया गया),[115] आम तौर पर 3M द्वारा निर्मित और आपूर्ति की गई तथाकथित डीबीईएफ फिल्मों का उपयोग करके हासिल किया जाता है।[116] प्रिज्म शीट के उन्नत संस्करणों में प्रिज्मीय संरचना के बजाय लहरदार होते हैं, और लहरों की ऊंचाई को बदलते हुए शीट की संरचना में पार्श्व रूप से तरंगों का परिचय दें, यह स्क्रीन की ओर और भी अधिक प्रकाश को निर्देशित कर रहा है और प्रिज्म शीट की संरचना और एलसीडी के उप-पिक्सेल के बीच एलियासिंग या मूर को कम कर रहा है। पारंपरिक डायमंड मशीन टूल्स का उपयोग करते हुए प्रिज्मीय की तुलना में एक लहराती संरचना बड़े पैमाने पर उत्पादन करना आसान है, जिसका उपयोग रोलर्स को प्लास्टिक शीट में लहराती संरचना को छापने के लिए इस्तेमाल किया जाता है, इस प्रकार प्रिज्म शीट का उत्पादन होता है।[117] बैकलाइट की रोशनी को एक समान बनाने के लिए प्रिज्म शीट के दोनों ओर एक डिफ्यूज़र शीट लगाई जाती है। जबकि सभी प्रकाश को आगे की ओर निर्देशित करने के लिए प्रकाश गाइड प्लेट के पीछे एक दर्पण रखा जाता है। इसकी डिफ्यूज़र शीट के साथ प्रिज्म शीट को लाइट गाइड प्लेट के ऊपर रखा जाता है।[118][107] डीबीईएफ पोलराइज़र में एक अक्षीय उन्मुख द्विभाजित फिल्मों का एक बड़ा ढेर होता है जो प्रकाश के पूर्व अवशोषित ध्रुवीकरण मोड को दर्शाता है।[119] एक अक्षीय उन्मुख पॉलीमराइज़्ड लिक्विड क्रिस्टल (बायरफ़्रिंगेंट पॉलिमर या बायरफ़्रिंगेंट गोंद) का उपयोग करने वाले ऐसे परावर्तक पोलराइज़र का आविष्कार 1989 में फिलिप्स के शोधकर्ता डिर्क ब्रोअर, एड्रियनस डी वान और जोर्ज ब्रैम्ब्रिंग द्वारा किया गया था।[120] इस तरह के परावर्तक ध्रुवीकरण और एलईडी गतिशील बैकलाइट नियंत्रण का संयोजन[110]जो आज के एलसीडी टीवी को सीआरटी-आधारित सेटों की तुलना में कहीं अधिक कुशल बनाते हैं, और दुनिया भर में 600 टीडब्ल्यूएच (2017) की ऊर्जा बचत के लिए अग्रणी, दुनिया भर में सभी घरों में बिजली की खपत के 10% के बराबर या दुनिया में सभी सौर कोशिकाओं के ऊर्जा उत्पादन के 2 गुना के बराबर।[121][122]

एलसीडी परत के कारण जो एलईडी आधारित बैकलाइट प्रौद्योगिकियों के साथ संयोजन में बहुत कम बिजली इलेक्ट्रॉनिक्स का उपयोग करके वीडियो गति को फ्लैश करने पर वांछित उच्च रिज़ॉल्यूशन छवियां उत्पन्न करता है, एलसीडी तकनीक उत्पादों के लिए प्रमुख प्रदर्शन तकनीक बन गई है जैसे टीवी, डेस्कटॉप मॉनिटर, नोटबुक, टैबलेट, स्मार्टफोन और मोबाइल फोन। हालांकि प्रतिस्पर्धी ओएलईडी तकनीक को बाजार में धकेल दिया गया है, ऐसे ओएलईडी डिस्प्ले में 2डी एलईडी बैकलाइट तकनीकों के साथ संयोजन में एलसीडी जैसी एचडीआर क्षमताएं नहीं होती हैं, कारण है कि ऐसे एलसीडी-आधारित उत्पादों का वार्षिक बाज़ार अभी भी ओएलईडी-आधारित उत्पादों की तुलना में तेज़ी से (मात्रा में) बढ़ रहा है जबकि एलसीडी की दक्षता (और पोर्टेबल कंप्यूटर, मोबाइल फोन और टीवी जैसे उत्पाद) एलसीडी के रंग फिल्टर में प्रकाश को अवशोषित होने से रोककर और भी बेहतर किया जा सकता है।[123][124][125] ऐसे परावर्तक रंग फिल्टर समाधान अभी तक एलसीडी उद्योग द्वारा लागू नहीं किए गए हैं और इसे प्रयोगशाला प्रोटोटाइप से आगे नहीं बनाया है। ओएलईडी तकनीकों की तुलना में दक्षता बढ़ाने के लिए उन्हें संभवतः एलसीडी उद्योग द्वारा लागू किया जाएगा।

अन्य परिपथ से संबंध

एक गुलाबी इलास्टोमेरिक कनेक्टर एक एलसीडी पैनल को सर्किट बोर्ड के निशान के लिए संभोग करता है, जो एक सेंटीमीटर-स्केल शासक के बगल में दिखाया गया है।काली पट्टी में प्रवाहकीय और इन्सुलेट परतें बहुत छोटी हैं।

एक मानक टेलीविजन रिसीवर स्क्रीन, एक आधुनिक एलसीडी पैनल में छह मिलियन से अधिक पिक्सेल होते हैं, और वे सभी व्यक्तिगत रूप से स्क्रीन में एम्बेडेड वायर नेटवर्क द्वारा संचालित होते हैं। बारीक तार, या रास्ते, स्क्रीन के एक तरफ पूरी स्क्रीन पर लंबवत तारों के साथ एक ग्रिड बनाते हैं और स्क्रीन के दूसरी तरफ पूरी स्क्रीन पर क्षैतिज तार। इस ग्रिड से प्रत्येक पिक्सेल का एक तरफ सकारात्मक कनेक्शन होता है और दूसरी तरफ नकारात्मक कनेक्शन होता है। तो 1080p डिस्प्ले के लिए आवश्यक तारों की कुल मात्रा 3 x 1920 लंबवत जा रही है और 1080 क्षैतिज और लंबवत रूप से कुल 6840 तारों के लिए क्षैतिज रूप से जा रहा है। यह लाल, हरे और नीले रंग के लिए तीन है और कुल 5760 तारों के लिए प्रत्येक रंग के लिए पिक्सेल के 1920 कॉलम लंबवत जा रहे हैं और तारों की 1080 पंक्तियाँ क्षैतिज रूप से जा रही हैं। एक पैनल के लिए जो 28.8 इंच (73 सेंटीमीटर) चौड़ा है, इसका मतलब है कि क्षैतिज किनारे के साथ 200 तारों का तार घनत्व प्रति इंच है।

एलसीडी पैनल एलसीडी ड्राइवरों द्वारा संचालित होता है जो कारखाने के स्तर पर एलसीडी पैनल के किनारे से सावधानीपूर्वक मेल खाते हैं। ड्राइवरों को कई विधियों का उपयोग करके स्थापित किया जा सकता है, जिनमें से सबसे आम हैं सीओजी (चिप-ऑन-ग्लास) और टैब (टेप-स्वचालित संबंध ) ये वही सिद्धांत स्मार्टफोन स्क्रीन के लिए भी लागू होते हैं जो टीवी स्क्रीन की तुलना में बहुत छोटे होते हैं।[126][127][128] एलसीडी पैनल आमतौर पर पैनल को संचालित करने के लिए सेल सर्किटरी बनाने के लिए ग्लास सब्सट्रेट पर पतले-लेपित धातु प्रवाहकीय मार्गों का उपयोग करते हैं। पैनल को सीधे कॉपर-एच्च्ड सर्किट बोर्ड से सीधे जोड़ने के लिए सोल्डरिंग तकनीकों का उपयोग करना संभव नहीं है। इसकी जगह, अनिसोट्रोपिक प्रवाहकीय फिल्म का उपयोग करके या कम घनत्व के लिए, इलास्टोमेरिक कनेक्टर्स का उपयोग करके इंटरफेसिंग को पूरा किया जाता है।

निष्क्रिय-मैट्रिक्स

540 × 270 पिक्सेल, ब्राउन बोवेरी रिसर्च, स्विट्जरलैंड, 1984 के साथ एक निष्क्रिय-मैट्रिक्स एसटीएन-एलसीडी का प्रोटोटाइप

मोनोक्रोम और बाद में रंगीन निष्क्रिय मैट्रिक्स एलसीडी अधिकांश शुरुआती लैपटॉप में मानक थे (हालांकि कुछ प्लाज्मा डिस्प्ले का इस्तेमाल किया गया था[129][130]) और मूल खेल का लड़का (निन्टेंडो गेम ब्वॉय) [131] 1990 के दशक के मध्य तक, जब कलर एक्टिव-मैट्रिक्स सभी लैपटॉप पर मानक बन गया। व्यावसायिक रूप से असफल मैकिंटोश पोर्टेबल (1989 में जारी) सक्रिय-मैट्रिक्स डिस्प्ले (हालांकि अभी भी मोनोक्रोम) का उपयोग करने वाले पहले लोगों में से एक था। लैपटॉप कंप्यूटर और टीवी की तुलना में कम मांग वाले अनुप्रयोगों के लिए 2010 के दशक में निष्क्रिय-मैट्रिक्स एलसीडी का उपयोग अभी भी किया जाता है, जैसे सस्ते कैलकुलेटर। विशेष रूप से, इनका उपयोग पोर्टेबल उपकरणों पर किया जाता है जहां कम सूचना सामग्री प्रदर्शित करने की आवश्यकता है, सबसे कम बिजली की खपत (कोई बैकलाइट नहीं) और कम लागत वांछित हैं या सीधे धूप में पठनीयता की जरूरत है।

एक रिक्त निष्क्रिय-मैट्रिक्स डिस्प्ले (शीर्ष) और एक रिक्त सक्रिय-मैट्रिक्स डिस्प्ले (नीचे) के बीच तुलना।एक निष्क्रिय-मैट्रिक्स डिस्प्ले की पहचान तब की जा सकती है जब रिक्त पृष्ठभूमि क्रिस्पर सक्रिय-मैट्रिक्स डिस्प्ले की तुलना में अधिक ग्रे होती है, स्क्रीन के सभी किनारों पर कोहरा दिखाई देता है, और जबकि चित्र स्क्रीन पर लुप्त होते दिखाई देते हैं।

एक निष्क्रिय-मैट्रिक्स संरचना वाले डिस्प्ले सुपर ट्विस्टेड नेमैटिक एसटीएन को नियोजित कर रहे हैं (1983 में ब्राउन बोवेरी रिसर्च सेंटर, बाडेन, स्विटज़रलैंड द्वारा आविष्कार किया गया; वैज्ञानिक विवरण प्रकाशित किए गए थे[132]) या डबल-लेयर एसटीएन (डीएसटीएन) तकनीक (जिनमें से उत्तरार्द्ध पूर्व के साथ रंग बदलने की समस्या को संबोधित करता है), और रंग-एसटीएन (सीएसटीएन) जिसमें आंतरिक फिल्टर का उपयोग करके रंग जोड़ा जाता है। एसटीएन एलसीडी को निष्क्रिय मैट्रिक्स एड्रेसिंग के लिए अनुकूलित किया गया है। वे मूल टीएन एलसीडी की तुलना में विपरीत बनाम वोल्टेज विशेषता की एक तेज सीमा प्रदर्शित करते हैं। यह महत्वपूर्ण है, क्योंकि चयनित न होने पर भी पिक्सेल आंशिक वोल्टेज के अधीन होते हैं। सक्रिय और गैर-सक्रिय पिक्सल के बीच एलसीडी क्रॉसस्टॉक को गैर सक्रिय पिक्सल के आरएमएस वोल्टेज को रखकर ठीक से संभाला जाना चाहिए जो 1972 में पीटर जे. वाइल्ड द्वारा खोजे गए थ्रेशोल्ड वोल्टेज से कम है,[133] जबकि सक्रिय पिक्सल थ्रेशोल्ड से ऊपर वोल्टेज के अधीन होते हैं ("ऑल्ट एंड प्लेशको" ड्राइव स्कीम के अनुसार वोल्टेज)।[134] आल्ट एंड प्लेस्को ड्राइव स्कीम के अनुसार ऐसे एसटीएन (एसटीएन) डिस्प्ले को चलाने के लिए बहुत अधिक लाइन एड्रेसिंग वोल्टेज की आवश्यकता होती है। बल्जेन और डी वान ने एक वैकल्पिक ड्राइव योजना (एक गैर "आल्ट एंड प्लेस्को" ड्राइव योजना) का आविष्कार किया, जिसमें बहुत कम वोल्टेज की आवश्यकता होती है, जैसे कि एसटीएन डिस्प्ले को कम वोल्टेज सीएमओएस प्रौद्योगिकियों का उपयोग करके संचालित किया जा सकता है।[70]

एसटीएन एलसीडी को एक फ्रेम के दौरान एक ध्रुवीयता के स्पंदित वोल्टेज और अगले फ्रेम के दौरान विपरीत ध्रुवीयता के दालों को वैकल्पिक रूप से ताज़ा करना पड़ता है। अलग-अलग पिक्सल के संबंधित पंक्ति और कॉलम सर्किट द्वारा संबोधन योजना बनाई जाती है। इस प्रकार के डिस्प्ले को पैसिव मैट्रिक्स एड्रेस कहा जाता है, क्योंकि पिक्सेल को स्थिर विद्युत आवेश के लाभ के बिना रिफ्रेश के बीच अपनी स्थिति बनाए रखनी चाहिए। जैसे-जैसे पिक्सेल (और, तदनुसार, कॉलम और पंक्तियाँ) की संख्या बढ़ती है, इस प्रकार का प्रदर्शन कम संभव हो जाता है। धीमी प्रतिक्रिया समय (प्रौद्योगिकी) और खराब विपरीत प्रदर्शन बहुत अधिक पिक्सेल वाले निष्क्रिय मैट्रिक्स संबोधित एलसीडी के विशिष्ट हैं और यह "आल्ट एंड प्लेस्को" ड्राइव योजना के अनुसार संचालित होता है। वेलजेन और डी वैन ने एक गैर-आरएमएस ड्राइव योजना का भी आविष्कार किया जो वीडियो दरों के साथ एसटीएन डिस्प्ले को चलाने में सक्षम बनाता है और यह एसटीएन डिस्प्ले पर सुचारू रूप से चलती वीडियो छवियों को दिखाने में सक्षम है।[69] नागरिकों ने, दूसरों के बीच, इन पेटेंटों को लाइसेंस दिया और सफलतापूर्वक कई एसटीएन आधारित एलसीडी पॉकेट टीवी बाजार में पेश किए।[135]

एक सक्रिय-मैट्रिक्स संरचना का उपयोग करके एक एलसीडी कैसे काम करता है

बिस्टेबल एलसीडी को निरंतर ताज़ा करने की आवश्यकता नहीं होती है। केवल चित्र जानकारी परिवर्तन के लिए पुनर्लेखन आवश्यक है। 1984 में एचए वैन स्प्रैंग और एजेएसएम डि वान ने एसटीएन टाइप डिस्प्ले का आविष्कार किया जिसे एक बिस्टेबल मोड में संचालित किया जा सकता है, केवल कम वोल्टेज का उपयोग करके 4000 लाइनों या अधिक तक अत्यधिक उच्च रिज़ॉल्यूशन वाली छवियों को सक्षम करता है।[136] चूँकि एक पिक्सेल या तो ऑन-स्टेट या ऑफ स्टेट में हो सकता है, इस समय उस विशेष पिक्सेल पर नई जानकारी लिखी जानी चाहिए, इन बिस्टेबल डिस्प्ले की एड्रेसिंग विधि बल्कि जटिल है, यही कारण है कि इन डिस्प्ले ने इसे बाजार में नहीं बनाया। यह तब बदल गया जब 2010 में "शून्य-शक्ति" (बिस्टेबल) एलसीडी उपलब्ध हो गए। संभावित रूप से, निष्क्रिय-मैट्रिक्स एड्रेसिंग का उपयोग उपकरणों के साथ किया जा सकता है यदि उनकी लिखने/मिटाने की विशेषताएं उपयुक्त हैं, ई-बुक्स के मामले में यही स्थिति थी, जिसमें केवल स्टिल पिक्चर्स दिखाने की जरूरत होती थी। डिस्प्ले पर पेज लिखे जाने के बाद, पठनीय छवियों को बनाए रखते हुए डिस्प्ले को पावर से काटा जा सकता है। इसका यह फायदा है कि इस तरह की ई-बुक्स को केवल एक छोटी बैटरी द्वारा लंबे समय तक संचालित किया जा सकता है।

उच्च-प्रदर्शन रिज़ॉल्यूशन रंग डिस्प्ले, जैसे आधुनिक एलसीडी कंप्यूटर मॉनीटर और टीवी, यह एक सक्रिय-मैट्रिक्स संरचना का उपयोग करता है। पतली फिल्म ट्रांजिस्टर (टीएफटी) का एक मैट्रिक्स एलसी परत के संपर्क में इलेक्ट्रोड में जोड़ा जाता है। प्रत्येक पिक्सेल का अपना समर्पित ट्रांजिस्टर होता है, जिससे प्रत्येक कॉलम लाइन एक पिक्सेल तक पहुँच सकती है। जब एक पंक्ति रेखा का चयन किया जाता है, तो सभी स्तंभ रेखाएँ पिक्सेल और वोल्टेज की एक पंक्ति से जुड़ी होती हैं यह चित्र के अनुरूप है कि जानकारी सभी कॉलम लाइनों पर संचालित होती है। फिर पंक्ति पंक्ति को निष्क्रिय कर दिया जाता है और अगली पंक्ति पंक्ति का चयन किया जाता है। ताज़ा दर संचालन के समय सभी पंक्ति पंक्तियों को क्रम में चुना जाता है। एक्टिव-मैट्रिक्स एड्रेस्ड डिस्प्ले समान आकार के पैसिव-मैट्रिक्स एड्रेस्ड डिस्प्ले की तुलना में उज्जवल और तेज दिखते हैं, और आम तौर पर बहुत बेहतर छवियों का निर्माण करते हुए, त्वरित प्रतिक्रिया समय होता है। शार्प प्रति पिक्सेल 1-बिट SRAM सेल के साथ बिस्टेबल रिफ्लेक्टिव एलसीडी का उत्पादन करता है छवि को बनाए रखने के लिए केवल थोड़ी मात्रा में शक्ति की आवश्यकता होती है।[137]

फ़ील्ड अनुक्रमिक रंग (एफएससी एलसीडी) का उपयोग करके सेगमेंट एलसीडी में रंग भी हो सकते हैं। इस तरह के डिस्प्ले में आरजीबी बैकलाइट के साथ हाई स्पीड पैसिव सेगमेंट एलसीडी पैनल होता है। बैकलाइट जल्दी से रंग बदलता है, जिससे यह नग्न आंखों को सफेद दिखाई देता है। एलसीडी पैनल बैकलाइट के साथ सिंक्रनाइज़ है। उदाहरण के लिए, किसी खंड को लाल दिखाने के लिए, खंड को केवल तभी चालू किया जाता है जब बैकलाइट लाल हो, और खंड को मैजेंटा दिखाने के लिए, बैकलाइट के नीले होने पर खंड चालू होता है, और बैकलाइट के लाल होने पर यह चालू रहता है, और बैकलाइट के हरे होने पर यह बंद हो जाता है। किसी खंड को काला दिखाने के लिए, खंड हमेशा चालू रहता है। एक एफएससी एलसीडी एक रंगीन छवि को 3 छवियों (एक लाल, एक हरा और एक नीला) में विभाजित करता है और यह उन्हें क्रम में प्रदर्शित करता है। दृष्टि की दृढ़ता के कारण, 3 मोनोक्रोमैटिक छवियां एक रंगीन छवि के रूप में दिखाई देती हैं। एक FSC एलसीडी को 180 Hz की ताज़ा दर वाले एलसीडी पैनल की आवश्यकता होती है, और सामान्य एसटीएन एलसीडी पैनलों की तुलना में प्रतिक्रिया समय केवल 5 मिलीसेकंड तक कम हो जाता है, जिसमें प्रतिक्रिया समय 16 मिलीसेकंड होता है।[138][139][140][141] एफएससी एलसीडी में एक चिप-ऑन-ग्लास ड्राइवर होता है आईसी को कैपेसिटिव टचस्क्रीन के साथ भी इस्तेमाल किया जा सकता है।

सैमसंग ने 2002 में यूएफबी (अल्ट्रा फाइन एंड ब्राइट) डिस्प्ले पेश किया, इसने सुपर-बायरफ्रींग प्रभाव का उपयोग किया। इसमें चमक, रंग सरगम, और एक टीएफटी-एलसीडी के अधिकांश कंट्रास्ट हैं, लेकिन सैमसंग के अनुसार केवल एसटीएन डिस्प्ले जितनी बिजली की खपत करता है। यह 2006 के अंत तक निर्मित सैमसंग सेलुलर टेलीफोन मॉडल की एक किस्म में इस्तेमाल किया जा रहा था, जब सैमसंग ने यूएफबी डिस्प्ले का उत्पादन बंद कर दिया था। एलजी मोबाइल फोन के कुछ मॉडलों में यूएफबी डिस्प्ले का भी इस्तेमाल किया गया था।

एक्टिव-मैट्रिक्स टेक्नोलॉजीज

एक Casio 1.8 & nbsp; रंग TFT LCD में, सोनी साइबर शॉट DSC-P93A डिजिटल कैमरा में उपयोग किया जाता है
एक रंग एलसीडी की संरचना एक एज-लिट CCFL बैकलाइट के साथ

ट्विस्टेड नेमैटिक (टीएन)

ट्विस्टेड नेमैटिक डिस्प्ले में लिक्विड क्रिस्टल होते हैं जो प्रकाश को पार करने की अनुमति देने के लिए अलग-अलग डिग्री पर मुड़ते और खोलते हैं। जब सीआरटी लिक्विड क्रिस्टल सेल पर कोई वोल्टेज नहीं लगाया जाता है, तो ध्रुवीकृत प्रकाश 90-डिग्री मुड़ एलसी परत से होकर गुजरता है। लागू वोल्टेज के अनुपात में, तरल क्रिस्टल ध्रुवीकरण को बदलते हैं और प्रकाश के मार्ग को अवरुद्ध करते हैं। वोल्टेज के स्तर को ठीक से समायोजित करके लगभग किसी भी ग्रे स्तर या संचरण को प्राप्त किया जा सकता है।

इन-प्लेन स्विचिंग (आईपीएस-आईपीएस)

आईपीएस (आईपीएस) पैनल, इन-प्लेन स्विचिंग एक एलसीडी तकनीक है जो ग्लास सब्सट्रेट के समानांतर एक विमान में तरल क्रिस्टल को संरेखित करती है। इस विधि में, एक ही ग्लास सब्सट्रेट पर विपरीत इलेक्ट्रोड के माध्यम से विद्युत क्षेत्र लागू किया जाता है, ताकि लिक्विड क्रिस्टल को अनिवार्य रूप से एक ही तल में फिर से उन्मुख (स्विच) किया जा सके, हालांकि फ्रिंज क्षेत्र एक सजातीय पुनर्रचना को रोकते हैं। इसके लिए एक मानक पतली फिल्म ट्रांजिस्टर (टीएफटी) डिस्प्ले के लिए आवश्यक एकल ट्रांजिस्टर के बजाय प्रत्येक पिक्सेल के लिए दो ट्रांजिस्टर की आवश्यकता होती है। आईपीएस तकनीक का उपयोग टेलीविजन, कंप्यूटर मॉनिटर और यहां तक ​​कि पहनने योग्य उपकरणों से लेकर हर चीज में किया जाता है। आईपीएस डिस्प्ले एलसीडी पैनल फैमिली स्क्रीन टाइप के हैं। अन्य दो प्रकार वीए और टीएन हैं। 2009 में एलजी एन्हांस्ड आईपीएस को पेश किए जाने से पहले, अतिरिक्त ट्रांजिस्टर के परिणामस्वरूप अधिक संचरण क्षेत्र अवरुद्ध हो गया, इस प्रकार एक उज्जवल बैकलाइट की आवश्यकता होती है और अधिक शक्ति की खपत होती है, जिससे इस प्रकार का प्रदर्शन नोटबुक कंप्यूटरों के लिए कम वांछनीय हो जाता है। वर्तमान में पैनासोनिक अपने बड़े आकार के एलसीडी-टीवी उत्पादों के साथ-साथ अपने वेबओएस आधारित टचपैड टैबलेट और उनके क्रोमबुक 11 में हेवलेट पैकर्ड के उन्नत संस्करण ईआईपीएस का उपयोग कर रहा है।

एक आईपीएस LCD पैनल के एक कोने का क्लोज़-अप

सुपर इन-प्लेन स्विचिंग (एस-आईपीएस)

सुपर-आईपीएस को बाद में इन-प्लेन स्विचिंग के बाद और भी बेहतर प्रतिक्रिया समय और रंग प्रजनन के साथ पेश किया गया था।[142]

एम+ या आरजीबीडब्ल्यू विवाद

2015 में एलजी डिस्प्ले ने एम+ नामक एक नई तकनीक के कार्यान्वयन की घोषणा की, जो उनके आईपीएस पैनल प्रौद्योगिकी में नियमित आरजीबी डॉट्स के साथ सफेद उप-पिक्सेल का जोड़ है।[143]

अधिकांश नई एम+ तकनीक का उपयोग 4के टीवी सेटों पर किया गया था जिसके कारण परीक्षण के बाद विवाद पैदा हो गया कि पारंपरिक आरजीबी संरचना की जगह एक सफेद उप पिक्सेल को जोड़ने से संकल्प लगभग 25% कम हो जाएगा। इसका मतलब है कि एक 4के टीवी पूर्ण यूएचडी टीवी मानक प्रदर्शित नहीं कर सकता है। मीडिया और इंटरनेट उपयोगकर्ताओं ने बाद में सफेद सब-पिक्सेल के कारण इसे "आरजीबीडब्ल्यू" टीवी कहा हालांकि एलजी डिस्प्ले ने इस तकनीक को नोटबुक डिस्प्ले, आउटडोर और स्मार्टफोन में उपयोग के लिए विकसित किया है, यह टीवी बाजार में अधिक लोकप्रिय हो गया क्योंकि घोषित 4K यूएचडी संकल्प लेकिन फिर भी सीटीए द्वारा परिभाषित 8-बिट रंग के साथ 3840x2160 सक्रिय पिक्सल के रूप में परिभाषित सही यूएचडी रिज़ॉल्यूशन प्राप्त करने में असमर्थ है। यह पाठ के प्रतिपादन को नकारात्मक रूप से प्रभावित करता है, जिससे यह थोड़ा अस्पष्ट हो जाता है, जो विशेष रूप से ध्यान देने योग्य है जब एक टीवी को पीसी मॉनिटर के रूप में उपयोग किया जाता है।[144][145][146][147]

एमोलड (AMOLED) की तुलना में आईपीएस

2011 में, एलजी ने दावा किया कि स्मार्टफोन एलजी ऑप्टिमस ब्लैक (आईपीएस एलसीडी (एलसीडी नोवा)) में 700 निट्स तक की चमक है, जबकि प्रतियोगी के पास 518 निट्स के साथ केवल आईपीएस एलसीडी और 305 निट्स के साथ एक सक्रिय-मैट्रिक्स ओएलईडी (एमोलड) डिस्प्ले है। एलजी ने यह भी दावा किया कि नोवा डिस्प्ले नियमित एलसीडी की तुलना में 50 प्रतिशत अधिक कुशल है और स्क्रीन पर सफेद रंग का उत्पादन करते समय एमोलड डिस्प्ले की केवल 50 प्रतिशत शक्ति का उपभोग करता है।[148] जब कंट्रास्ट अनुपात की बात आती है, तो एमोलड डिस्प्ले अभी भी अपनी अंतर्निहित तकनीक के कारण सबसे अच्छा प्रदर्शन करता है, जहां काले स्तरों को पिच ब्लैक के रूप में प्रदर्शित किया जाता है न कि गहरे भूरे रंग के रूप में। 24 अगस्त 2011 को, नोकिया ने नोकिया 701 की घोषणा की और 1000 निट्स पर दुनिया के सबसे चमकीले डिस्प्ले का दावा भी किया। स्क्रीन में नोकिया की क्लियरब्लैक परत भी थी, जो कंट्रास्ट अनुपात में सुधार करती थी और इसे अमोलेड स्क्रीन के करीब लाती थी।

यह पिक्सेल-लेआउट एस-आईपीएस एलसीडी में पाया जाता है।एक शेवरॉन (प्रतीक चिन्ह) आकार का उपयोग देखने के शंकु को चौड़ा करने के लिए किया जाता है (अच्छे विपरीत और कम रंग शिफ्ट के साथ देखने की दिशाओं की सीमा)।

उन्नत फ्रिंज फील्ड स्विचिंग (एएफएफएस - AFFS)

2003 तक फ्रिंज फील्ड स्विचिंग (एएफएफएस) के रूप में जाना जाता है,[149] उन्नत फ्रिंज फील्ड स्विचिंग आईपीएस या एस-आईपीएस के समान है जो उच्च चमक के साथ बेहतर प्रदर्शन और रंग सरगम ​​​​प्रदान करता है। एफएफएस को हाइडिस टेक्नोलॉजीज कं, लिमिटेड, कोरिया (औपचारिक रूप से हुंडई इलेक्ट्रॉनिक्स, एलसीडी टास्क फोर्स) द्वारा विकसित किया गया था।[150] एएफएफएस-लागू नोटबुक एप्लिकेशन एक पेशेवर प्रदर्शन के लिए व्यापक देखने के कोण को बनाए रखते हुए रंग विकृति को कम करते हैं। सफेद सरगम ​​को अनुकूलित करके प्रकाश रिसाव के कारण रंग परिवर्तन और विचलन को ठीक किया जाता है जो सफेद/ग्रे प्रजनन को भी बढ़ाता है। 2004 में, हाइडिस टेक्नोलॉजीज कं, लिमिटेड ने जापान के हितैची डिस्प्ले के लिए एफएफएस को लाइसेंस दिया। हिताची हाई-एंड पैनल बनाने के लिए एएफएफएस का उपयोग कर रही है। 2006 में, हाइडस ने एएफएफएस को सान्यो एप्सान इमेजिंग डिवाइसेस कॉर्पोरेशन को लाइसेंस दिया। इसके तुरंत बाद, हाइडिस ने का एक उच्च-संप्रेषण विकास पेश किया एएफएफएस डिस्प्ले, जिसे एचएफएफएस (एफएफएस FFS+) कहा जाता है। हाइडिस ने 2007 में बेहतर आउटडोर पठनीयता के साथ एएफएफएस+ की शुरुआत की। एएफएफएस पैनल का उपयोग ज्यादातर नवीनतम वाणिज्यिक विमान डिस्प्ले के कॉकपिट में किया जाता है। हालांकि, यह अब फरवरी 2015 तक उत्पादन नहीं किया गया है।[151][152][153]

ऊर्ध्वाधर संरेखण (वीए-VA)

लंबवत-संरेखण डिस्प्ले एलसीडी का एक रूप है जिसमें लिक्विड क्रिस्टल स्वाभाविक रूप से ग्लास सबस्ट्रेट्स के लिए लंबवत रूप से संरेखित होते हैं। जब कोई वोल्टेज नहीं लगाया जाता है, तो लिक्विड क्रिस्टल लंबवत रहते हैं सब्सट्रेट, पार किए गए ध्रुवीकरणकर्ताओं के बीच एक काला प्रदर्शन बनाना। जब वोल्टेज लगाया जाता है, तो लिक्विड क्रिस्टल झुकी हुई स्थिति में शिफ्ट हो जाते हैं, जिससे प्रकाश गुजर सकता है और विद्युत क्षेत्र द्वारा उत्पन्न झुकाव की मात्रा के आधार पर एक ग्रे स्केल डिस्प्ले बना सकता है। इसमें गहरे काले रंग की पृष्ठभूमि, एक उच्च विपरीत अनुपात, एक व्यापक देखने का कोण, और पारंपरिक ट्विस्टेड नेमैटिक डिस्प्ले की तुलना में अत्यधिक तापमान पर बेहतर छवि गुणवत्ता है।[154] आईपीएस की तुलना में, काला स्तर अभी भी गहरा है, जिससे उच्च विपरीत अनुपात की अनुमति मिलती है, लेकिन देखने का कोण संकरा है, जिसमें रंग और विशेष रूप से कंट्रास्ट शिफ्ट अधिक स्पष्ट है।[155]

नीली फेस मोड

नीली फेस मोड एलसीडी को 2008 की शुरुआत में अभियांत्रिकी नमूने के रूप में दिखाया गया है, लेकिन वे बड़े पैमाने पर उत्पादन में नहीं हैं। नीले फेज़ मोड एलसीडी की भौतिकी का सुझाव है कि बहुत कम स्विचिंग समय (≈1 मिलीसेकेंड) प्राप्त किया जा सकता है, इसलिए समय अनुक्रमिक रंग नियंत्रण संभवतः महसूस किया जा सकता है और महंगे रंग फ़िल्टर अप्रचलित हो जाएंगे।[citation needed]

गुणवत्ता नियंत्रण

कुछ एलसीडी पैनल में दोषपूर्ण ट्रांजिस्टर होते हैं, जो स्थायी रूप से रोशनी या अनलिमिटेड पिक्सल का कारण बनते हैं जिन्हें आमतौर पर क्रमशः अटके हुए पिक्सेल या मृत पिक्सेल के रूप में संदर्भित किया जाता है। एकीकृत सर्किट (आईसी) के विपरीत, कुछ दोषपूर्ण ट्रांजिस्टर वाले एलसीडी पैनल आमतौर पर अभी भी प्रयोग करने योग्य होते हैं। दोषपूर्ण पिक्सेल की स्वीकार्य संख्या के लिए निर्माताओं की नीतियां बहुत भिन्न होती हैं। एक समय पर, सैमसंग ने कोरिया में बेचे जाने वाले एलसीडी मॉनिटरों के लिए शून्य-सहनशीलता की नीति अपनाई थी।[156] हालांकि, 2005 तक, सैमसंग कम प्रतिबंधात्मक आईएसओ 13406-2 मानक का पालन करता है।[157] अन्य कंपनियों को अपनी नीतियों में कम से कम 11 डेड पिक्सल सहन करने के लिए जाना जाता है।[158]

निर्माताओं और ग्राहकों के बीच मृत पिक्सेल नीतियों पर अक्सर गर्मागर्म बहस होती है। दोषों की स्वीकार्यता को विनियमित करने और अंतिम उपयोगकर्ता की रक्षा करने के लिए, आईसीओ (ISO) ने आईसीओ 13406-2 मानक जारी किया,[159] जिसे 2008 में आईएसओ 9241, विशेष रूप से आईसीओ -9241-302, 303, 305, 307:2008 पिक्सेल दोषों की रिलीज़ के साथ अप्रचलित बना दिया गया था। हालांकि, प्रत्येक एलसीडी निर्माता आईएसओ मानक के अनुरूप नहीं है और आईएसओ मानक की अक्सर अलग-अलग तरीकों से व्याख्या की जाती है। एलसीडी पैनलों में उनके बड़े आकार के कारण अधिकांश आईसी की तुलना में दोष होने की संभावना अधिक होती है।उदाहरण के लिए, एक 300 मिमी एसवीजीए एलसीडी में 8 दोष हैं और 150 मिमी के वेफर में केवल 3 दोष हैं। हालांकि, 137 में से 134 की मौत वेफर पर स्वीकार्य होगी, जबकि पूरे एलसीडी पैनल की अस्वीकृति 0% प्रतिफल होगी। हाल के वर्षों में, गुणवत्ता नियंत्रण में सुधार हुआ है। 4 दोषपूर्ण पिक्सेल वाले एसवीजीए एलसीडी पैनल को आमतौर पर दोषपूर्ण माना जाता है और ग्राहक एक नए एक्सचेंज के लिए अनुरोध कर सकते हैं।[original research?]

कुछ निर्माता, विशेष रूप से दक्षिण कोरिया में जहां कुछ सबसे बड़े एलसीडी पैनल निर्माता, जैसे एलजी, स्थित हैं, अब शून्य-दोषपूर्ण-पिक्सेल गारंटी है, जो एक अतिरिक्त स्क्रीनिंग प्रक्रिया है जो तब "ए" - और "बी" -ग्रेड पैनल निर्धारित कर सकती है।

कई निर्माता किसी उत्पाद को एक दोषपूर्ण पिक्सेल से भी बदल देंगे। यहां तक ​​​​कि जहां ऐसी गारंटी मौजूद नहीं है, दोषपूर्ण पिक्सल का स्थान महत्वपूर्ण है। केवल कुछ दोषपूर्ण पिक्सेल वाला डिस्प्ले अस्वीकार्य हो सकता है यदि दोषपूर्ण पिक्सेल एक दूसरे के पास हों। एलसीडी पैनल में दोष भी होते हैं जिन्हें क्लाउडिंग (या कम सामान्यतः मुरा) के रूप में जाना जाता है, जो चमक में परिवर्तन के असमान पैच का वर्णन करता है। यह प्रदर्शित दृश्यों के अंधेरे या काले क्षेत्रों में सबसे अधिक दिखाई देता है।[160] 2010 तक, अधिकांश प्रीमियम ब्रांडेड कंप्यूटर एलसीडी पैनल निर्माता अपने उत्पादों को शून्य दोष के रूप में निर्दिष्ट करते हैं।

शून्य-शक्ति (बाईस्टेबल) डिस्प्ले

क्यूईनेटिक (पूर्व में रक्षा मूल्यांकन और अनुसंधान एजेंसी) द्वारा विकसित जेनिथल बिस्टेबल डिवाइस (ZBD), यह बिना शक्ति के एक छवि बनाए रख सकता है। क्रिस्टल दो स्थिर अभिविन्यास ("ब्लैक" और "व्हाइट") में से एक में मौजूद हो सकते हैं और छवि को बदलने के लिए केवल शक्ति की आवश्यकता होती है। ZBD डिस्प्ले क्यूईनेटिक (QinetiQ) की एक स्पिन-ऑफ कंपनी है जिसने ग्रेस्केल और रंगीन जेनिथल बिस्टेबल डिवाइस दोनों का निर्माण किया। केंट डिस्प्ले ने एक "नो पावर" डिस्प्ले भी विकसित किया है जो पॉलीमर स्टेबलाइज्ड कोलेस्टेरिक तरल क्रिस्टल का उपयोग करता है। 2009 में केंट ने एक मोबाइल फोन की पूरी सतह को कवर करने के लिए एक सीएचएलसीडीके उपयोग का प्रदर्शन किया, जिससे वह रंग बदल सके, और बिजली हटा दिए जाने पर भी उस रंग को बनाए रख सके।[161]

2004 में, ऑक्सफोर्ड विश्वविद्यालय के शोधकर्ताओं ने जेनिथल बिस्टेबल तकनीकों पर आधारित दो नए प्रकार के जीरो-पावर बिस्टेबल एलसीडी का प्रदर्शन किया।[162] कई बस्टेबल प्रौद्योगिकियां, जैसे कि 360° बीटीएन और बिस्टेबल कोलेस्टरिक, यह मुख्य रूप से लिक्विड क्रिस्टल (एलसी) के थोक गुणों पर निर्भर करता है। और यह संरेखण फिल्मों और एलसी मिश्रण के साथ मानक मजबूत एंकरिंग का उपयोग करता है जो पारंपरिक मोनोस्टेबल सामग्री के समान है। अन्य बस्टेबल प्रौद्योगिकियां, जैसे, बायनेम तकनीक मुख्य रूप से सतह के गुणों पर आधारित होती हैं और विशिष्ट कमजोर एंकरिंग सामग्री की आवश्यकता होती है।

विनिर्देश

  • रिज़ॉल्यूशन एक एलसीडी का रिज़ॉल्यूशन स्तंभों की संख्या और सब-पिक्सेल की पंक्तियों (जैसे, 1024×768) द्वारा व्यक्त किया जाता है। प्रत्येक पिक्सेल में आमतौर पर 3 उप-पिक्सेल होते हैं, एक लाल, एक हरा और एक नीला। यह एलसीडी प्रदर्शन की कुछ विशेषताओं में से एक थी जो विभिन्न डिजाइनों के बीच एक समान रही। हालाँकि, कुछ नए डिज़ाइन हैं जो पिक्सेल के बीच उप-पिक्सेल साझा करते हैं और यह क्वाट्रॉन को जोड़ता है जो वास्तविक रिज़ॉल्यूशन को मिश्रित परिणामों में बढ़ाए बिना प्रदर्शन के कथित रिज़ॉल्यूशन को कुशलता से बढ़ाने का प्रयास करता है।
  • स्थानिक प्रदर्शन: कंप्यूटर मॉनीटर या किसी अन्य डिस्प्ले के लिए जिसे बहुत दूर से देखा जा रहा है, रिज़ॉल्यूशन को अक्सर डॉट पिच या पिक्सेल प्रति इंच के रूप में व्यक्त किया जाता है, जो मुद्रण उद्योग के अनुरूप है। प्रदर्शन घनत्व प्रति एप्लिकेशन भिन्न होता है, आमतौर पर लंबी दूरी के देखने के लिए कम घनत्व वाले टीवी और क्लोज-रेंज विवरण के लिए उच्च घनत्व वाले पोर्टेबल डिवाइस होते हैं। डिस्प्ले और उसके उपयोग के आधार पर एलसीडी का व्यूइंग एंगल महत्वपूर्ण हो सकता है। कुछ प्रदर्शन प्रौद्योगिकियों की सीमाओं का मतलब है कि प्रदर्शन केवल कुछ कोणों पर सटीक रूप से प्रदर्शित होता है।
  • अस्थायी प्रदर्शन: एक एलसीडी का अस्थायी संकल्प कितनी अच्छी तरह से बदलती छवियों को प्रदर्शित कर सकता है, या सटीकता और प्रति सेकंड प्रदर्शन की संख्या उस डेटा को खींचती है जो उसे दिया जा रहा है। एलसीडी पिक्सल फ्रेम के बीच चालू/बंद फ्लैश नहीं करते हैं, इसलिए एलसीडी मॉनिटर रिफ्रेश-प्रेरित झिलमिलाहट प्रदर्शित नहीं करते हैं, भले ही रिफ्रेश दर कितनी कम हो।[163] लेकिन कम ताज़ा दर का मतलब भूत-प्रेत या धब्बा जैसी दृश्य कलाकृतियाँ हो सकता है, विशेष रूप से तेज़ गति वाली छवियों के साथ। व्यक्तिगत पिक्सेल प्रतिक्रिया समय भी महत्वपूर्ण है, क्योंकि सभी डिस्प्ले में छवि प्रदर्शित करने में कुछ अंतर्निहित विलंबता होती है जो दृश्य कलाकृतियों को बनाने के लिए काफी बड़ा हो सकता है यदि प्रदर्शित छवि तेजी से बदलती है।
  • रंग प्रदर्शन: प्रदर्शन के रंग प्रदर्शन के विभिन्न पहलुओं का वर्णन करने के लिए कई शब्द हैं। रंग सरगम ​​रंगों की श्रेणी है जिसे प्रदर्शित किया जा सकता है, और रंग गहराई, वह सुंदरता है जिसके साथ रंग सीमा विभाजित है। रंग सरगम ​​​​एक अपेक्षाकृत सीधे आगे की विशेषता है, लेकिन व्यावसायिक स्तर को छोड़कर विपणन सामग्री में इसकी शायद ही कभी चर्चा की जाती है। स्क्रीन पर दिखाई जा रही सामग्री से अधिक रंग रेंज होने का कोई लाभ नहीं है, इसलिए डिस्प्ले केवल एक निश्चित विनिर्देश की सीमा के भीतर या नीचे प्रदर्शन करने के लिए बनाए जाते हैं।[164] एलसीडी रंग और रंग प्रबंधन के अतिरिक्त पहलू हैं, जैसे सफेद बिंदु और गामा सुधार , जो बताता है कि सफेद रंग क्या है और सफेद के सापेक्ष अन्य रंग कैसे प्रदर्शित होते हैं।
  • चमक और कंट्रास्ट अनुपात: कंट्रास्ट अनुपात एक पूर्ण-ऑन पिक्सेल की पूर्ण-ऑफ़ पिक्सेल की चमक का अनुपात है। एलसीडी स्वयं केवल एक हल्का वाल्व है और प्रकाश उत्पन्न नहीं करता है; प्रकाश एक बैकलाइट से आता है जो या तो फ्लोरोसेंट है या एलईडी का एक सेट है। चमक को आमतौर पर एलसीडी के अधिकतम प्रकाश उत्पादन के रूप में कहा जाता है, जो एलसीडी की पारदर्शिता और बैकलाइट की चमक के आधार पर बहुत भिन्न हो सकते हैं। उज्जवल बैकलाइट मजबूत कंट्रास्ट और उच्च गतिशील रेंज की अनुमति देता है (एचडीआर डिस्प्ले को पीक ल्यूमिनेंस में वर्गीकृत किया जाता है), लेकिन चमक और बिजली की खपत के बीच हमेशा एक समझौता होता है।

फायदे और नुकसान

इनमें से कुछ मुद्दे फुल-स्क्रीन डिस्प्ले से संबंधित हैं, दूसरों को घड़ियों के रूप में छोटे डिस्प्ले के लिए, आदि। कई तुलना CRT डिस्प्ले के साथ हैं।

लाभ

  • विशेष रूप से भारी सीआरटी डिस्प्ले की तुलना में कॉम्पैक्ट बहुत पतला और हल्का होता हैं।
  • बिजली की खपत में कम खपत होती हैं, सेट प्रदर्शन चमक और प्रदर्शित होने वाली सामग्री के आधार पर, पुराने सीसीएफटी बैकलिट मॉडल आमतौर पर उसी आकार के देखने वाले क्षेत्र के सीआरटी मॉनिटर द्वारा उपयोग की जाने वाली शक्ति के आधे से भी कम का उपयोग करते हैं, और आधुनिक एलईडी बैकलिट मॉडल आमतौर पर सीआरटी मॉनिटर द्वारा उपयोग की जाने वाली शक्ति का 10-25% उपयोग करते हैं।[165]
  • कम बिजली की खपत के कारण, ऑपरेशन के दौरान कम गर्मी उत्सर्जित होती है।
  • कोई ज्यामितीय विकृति नहीं होती है।
  • थोड़ा होने की संभावित क्षमता या बैकलाइट तकनीक के आधार पर कोई झिलमिलाहट नहीं।
  • आमतौर पर कोई रिफ्रेश-रेट झिलमिलाहट नहीं होती है, क्योंकि एलसीडी पिक्सल रिफ्रेश के बीच अपनी स्थिति को बनाए रखते हैं (जो आम तौर पर 200 हर्ट्ज या तेज पर किया जाता है, इनपुट रीफ्रेश दर की परवाह किए बिना)।
  • रक्तस्राव के बिना तेज छवि या मूल संकल्प पर संचालित होने पर धुंधला हो जाना।
  • सीआरटी मॉनिटर के विपरीत, लगभग कोई अवांछनीय विद्युत चुम्बकीय विकिरण उत्सर्जित नहीं करता है ( बेहद कम आवृत्ति रेंज में)।[166][167][better source needed]
  • लगभग किसी भी आकार या आकार में बनाया जा सकता है।
  • कोई सैद्धांतिक संकल्प सीमा नहीं। जब एक कैनवास बनाने के लिए एक साथ कई LCD पैनल का उपयोग किया जाता है, प्रत्येक अतिरिक्त पैनल डिस्प्ले के कुल रिज़ॉल्यूशन को बढ़ाता है, जिसे आमतौर पर स्टैक्ड रिज़ॉल्यूशन कहा जाता है।[168] 80-इंच (2 मीटर) से अधिक विकर्ण के बड़े आकार में बनाया जा सकता है।
  • मास्किंग प्रभाव: एलसीडी ग्रिड स्थानिक और ग्रेस्केल परिमाणीकरण के प्रभावों को भ्रमित कर सकता है, जो उच्च छवि गुणवत्ता का भ्रम पैदा करता है।[169]
  • अधिकांश रंगीन सीआरटी के विपरीत, पृथ्वी सहित चुंबकीय क्षेत्रों से अप्रभावित।
  • एक स्वाभाविक रूप से डिजिटल डिवाइस के रूप में, एलसीडी मूल रूप से अंकीय दृश्य इंटरफ़ेस या एचडीएमआई (HDMI) कनेक्शन से एनालॉग में रूपांतरण की आवश्यकता के बिना डिजिटल डेटा प्रदर्शित कर सकता है। कुछ एलसीडी पैनल में डीवीआई और एचडीएमआई के अलावा देशी फाइबर ऑप्टिक केबल होते हैं।[170]
  • कई एलसीडी मॉनिटर 12 वी बिजली की आपूर्ति द्वारा संचालित होते हैं, और अगर कंप्यूटर में बनाया जाए तो इसकी 12 वी बिजली की आपूर्ति द्वारा संचालित किया जा सकता है।
  • बहुत संकीर्ण फ्रेम सीमाओं के साथ बनाया जा सकता है, एक बड़ी स्क्रीन की तरह दिखने के लिए कई एलसीडी स्क्रीन को कंधे से कंधा मिलाकर रखने की अनुमति देता है।

नुकसान

  • कुछ पुराने या सस्ते मॉनिटर में सीमित व्यूइंग एंगल, जिससे रंग, संतृप्ति, कंट्रास्ट और चमक उपयोगकर्ता की स्थिति के साथ-साथ इच्छित व्यूइंग एंगल के भीतर भी भिन्न हो सकती है।
  • कुछ मॉनीटरों में असमान बैकलाइटिंग (आईपीएस-प्रकारों और पुराने टीएन में अधिक सामान्य), जिससे चमक विकृत हो जाती है, विशेष रूप से किनारों की ओर ("बैकलाइट ब्लीड")।
  • काला स्तर आवश्यकता के अनुसार उतना गहरा नहीं हो सकता क्योंकि अलग-अलग लिक्विड क्रिस्टल पूरी तरह से बैकलाइट को गुजरने से नहीं रोक सकते।
  • धीमी प्रतिक्रिया समय (>8 एमएस) के कारण चलती वस्तुओं पर मोशन ब्लर प्रदर्शित करें और नमूने और होल्ड डिस्प्ले पर आई-ट्रैकिंग करें, जब तक एक स्ट्रोबिंग बैकलाइट का उपयोग नहीं किया जाता है। हालाँकि, यह स्ट्रोबिंग आँखों में खिंचाव पैदा कर सकता है, जैसा कि आगे बताया गया है:
  • 2012 तक, एलसीडी बैकलाइटिंग के अधिकांश कार्यान्वयन में डिस्प्ले को कम करने के लिए पल्स चौड़ाई मॉडुलन (पीडब्लूएम) का उपयोग किया जाता है,[171] जो 85 Hz रिफ्रेश दर पर सीआरटी मॉनिटर की तुलना में स्क्रीन को अधिक तीव्रता से झिलमिलाहट (इसका मतलब स्पष्ट रूप से नहीं) बनाता है (यह है क्योंकि पूरी स्क्रीन एक सीआरटी के फॉस्फोर निरंतर बिंदु के बजाय चकाचौंध करनेवाली रौशनी है जो लगातार पूरे डिस्प्ले को स्कैन करता है, जिससे डिस्प्ले का कुछ हिस्सा हमेशा जलता रहता है), जिससे कुछ लोगों की आंखों पर गंभीर दबाव पड़ता है।[172][173] दुर्भाग्य से, इनमें से बहुत से लोग यह नहीं जानते हैं कि उनकी आंखों में खिंचाव पीडब्लूएम के अदृश्य स्ट्रोब प्रभाव के कारण हो रहा है।[174] कई एलईडी-बैकलिट मॉनिटर पर यह समस्या बदतर है, क्योंकि एलईडी सीसीएफएल लैंप की तुलना में तेजी से चालू और बंद होते हैं।
  • केवल एक देशी संकल्प। किसी अन्य रिज़ॉल्यूशन को प्रदर्शित करने के लिए या तो वीडियो स्केलर की आवश्यकता होती है, यह धुंधलापन और दांतेदार किनारों का कारण बनता है, या 1:1 पिक्सेल मैपिंग का उपयोग करके मूल रिज़ॉल्यूशन पर डिस्प्ले चला रहा है, यह छवि या तो स्क्रीन को नहीं भरता है (लेटरबॉक्स वाला डिस्प्ले), या स्क्रीन के निचले या दाएं किनारों को बंद कर देता है।
  • निश्चित बिट गहराई (जिसे रंग गहराई भी कहा जाता है)। कई सस्ते एलसीडी केवल 262144 (218) रंग प्रदर्शित करने में सक्षम हैं18। 8-बिट S-आईपीएस पैनल 16 मिलियन (224) रंग प्रदर्शित कर सकते हैं और इनका काला स्तर काफी बेहतर है, लेकिन महंगे हैं और धीमी प्रतिक्रिया समय है।
  • इनपुट लैग, क्योंकि एलसीडी का ए/डी कन्वर्टर एलसीडी पैनल पर ड्रॉइंग करने से पहले प्रत्येक फ्रेम के पूरी तरह से आउटपुट होने की प्रतीक्षा करता है। कई एलसीडी मॉनिटर खराब रंग निष्ठा की भरपाई करने के प्रयास में छवि प्रदर्शित करने से पहले वीडियो पोस्ट-प्रोसेसिंग करते हैं, जो एक अतिरिक्त अंतराल जोड़ता है। इसके अलावा, गैर-देशी प्रस्तावों को प्रदर्शित करते समय एक वीडियो स्केलर का उपयोग किया जाना चाहिए, जो अभी और समय अंतराल जोड़ता है। स्केलिंग और पोस्ट प्रोसेसिंग आमतौर पर आधुनिक मॉनिटर पर एक ही चिप में की जाती है, लेकिन प्रत्येक कार्य जो चिप करता है, कुछ विलंब जोड़ता है। कुछ डिस्प्ले में वीडियो गेमिंग मोड होता है जो बोधगम्य इनपुट अंतराल को कम करने के लिए सभी या अधिकांश प्रसंस्करण को अक्षम कर देता है।
  • निर्माण के दौरान या उपयोग की अवधि के बाद मृत या अटके हुए पिक्सेल हो सकते हैं। एक अटका हुआ पिक्सेल पूरी तरह से काली स्क्रीन पर भी रंग के साथ चमकेगा, जबकि मृत व्यक्ति हमेशा काला ही रहेगा।
  • प्रभाव में जलने के अधीन, हालांकि कारण सीआरटी से अलग है और प्रभाव स्थायी नहीं हो सकता है, एक स्थिर छवि खराब तरीके से डिज़ाइन किए गए डिस्प्ले में कुछ ही घंटों में जल सकती है।
  • निरंतर स्थिति में, खराब थर्मल प्रबंधन के मामले में थर्मलकरण हो सकता है, जिसमें स्क्रीन का कौन सा हिस्सा ज़्यादा गरम हो गया है और स्क्रीन के बाकी हिस्सों की तुलना में फीका पड़ गया है।
  • कम तापमान के कारण वातावरण के चमक में कमी और समय प्रतिक्रिया बहुत धीमी हो जाती है। शून्य से कम वातावरण में, एलसीडी स्क्रीन पूरक हीटिंग के उपयोग के बिना काम करना बंद कर सकते हैं।
  • उच्च तापमान के वातावरण में विपरीतता का नुकसान।

रसायन का उपयोग

लिक्विड क्रिस्टल के कई अलग-अलग परिवार लिक्विड क्रिस्टल में उपयोग किए जाते हैं। उपयोग किए जाने वाले अणुओं को अनिसोट्रोपिक होना चाहिए और पारस्परिक आकर्षण प्रदर्शित करना चाहिए। ध्रुवीकरण करने योग्य छड़ के आकार के अणु (बाईफिनाइल, टेरफिनाइल, आदि) आम हैं। एक सामान्य रूप सुगंधित बेंजीन के छल्ले की एक जोड़ी है, जिसमें एक छोर पर एक गैर-ध्रुवीय भाग (पेंटाइल, हेप्टाइल, ऑक्टाइल, या अल्काइल ऑक्सी समूह) और दूसरे पर ध्रुवीय (नाइट्राइल, हैलोजन) होता है। कभी-कभी बेंजीन के छल्ले एसिटिलीन समूह, एथिलीन, सीएच = एन, सीएच = एनओ, एन = एन, एन = एनओ, या एस्टर समूह से अलग होते हैं। व्यवहार में, व्यापक तापमान ऑपरेटिंग रेंज (−10..+60 डिग्री सेल्सियस कम अंत के लिए और −20..+100 डिग्री सेल्सियस उच्च प्रदर्शन प्रदर्शन के लिए) प्राप्त करने के लिए, कई रसायनों के गलनक्रांतिक मिश्रण का उपयोग किया जाता है। उदाहरण के लिए, E7 मिश्रण तीन बाइफिनाइल से बना है और एक टेरफेनिल: 39 wt.% 4'-पेंटाइल [1,1'-बिफेनिल] -4-कार्बोनिट्राइल (नेमैटिक रेंज 24..35 °C), 36 wt.% 4'-heptyl[1,1'- बाइफिनाइल] -4-कार्बोनिट्राइल (नेमेटिक रेंज 30..43 डिग्री सेल्सियस), 16 wt.% 4'-ऑक्टॉक्सी [1,1'-बिफेनी (bipheny)] -4-कार्बोनिट्राइल (नेमैटिक रेंज 54..80 डिग्री सेल्सियस), और 4-पेंटाइल का 9 wt.%[1,1':4',1-टेरफिनाइल]-4-कार्बोनिट्राइल (नेमेटिक रेंज 131..240 °C)।[175]

पर्यावरणीय प्रभाव

एलसीडी स्क्रीन का उत्पादन पतली फिल्म घटकों के उत्पादन के दौरान नक़्क़ाशी तरल पदार्थ के रूप में नाइट्रोजन ट्राइफ्लुओराइड (एनएफ 3) का उपयोग करता है। एनएफ3 एक शक्तिशाली ग्रीनहाउस गैस है, और इसका अपेक्षाकृत लंबा आधा जीवन इसे ग्लोबल वार्मिंग में संभावित रूप से हानिकारक योगदानकर्ता बना सकता है।जियोफिजिकल रिसर्च लेटर्स में एक रिपोर्ट ने सुझाव दिया कि इसके प्रभाव सैद्धांतिक रूप से कार्बन डाइआक्साइड जैसे ग्रीनहाउस गैसों के बेहतर ज्ञात स्रोतों की तुलना में बहुत अधिक थे। चूंकि एनएफ3 उस समय व्यापक उपयोग में नहीं था, इसलिए इसे क्योटो प्रोटोकोल का हिस्सा नहीं बनाया गया था और इसे "लापता ग्रीनहाउस गैस" माना गया है।[176]

रिपोर्ट के आलोचकों का कहना है कि यह मानता है कि उत्पादित सभी एनएफ 3 को वायुमंडल में छोड़ दिया जाएगा। वास्तव में, सफाई प्रक्रियाओं के दौरान एनएफ3 का विशाल बहुमत टूट जाता है; पहले के दो अध्ययनों में पाया गया कि केवल 2 से 3% गैस ही इसके उपयोग के बाद विनाश से बच जाती है।[177] इसके अलावा, रिपोर्ट एनएफ3 के प्रभावों की तुलना करने में विफल रही, जो इसे बदल दिया गया था, पेरफ्लोरोकार्बन, एक और शक्तिशाली ग्रीनहाउस गैस, जिनमें से 30 से 70% कहीं भी सामान्य उपयोग में वातावरण में भाग जाते हैं।[178]

यह भी देखें

संदर्भ

  1. Lawrence Ulrich: BOSCHs smart visual visor tracks sun. IEEE Spectrum, 29 January 2020. Retrieved 17 March 2020.
  2. "Definition of LCD". www.merriam-webster.com.
  3. 3.0 3.1 "Liquid crystal composition and liquid crystal display device".
  4. "Liquid crystal composition".
  5. Tien, Chuen-Lin; Lin, Rong-Ji; Yeh, Shang-Min (June 3, 2018). "Light Leakage of Multidomain Vertical Alignment LCDs Using a Colorimetric Model in the Dark State". Advances in Condensed Matter Physics. 2018: 1–6. doi:10.1155/2018/6386428.
  6. Castellano, Joseph A (2005). Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry. World Scientific Publishing. ISBN 978-981-238-956-5.
  7. "Flat screens show their true colors". www.basf.com. Archived from the original on August 3, 2020.
  8. "Pigments for Color Filters Used in LCDs and OLED Displays (Functional Pigments)". D. I. C. Corporation.
  9. "Structure of Color Resist | Color Filter Materials for FPDs | TOYO VISUAL SOLUTIONS". www.toyo-visual.com.
  10. Koo, Horng-Show; Chen, Mi; Pan, Po-Chuan (November 1, 2006). "LCD-based color filter films fabricated by a pigment-based colorant photo resist inks and printing technology". Thin Solid Films. 515 (3): 896–901. Bibcode:2006TSF...515..896K. doi:10.1016/j.tsf.2006.07.159 – via ResearchGate.
  11. "History of Color Resist Development at TVS | Color Filter Materials for FPDs | TOYO VISUAL SOLUTIONS". www.toyo-visual.com.
  12. "Structure of Color Filters | Toppan Printing Co., Ltd. Electronics Division". www.toppan.co.jp.
  13. https://www.sumitomo-chem.co.jp/english/rd/report/files/docs/2013E_1.pdf[bare URL PDF]
  14. "LCD - Color PR | Samsung SDI". www.samsungsdi.com.
  15. "Archived copy". Archived from the original on March 7, 2021. Retrieved January 10, 2020.{{cite web}}: CS1 maint: archived copy as title (link)
  16. "Archived copy". Archived from the original on February 27, 2021. Retrieved January 10, 2020.{{cite web}}: CS1 maint: archived copy as title (link)
  17. Rong-Jer Lee; Jr-Cheng Fan; Tzong-Shing Cheng; Jung-Lung Wu (March 10, 1999). "Pigment-dispersed color resist with high resolution for advanced color filter application". Proceedings of 5th Asian Symposium on Information Display. ASID '99 (IEEE Cat. No.99EX291). pp. 359–363. doi:10.1109/ASID.1999.762781. ISBN 957-97347-9-8. S2CID 137460486 – via IEEE Xplore.
  18. "Flat screens show their true colors". www.basf.com.
  19. Archived at Ghostarchive and the Wayback Machine: "Flat screens show their true colors: Innovative pigments from BASF improve television image quality" – via www.youtube.com.
  20. "Multi-colored liquid crystal display device".
  21. fx9750G PLUS, CFX-9850G PLUS, CFX-9850GB PLUS, CFX-9850GC PLUS, CFX-9950GC PLUS User's Guide (PDF) (in English). London, UK: Casio. pp. Page 4.
  22. Datta, Asit Kumar; Munshi, Soumika (2016-11-25). Information Photonics: Fundamentals, Technologies, and Applications (in English). CRC Press. ISBN 9781482236422.
  23. "Sunic system". sunic.co.kr.
  24. 24.0 24.1 24.2 24.3 24.4 24.5 AU Optronics Corp. (AUO): "Size Matters" 19 January 2017.
  25. 25.0 25.1 25.2 25.3 Gan, Fuxi: From Optical Glass to Photonic Glass, Photonic Glasses, Pages 1–38.
  26. Armorex Taiwan Central Glass Company Archived February 24, 2021, at the Wayback Machine, Abgerufen am 20. Mai 2015.
  27. Samsung: SAMSUNG Electronics Announces 7th-Generation TFT LCD Glass Substrate, Press release 27 March 2003, Visited 2. August 2010.
  28. 28.0 28.1 "'Large Generation Glass". Archived from the original on August 23, 2011. Retrieved April 4, 2019.
  29. "High-definition display, display, intelligent system, health services, BOE, BOE official website". www.boe.com. Archived from the original on December 22, 2019. Retrieved April 10, 2019.
  30. 30.0 30.1 30.2 "8.6G Fabs, Do We Really Need Them? - Display Supply Chain Consultants". March 7, 2017. Archived from the original on March 7, 2017.
  31. "Company History - Sakai Display Products Corporation". www.sdp.co.jp. Retrieved April 10, 2019.
  32. Shih, Willy. "How Did They Make My Big-Screen TV? A Peek Inside China's Massive BOE Gen 10.5 Factory". Forbes. Retrieved April 10, 2019.
  33. BOE’s Gen 10.5 Display Equipment Is A Pie In The Sky For Korean Equipment Companies ETNews, Visited 10 July 2015.
  34. Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry, Joseph A. Castellano, 2005 World Scientific Publishing Co. Pte. Ltd., ISBN 981-238-956-3.
  35. Kawamoto, Hiroshi (2002). "The History of Liquid-Crystal Displays" (PDF). Proceedings of the IEEE. 90 (4): 460–500. doi:10.1109/JPROC.2002.1002521.
  36. "First-Hand Histories: Liquid Crystal Display Evolution — Swiss Contributions". Engineering and Technology History Wiki. ETHW. Retrieved June 30, 2017.
  37. Jonathan W. Steed & Jerry L. Atwood (2009). Supramolecular Chemistry (2nd ed.). John Wiley and Sons. p. 844. ISBN 978-0-470-51234-0.
  38. Tim Sluckin: Ueber die Natur der kristallinischen Flüssigkeiten und flüssigen Kristalle (About the Nature of Crystallised Liquids and Liquid Crystals), Bunsen-Magazin, 7.Jahrgang, 5/2005
  39. Gray, George W.; Kelly, Stephen M. (1999). "Liquid crystals for twisted nematic display devices". Journal of Materials Chemistry. 9 (9): 2037–2050. doi:10.1039/a902682g.
  40. Williams, R. (1963). "Domains in liquid crystals". J. Phys. Chem. 39 (2): 382–388. Bibcode:1963JChPh..39..384W. doi:10.1063/1.1734257.
  41. "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum. Retrieved 29 July 2019.
  42. Atalla, M.; Kahng, D. (1960). "Silicon-silicon dioxide field induced surface devices". IRE-AIEE Solid State Device Research Conference.
  43. Weimer, Paul K. (1962). "The TFT A New Thin-Film Transistor". Proceedings of the IRE. 50 (6): 1462–1469. doi:10.1109/JRPROC.1962.288190. ISSN 0096-8390. S2CID 51650159.
  44. Kimizuka, Noboru; Yamazaki, Shunpei (2016). Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Fundamentals. John Wiley & Sons. p. 217. ISBN 9781119247401.
  45. 45.0 45.1 Castellano, Joseph A. (2006). "Modifying Light". American Scientist. 94 (5): 438–445. doi:10.1511/2006.61.438.
  46. Heilmeier, George; Castellano, Joseph; Zanoni, Louis (1969). "Guest-Host Interactions in Nematic Liquid Crystals". Molecular Crystals and Liquid Crystals. 8: 293–304. doi:10.1080/15421406908084910.
  47. Heilmeier, G. H.; Zanoni, L. A.; Barton, L. A. (1968). "Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals". Proc. IEEE. 56 (7): 1162–1171. doi:10.1109/proc.1968.6513.
  48. Gross, Benjamin (November 2012). "How RCA lost the LCD". IEEE Spectrum. 49 (11): 38–44. doi:10.1109/mspec.2012.6341205. S2CID 7947164.
  49. National Inventors Hall of Fame Archived April 26, 2014, at the Wayback Machine (Retrieved 2014-04-25)
  50. "Milestones: Liquid Crystal Display, 1968". IEEE Global History Network. IEEE. Retrieved August 4, 2011.
  51. 51.0 51.1 Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
  52. Castellano, Joseph A. (2005). Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry. World Scientific. pp. 41–2. ISBN 9789812389565.
  53. "Modifying Light". American Scientist Online. Archived from the original on December 20, 2008. Retrieved December 28, 2007.
  54. "Driving arrangement for passive time indicating devices". Retrieved April 10, 2019.
  55. Brody, T.P., "Birth of the Active Matrix", Information Display, Vol. 13, No. 10, 1997, pp. 28–32.
  56. Kuo, Yue (1 January 2013). "Thin Film Transistor Technology—Past, Present, and Future" (PDF). The Electrochemical Society Interface. 22 (1): 55–61. Bibcode:2013ECSIn..22a..55K. doi:10.1149/2.F06131if. ISSN 1064-8208.
  57. Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". IEEE Transactions on Electron Devices. 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.
  58. Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer Science & Business Media. p. 74. ISBN 9783319000022.
  59. Dale, Rodney; Millichamp, David (28 September 1972). "Liquid Crystals Get Their Sparkle From Mass Market". The Engineer: 34–36.
  60. "What's New In Electronics: 100-hour calculator". Popular Science: 87. December 1973.
  61. 61.0 61.1 Note on the Liquid Crystal Display Industry, Auburn University, 1995
  62. Heilmeier, G. H., Castellano, J. A. and Zanoni, L. A.: Guest-host interaction in nematic liquid crystals. Mol. Cryst. Liquid Cryst. vol. 8, p. 295, 1969
  63. "Liquid crystal display units". Retrieved April 10, 2019.
  64. "Liquid crystal color display device". Retrieved April 10, 2019.
  65. "Liquid crystal display device". Retrieved April 10, 2019.
  66. "Liquid crystal display unit of matrix type". Retrieved April 10, 2019.
  67. European Patent No. EP 0131216: Amstutz H., Heimgartner D., Kaufmann M., Scheffer T.J., "Flüssigkristallanzeige," Oct. 28, 1987.
  68. Gessinger, Gernot H. (2009). Materials and Innovative Product development. Elsevier. p. 204. ISBN 9780080878201.
  69. 69.0 69.1 Liquid Crystal Display Device; T.L. Welzen; A.J.S.M. de Vaan; European patent EP0175417B1; 23 May 1990; filed 19 September 1984; https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=0175417B1&KC=B1&FT=D&ND=4&date=19900523&DB=EPODOC&locale=en_EP#; US patent US4902105A; https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=US&NR=4902105A&KC=A&FT=D&ND=5&date=19900220&DB=EPODOC&locale=en_EP#
  70. 70.0 70.1 Low Drive Voltage Display Device; T.L. Welzen; A.J.S.M. de Vaan; European patent EP0221613B1; 10 July 1991, filed 4 November 1985; https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=0221613B1&KC=B1&FT=D&ND=4&date=19910710&DB=EPODOC&locale=en_EP#; US patent US4783653A; https://worldwide.espacenet.com/publicationDetails/originalDocument?CC=US&NR=4783653A&KC=A&FT=D&ND=5&date=19881108&DB=EPODOC&locale=en_EP#
  71. 71.0 71.1 71.2 Spin, Jul 1985, page 55
  72. "TV Watch - Epson". global.epson.com. Retrieved April 10, 2019.
  73. 73.0 73.1 Michael R. Peres, The Focal Encyclopedia of Photography, page 306, Taylor & Francis
  74. A HISTORY OF CREATING INSPIRATIONAL TECHNOLOGY, Epson
  75. 75.0 75.1 Popular Science, May 1984, page 150
  76. 76.0 76.1 Hirohisa Kawamoto (2013), The history of liquid-crystal display and its industry, HISTory of ELectro-technology CONference (HISTELCON), 2012 Third IEEE, Institute of Electrical and Electronics Engineers, DOI 10.1109/HISTELCON.2012.6487587
  77. Find out what is an LCD Projector, how does it benefit you, and the difference between LCD and 3LCD here, Epson
  78. "Espacenet — Bibliographic data". Worldwide.espacenet.com. 1974-09-10. Retrieved August 15, 2014.
  79. U.S. Patent 3,834,794: R. Soref, Liquid crystal electric field sensing measurement and display device, filed June 28, 1973.
  80. "Espacenet — Bibliographic data". Worldwide.espacenet.com. 1996-11-19. Retrieved August 15, 2014.
  81. U.S. Patent 5,576,867: G. Baur, W. Fehrenbach, B. Staudacher, F. Windscheid, R. Kiefer, Liquid crystal switching elements having a parallel electric field and betao which is not 0 or 90 degrees, filed Jan 9, 1990.
  82. "Espacenet — Bibliographic data". Worldwide.espacenet.com. 1997-01-28. Retrieved August 15, 2014.
  83. U.S. Patent 5,598,285: K. Kondo, H. Terao, H. Abe, M. Ohta, K. Suzuki, T. Sasaki, G. Kawachi, J. Ohwada, Liquid crystal display device, filed Sep 18, 1992 and Jan 20, 1993.
  84. "Optical Patterning" (PDF). Nature. August 22, 1996. Retrieved June 13, 2008.
  85. Competing display technologies for the best image performance; A.J.S.M. de Vaan; Journal of the society of information displays, Volume 15, Issue 9 September 2007 Pages 657–666; http://onlinelibrary.wiley.com/doi/10.1889/1.2785199/abstract?
  86. "Worldwide LCD TV shipments surpass CRTs for first time ever". engadgetHD. February 19, 2008. Retrieved June 13, 2008.
  87. "Displaybank's Global TV Market Forecasts for 2008 – Global TV market to surpass 200 million units". Displaybank. December 5, 2007. Retrieved June 13, 2008.
  88. "IHS Acquires Displaybank, a Global Leader in Research and Consulting in the Flat-Panel Display Industry — IHS Technology". technology.ihs.com.
  89. "Toshiba announces 6.1 inch LCD panel with an insane resolution of 2560 x 1600 pixels". October 24, 2011. Archived from the original on October 26, 2011. Retrieved October 26, 2011.
  90. "CHUNGHWA PICTURE TUBES, LTD. - intro_Tech". archive.ph. December 23, 2019. Archived from the original on December 23, 2019.
  91. "Flexible OLCD | Technology | Flexible Electronics | FlexEnable - FlexEnable". www.flexenable.com.
  92. "Transparent LCD Screen | Curved 4k monitors Display Panel". Pro Display. Archived from the original on March 19, 2020. Retrieved March 18, 2020.
  93. "UCIC Curved 4k monitors LCD Displays". monitorzone. Archived from the original on March 19, 2020. Retrieved January 12, 2020.
  94. "EDN - Implementing flexible OLED and OLCD display technologies in consumer electronics -". August 19, 2019.
  95. "Illuminating LCD | FUJIFILM | Changing the world, one thing at a time". and-fujifilm.jp.
  96. "Highly Functional Materials | Fujifilm Global". www.fujifilm.com.
  97. Morrison, Geoffrey. "Are dual-LCDs double the fun? New TV tech aims to find out". CNET.
  98. Raikes, Bob (July 22, 2019). "Why is Dual Panel LCD vs OLED a Hot Topic?". DisplayDaily.
  99. "Hisense says it has a dual-cell LCD panel at CES that will compete with OLED tech—for a lot less cash | TechHive". www.techhive.com.
  100. "Panasonic announces 1,000,000:1 contrast ratio LCD panel to rival OLED". Android Authority. December 5, 2016.
  101. Shilov, Anton. "Panasonic Develops IPS Panel with 1,000,000:1 Contrast Ratio, 1000 Nits Brightness". www.anandtech.com.
  102. "Panasonic's OLED-fighting LCD is meant for professionals". Engadget.
  103. OECD (2000-03-07). Information Technology Outlook 2000 ICTs, E-commerce and the Information Economy: ICTs, E-commerce and the Information Economy (in English). OECD Publishing. ISBN 978-92-64-18103-8.
  104. Ibrahim, Dogan (2012-08-22). Using LEDs, LCDs and GLCDs in Microcontroller Projects (in English). John Wiley & Sons. ISBN 978-1-118-36103-0.
  105. Explanation of different LCD monitor technologies, "Monitor buying guide — CNET Reviews", Eric Franklin, Retrieved September 2012.
  106. Explanation of different LCD monitor backlight technologies, "Monitor LED Backlighting", TFT Central. Retrieved September 2012
  107. 107.0 107.1 107.2 "LCD TVs Change Light Guide Plate Material to Enable Thinner TV November,13 2017". OLED Association.
  108. "LCD optical waveguide device".
  109. Explanation of CCFL backlighting details, "Design News — Features — How to Backlight an LCD" Archived January 2, 2014, at the Wayback Machine, Randy Frank, Retrieved January 2013.
  110. 110.0 110.1 110.2 Method of and device for generating an image having a desired brightness; D.A. Stanton; M.V.C. Stroomer; A.J.S.M. de Vaan; US patent USRE42428E; 7 June 2011; https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=RE42428E
  111. Dimming options for LCD brightness; J. Moronski; Electronicproducts.com; 3 Januari 2004; http://www.electronicproducts.com/Optoelectronics/Dimming_options_for_LCD_brightness_control.aspx
  112. Shafer, Rob (2019-06-05). "Mini-LED vs MicroLED - What Is The Difference? [Simple Explanation]". DisplayNinja (in English). Retrieved 2019-09-14.
  113. LED local dimming explained; G. Morrison; CNET.com/news; 26 March 2016; https://www.cnet.com/news/led-local-dimming-explained/
  114. Pixel-by-pixel local dimming for high dynamic range liquid crystal displays; H. Chen; R. Zhu; M.C. Li; S.L. Lee and S.T. Wu; Vol. 25, No. 3; 6 Feb 2017; Optics Express 1973; https://www.osapublishing.org/oe/viewmedia.cfm?uri=oe-25-3-1973&seq=0
  115. Illumination system and display device including such a system; A.J.S.M. de Vaan; P.B. Schaareman; European patent EP0606939B1; https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=0606939B1&KC=B1&FT=D&ND=5&date=19980506&DB=EPODOC&locale=en_EP#
  116. Brochure 3M Display Materials & Systems Division Solutions for Large Displays: The right look matters; http://multimedia.3m.com/mws/media/977332O/display-materials-systems-strategies-for-large-displays.pdf
  117. "Prism sheet having prisms with wave pattern, black light unit including the prism sheet, and liquid crystal display device including the black light unit".
  118. "StackPath". www.laserfocusworld.com.
  119. Broadband reflective polarizers based on form birefringence for ultra-thin liquid crystal displays; S.U. Pan; L. Tan and H.S. Kwok; Vol. 25, No. 15; 24 Jul 2017; Optics Express 17499; https://www.osapublishing.org/oe/viewmedia.cfm?uri=oe-25-15-17499&seq=0
  120. Polarisation-sensitive beam splitter; D.J. Broer; A.J.S.M. de Vaan; J. Brambring; European patent EP0428213B1; 27 July 1994; https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=0428213B1&KC=B1&FT=D#
  121. Energy Efficiency Success Story: TV Energy Consumption Shrinks as Screen Size and Performance Grow, Finds New CTA Study; Consumer Technology Association; press release 12 July 2017; https://cta.tech/News/Press-Releases/2017/July/Energy-Efficiency-Success-Story-TV-Energy-Consump.aspx Archived November 4, 2017, at the Wayback Machine
  122. LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; http://www.cta.tech/cta/media/policyImages/policyPDFs/Fraunhofer-LCD-TV-Power-Draw-Trends-FINAL.pdf Archived August 1, 2017, at the Wayback Machine
  123. Electro-optical color display device and projection apparatus; A.J.S.M. de Vaan, US patent US5029986; 9 July 1991; filed 13 April 1988; https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=5&ND=3&adjacent=true&locale=en_EP&FT=D&date=19910709&CC=US&NR=5029986A&KC=A#
  124. New Cholesteric Colour Filters for Reflective LCDs; C. Doornkamp; R. T. Wegh; J. Lub; SID Symposium Digest of Technical Papers; Volume 32, Issue 1 June 2001; Pages 456–459; http://onlinelibrary.wiley.com/doi/10.1889/1.1831895/full
  125. Printable Reflective Color Filter Arrays from Cholesteric Reactive Mesogen Nanoposts; M.E. Sousa and G.P. Crawford; Society of Information Displays; SID digest, Volume 36, Issue 1; May 2005; Pages 706–709; http://onlinelibrary.wiley.com/doi/10.1889/1.2036540/full#references
  126. LG Training Center. 2012 Understanding LCD T-CON Training Presentation, p. 7.
  127. "LCD (Liquid Crystal Display) Color Monitor Introduction, p. 14" (PDF).
  128. Future Electronics. Parts list, LCD Display Drivers.
  129. "Compaq Portable III". Retrieved 2015-07-20.
  130. Eric Wasatonicundefined (Director). IBM PS/2 P70 Portable Computer — Vintage PLASMA Display.
  131. "Game Boy: User Manual, page 12". 2011-02-12. Retrieved February 12, 2011.
  132. T.J. Scheffer and J. Nehring,"A new highly multiplexable LCD," Appl. Phys. Lett., vol. 48, no. 10, pp. 1021–1023, Nov. 1984.
  133. P. J. Wild, Matrix-addressed liquid crystal projection display, Digest of Technical Papers, International Symposium, Society for Information Display, June 1972, pp. 62–63.
  134. P. M. Alt, P. Pleshko Scanning limitations of liquid-crystal displays, IEEE Trans. Electron Devices, vol. ED-21, pp. 146–155, Feb. 1974.
  135. Citized family of STN based pocket televisions; https://www.google.nl/search?q=Citizen+STN+LCD+TV&biw=1600&bih=784&source=lnms&tbm=isch&sa=X
  136. Liquid Crystal Display Device with a hysteresis, HA van Sprang and AJSM de Vaan; European patent: EP0155033B1; 31 January 1990; filed 24 February 1984; https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=0155033B1&KC=B1&FT=D&ND=4&date=19900131&DB=EPODOC&locale=en_EP#; US patent US4664483A
  137. "Products - Sharp". www.sharpsma.com. Archived from the original on January 18, 2020. Retrieved December 25, 2019.
  138. http://www.orientdisplay.com/pdf/ProductPresentation-FS-LCD.pdf[bare URL PDF]
  139. "FSC LCD (Field Sequential Color-LCD) - Winstar Display". www.winstar.com.tw.
  140. "Clover Display Limited | The expert of LCD and LCM". www.cloverdisplay.com.
  141. "The Advantages To Field Sequential Color Technology". June 2, 2016. Archived from the original on June 2, 2016.
  142. "LCD Panel Technology Explained". Retrieved January 13, 2012.
  143. "A whole new world of colour with LG's RGBW technology". m.engineeringnews.co.za (in English). Retrieved 2020-07-12.
  144. "What is the Resolution?". RTINGS.com (in English). Retrieved 2020-07-12.
  145. "How LG uses fuzzy math to label some of its LCD TVs as 4K". TechHive (in English). 2016-09-21. Retrieved 2020-07-12.
  146. "LG 4K LCD TVs Continue Controversial RGBW Tech". HD Guru (in English). 2017-01-27. Retrieved 2020-07-12.
  147. "The difference between 4K and UHD, and the arrival of UHD Premium certification : Buying a 4K TV: What you need to know about HDCP 2.2, HDMI 2.0, HEVC & UHD". www.hardwarezone.com.sg (in English). Retrieved 2020-07-12.
  148. "LG Optimus Black Nova Display vs Galaxy S Super Amoled". Archived from the original on September 3, 2011. Retrieved September 14, 2011.
  149. "AFFS & AFFS+". Technology. Vertex LCD Inc. Archived from the original on May 18, 2016. Retrieved June 15, 2009.
  150. K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. 37 (1): 1079–1082. doi:10.1889/1.2433159. S2CID 129569963.
  151. Jack H. Park (January 15, 2015). "Cut and Run: Taiwan-controlled LCD Panel Maker in Danger of Shutdown without Further Investment". www.businesskorea.co.kr. Archived from the original on May 12, 2015. Retrieved April 23, 2015.
  152. "S Korea workers in Taipei rally over factory closures". www.taipeitimes.com. February 13, 2015.
  153. "Xplore Technologies acquires Motion -- How it came about". www.ruggedpcreview.com. April 17, 2015.
  154. NXP Semiconductors (21 October 2011). "UM10764 Vertical Alignment (VA) displays and NXP LCD drivers" (PDF). Archived from the original (PDF) on March 14, 2014. Retrieved September 4, 2014.
  155. above, VAhomeotropic alignment shown. "Display Tech Compared: TN vs. VA vs. IPS". TechSpot (in English). Retrieved 2020-02-03.
  156. "Samsung to Offer 'Zero-PIXEL-DEFECT' Warranty for LCD Monitors". Forbes. December 30, 2004. Archived from the original on August 20, 2007. Retrieved September 3, 2007.
  157. "What is Samsung's Policy on dead pixels?". Samsung. February 5, 2005. Archived from the original on March 4, 2007. Retrieved August 3, 2007.
  158. "Display (LCD) replacement for defective pixels – ThinkPad". Lenovo. June 25, 2007. Archived from the original on December 31, 2006. Retrieved July 13, 2007.
  159. "What is the ISO 13406-2 standard for LCD screen pixel faults?". Anders Jacobsen's blog. January 4, 2006.
  160. "Sony XBR Mura". Hdtvtest.co.uk. 2007-03-31. Retrieved August 15, 2014.
  161. Tetsuo Nozawa. "[SID] Entire Surface of Handset becomes LCD". Nikkei Tech-On. Retrieved June 10, 2009.
  162. Chidi Uche. "Development of bistable displays". University of Oxford. Archived from the original on May 23, 2008. Retrieved July 13, 2007.
  163. "Contemporary LCD Monitor Parameters: Objective and Subjective Analysis (page 3)". Xbitlabs.com. January 23, 2007. Archived from the original on November 1, 2014. Retrieved August 15, 2014.
  164. "Measuring Color-Reproduction Quality on TVs and Monitors" (PDF). Rohde-schwarz.com. 2010-08-13. Retrieved August 15, 2014.[permanent dead link]
  165. Tom's Hardware: Power Consumption Benchmark Results for CRT versus TFT LCD "Benchmark Results: Different Brightness Testing"
  166. "Rad Meters: Electromagnetic radiation from CRT, LCD, Plasma and LED screens and TVs", Retrieved March 2013
  167. "Simple and Effective Protection from Computer Radiation", see the "computer monitor radiation" section. Retrieved March 2013.
  168. "A Comparison of Video Wall Technologies White Paper" (PDF). CineMassive. p. 7. Retrieved 2015-05-14.
  169. M. d'Zmura, T. P. Janice Shen, Wei Wu, Homer Chen, and Marius Vassiliou (1998), "Contrast Gain Control for Color Image Quality," IS&T/SPIE Conference on Human Vision and Electronic Imaging III, San Jose, California, January 1998, SPIE Vol. 3299, 194-201.
  170. "CineMassive CineView II LCD panel". Retrieved 2015-05-14.
  171. Explanation of why pulse width modulated backlighting is used, and its side-effects, "Pulse Width Modulation on LCD monitors", TFT Central. Retrieved June 2012.
  172. Discussions of severe eye strain with the new MacBook Pro, "Eye strain from LED backlighting in MacBook Pro", Apple Support Communities. Retrieved June 2012.
  173. A discussion of LCD monitor eye strain, "Is an LED monitor better for eyes than an LCD?", SuperUser. Retrieved June 2012.
  174. An enlightened user requests Dell to improve their LCD backlights, "Request to Dell for higher backlight PWM frequency" Archived December 13, 2012, at the Wayback Machine, Dell Support Community. Retrieved June 2012.
  175. Rabilloud, Guy. High-Performance Polymer... Editions OPHRYS. ISBN 9782710810957 – via Google Books.
  176. "NF3 used in plasma and LCD screens". Archived from the original on June 29, 2011. Retrieved May 3, 2019.
  177. Hannah Hoag, "The missing greenhouse gas", Nature Reports Climate Change, 10 July 2008
  178. Hannah Hoag, "The missing greenhouse gas", Nature Reports Climate Change, 10 July 2008

बाहरी संबंध



सामान्य जानकारी

श्रेणी: लिक्विड क्रिस्टल डिस्प्ले श्रेणी: अमेरिकी आविष्कार श्रेणी: प्रदर्शन प्रौद्योगिकी श्रेणी: वीडियो क्लिप वाले लेख