ग्राहम का नियम

From Vigyanwiki
Revision as of 11:33, 23 May 2023 by alpha>Indicwiki (Created page with "{{Short description|Graham's law of diffusion}} {{Distinguish |Grimm's law}} 1848 में स्कॉटिश भौतिक रसायनज्ञ थॉमस...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

1848 में स्कॉटिश भौतिक रसायनज्ञ थॉमस ग्राहम (केमिस्ट)रसायनज्ञ) द्वारा ग्राहम के प्रवाह के कानून (जिसे ग्राहम के प्रसार के कानून भी कहा जाता है) तैयार किया गया था।[1] ग्राहम ने प्रयोगात्मक रूप से पाया कि एक गैस के प्रवाह की दर उसके कण के दाढ़ द्रव्यमान के वर्गमूल के व्युत्क्रमानुपाती होती है।[1]यह सूत्र इस प्रकार कहा गया है:

,

कहाँ:

दर1 पहली गैस के बहाव की दर है। (प्रति इकाई समय पदार्थ की मात्रा या मात्रा)।
दर2 दूसरी गैस के बहाव की दर है।
एम1गैस 1 का दाढ़ द्रव्यमान है
एम2गैस का दाढ़ द्रव्यमान है 2.

ग्राहम के नियम में कहा गया है कि किसी गैस के प्रसार या बहाव की दर उसके आणविक भार के वर्गमूल के व्युत्क्रमानुपाती होती है। इस प्रकार, यदि एक गैस का आणविक भार दूसरे की तुलना में चार गुना है, तो यह एक झरझरा प्लग के माध्यम से फैल जाएगा या दूसरे की आधी दर पर एक बर्तन में एक छोटे से पिनहोल के माध्यम से निकल जाएगा (भारी गैसें अधिक धीरे-धीरे फैलती हैं)। ग्राहम के नियम की एक पूर्ण सैद्धांतिक व्याख्या सालों बाद गैसों के काइनेटिक सिद्धांत #कंटेनर से टकराने के द्वारा प्रदान की गई थी। ग्राहम का नियम प्रसार द्वारा समस्थानिकों को अलग करने के लिए एक आधार प्रदान करता है - एक विधि जो परमाणु बम के विकास में महत्वपूर्ण भूमिका निभाने के लिए आई थी।[2] ग्राहम का नियम आणविक प्रवाह के लिए सबसे सटीक है जिसमें एक छेद के माध्यम से एक समय में एक गैस की गति शामिल होती है। यह केवल एक गैस के दूसरे या हवा में प्रसार के लिए अनुमानित है, क्योंकि इन प्रक्रियाओं में एक से अधिक गैसों की गति शामिल होती है।[2]

तापमान और दबाव की समान स्थितियों में, दाढ़ द्रव्यमान द्रव्यमान घनत्व के समानुपाती होता है। इसलिए, विभिन्न गैसों के प्रसार की दर उनके द्रव्यमान घनत्व के वर्गमूल के व्युत्क्रमानुपाती होती है।


उदाहरण

पहला उदाहरण: माना गैस 1 H है2 और गैस 2 ओ हो2. (यह उदाहरण दो गैसों की दरों के बीच के अनुपात को हल कर रहा है)

इसलिए, हाइड्रोजन के अणु ऑक्सीजन की तुलना में चार गुना तेजी से प्रवाहित होते हैं।[1]

ग्राहम के नियम का उपयोग किसी गैस के अनुमानित आणविक भार का पता लगाने के लिए भी किया जा सकता है यदि एक गैस एक ज्ञात प्रजाति है, और यदि दो गैसों की दरों के बीच एक विशिष्ट अनुपात है (जैसे कि पिछले उदाहरण में)। अज्ञात आणविक भार के लिए समीकरण को हल किया जा सकता है।

ग्राहम का नियम पहला परमाणु बम बनाने के लिए मैनहट्टन परियोजना के दौरान प्राकृतिक यूरेनियम (यूरेनियम अयस्क) में पाए जाने वाले यूरेनियम-238 से यूरेनियम-235 को अलग करने के लिए गैसीय प्रसार था। संयुक्त राज्य सरकार ने टेनेसी के ओक रिज में क्लिंटन इंजीनियर वर्क्स में $479 मिलियन ($ के बराबर) की लागत से एक गैसीय प्रसार संयंत्र का निर्माण किया।5.57 billion में 2020). इस संयंत्र में, यूरेनियम अयस्क से यूरेनियम को पहले यूरेनियम हेक्साफ्लोराइड में परिवर्तित किया गया था और फिर झरझरा बाधाओं के माध्यम से बार-बार फैलाने के लिए मजबूर किया गया, हर बार थोड़ा हल्का यूरेनियम -235 आइसोटोप में थोड़ा और समृद्ध हो गया।[2]

दूसरा उदाहरण: एक अज्ञात गैस He की तुलना में 0.25 गुना तेजी से फैलती है। अज्ञात गैस का दाढ़ द्रव्यमान क्या है?

गैसीय विसरण के सूत्र का उपयोग करके हम इस समीकरण को स्थापित कर सकते हैं।

जो निम्न के समान है क्योंकि समस्या बताती है कि हीलियम गैस के सापेक्ष अज्ञात गैस के विसरण की दर 0.25 है।

समीकरण को पुनर्व्यवस्थित करने का परिणाम होता है


इतिहास

जर्मनी के रसायनज्ञ जोहान डोबेरिनर की टिप्पणियों के बारे में उनके पढ़ने से गैसों के प्रसार पर ग्राहम का शोध शुरू हो गया था कि हाइड्रोजन गैस एक कांच की बोतल में एक छोटी सी दरार से फैलती है, जो इसे बदलने के लिए आसपास की हवा की तुलना में तेजी से फैलती है। ग्राहम ने प्लास्टर प्लग के माध्यम से, बहुत महीन ट्यूबों के माध्यम से और छोटे छिद्रों के माध्यम से गैसों के प्रसार की दर को मापा। इस तरह उन्होंने प्रक्रिया को धीमा कर दिया ताकि इसका मात्रात्मक अध्ययन किया जा सके। उन्होंने पहली बार 1831 में कहा था कि गैस के बहाव की दर उसके घनत्व के वर्गमूल के व्युत्क्रमानुपाती होती है, और बाद में 1848 में दिखाया कि यह दर मोलर द्रव्यमान के वर्गमूल के व्युत्क्रमानुपाती होती है।[1]ग्राहम ने घोल में पदार्थों के प्रसार का अध्ययन किया और इस प्रक्रिया में यह खोज की कि कुछ स्पष्ट समाधान वास्तव में चर्मपत्र फिल्टर से गुजरने के लिए बहुत बड़े कणों का निलंबन (रसायन) है। उन्होंने इन सामग्रियों को कोलाइड कहा, एक ऐसा शब्द जो बारीक विभाजित सामग्री के एक महत्वपूर्ण वर्ग को निरूपित करने के लिए आया है।[3] जिस समय ग्राहम ने अपना काम किया, आणविक भार की अवधारणा बड़े पैमाने पर गैसों के माप के माध्यम से स्थापित की जा रही थी। डेनियल बर्नौली ने 1738 में अपनी पुस्तक हाइड्रोडायनामिका में सुझाव दिया था कि गर्मी वेग के अनुपात में बढ़ती है, और इस प्रकार गैस कणों की गतिज ऊर्जा। इतालवी भौतिक विज्ञानी एमेडियो अवोगाद्रो ने भी 1811 में सुझाव दिया था कि विभिन्न गैसों के समान आयतन में समान संख्या में अणु होते हैं। इस प्रकार, दो गैसों के सापेक्ष आणविक भार गैसों के समान आयतन के भार के अनुपात के बराबर होते हैं। गैस व्यवहार के अन्य अध्ययनों के साथ अवोगाद्रो की अंतर्दृष्टि ने स्कॉटिश भौतिक विज्ञानी जेम्स क्लर्क मैक्सवेल द्वारा बड़े पैमाने पर खाली जगह के माध्यम से छोटे कणों के संग्रह के रूप में गैसों के गुणों की व्याख्या करने के लिए बाद के सैद्धांतिक कार्य के लिए एक आधार प्रदान किया।[4] शायद गैसों के गतिज सिद्धांत की सबसे बड़ी सफलता, जैसा कि इसे कहा जाने लगा, यह खोज थी कि गैसों के लिए, केल्विन (पूर्ण) तापमान पैमाने पर मापा गया तापमान गैस अणुओं की औसत गतिज ऊर्जा के सीधे आनुपातिक होता है। विसरण के लिए ग्राहम के नियम को एक ही तापमान पर आणविक गतिज ऊर्जा के बराबर होने के परिणाम के रूप में समझा जा सकता है।[5] उपरोक्त के तर्क को निम्नानुसार अभिव्यक्त किया जा सकता है:

सिस्टम के भीतर प्रत्येक प्रकार के कण की गतिज ऊर्जा (इस उदाहरण में, हाइड्रोजन और ऑक्सीजन, ऊपर के रूप में) समान है, जैसा कि थर्मोडायनामिक तापमान द्वारा परिभाषित किया गया है:

जिसे सरलीकृत और पुनर्व्यवस्थित किया जा सकता है:

या:

एर्गो, जब एक क्षेत्र के माध्यम से कणों के पारित होने के लिए सिस्टम को विवश किया जाता है, तो ग्राहम का नियम इस लेख की शुरुआत में लिखा हुआ प्रतीत होता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Keith J. Laidler and John M. Meiser, Physical Chemistry (Benjamin/Cummings 1982), pp. 18–19
  2. 2.0 2.1 2.2 R.H. Petrucci, W.S. Harwood and F.G. Herring, General Chemistry (8th ed., Prentice-Hall 2002) pp. 206–08 ISBN 0-13-014329-4
  3. Laidler and Meiser p.795
  4. See:
  5. "काइनेटिक आणविक सिद्धांत". Chemed.chem.purdue.edu. Retrieved 2017-07-20.