क्लेन चतुर्थक: Difference between revisions

From Vigyanwiki
No edit summary
Line 4: Line 4:




क्लेन चतुर्थक हेप्टागोनल टाइलिंग (हरे रंग में 3-नियमित ग्राफ़ की तुलना करें) और इसके दोहरे त्रिकोणीय टाइलिंग (बैंगनी में 7-नियमित ग्राफ़ की तुलना करें) का एक भागफल है।]]


अतिशयोक्तिपूर्ण ज्यामिति में, क्लेन क्वार्टिक, जिसका नाम फेलिक्स क्लेन के नाम पर रखा गया है, इस जीनस के लिए उच्चतम संभव ऑर्डर ऑटोमोर्फिज्म समूह के साथ जीनस 3 की एक कॉम्पैक्ट रीमैन सतह है, अर्थात् क्रम 168 अभिविन्यास-संरक्षण ऑटोमोर्फिज्म, और {{math|168 × 2 {{=}} 336}} ऑटोमोर्फिज्म यदि अभिविन्यास विपरीत हो सकता है। इस प्रकार, क्लेन क्वार्टिक न्यूनतम संभव जीनस की हर्विट्ज़ सतह है; हर्विट्ज़ की ऑटोमोर्फिज्म प्रमेय देखें। इसका (अभिविन्यास-संरक्षण) ऑटोमोर्फिज्म समूह पीएसएल (2, 7) के लिए आइसोमोर्फिक है, जो वैकल्पिक समूह A<sub>5</sub> के बाद दूसरा सबसे छोटा गैर-एबेलियन सरल समूह है। चतुर्थक का वर्णन सबसे पहले (क्लेन 1878बी) में किया गया था।
क्लेन चतुर्थक हेप्टागोनल टाइलिंग (हरे रंग में 3-नियमित ग्राफ़ की तुलना करें) और इसके दोहरे त्रिकोणीय टाइलिंग (बैंगनी में 7-नियमित ग्राफ़ की तुलना करें) का भागफल है।]]


क्लेन का चतुर्थक गणित की कई शाखाओं में होता है, जिसमें प्रतिनिधित्व सिद्धांत, होमोलॉजी सिद्धांत, ऑक्टोनियन गुणन फ़र्मेट का अंतिम प्रमेय और कक्षा संख्या एक के काल्पनिक द्विघात संख्या क्षेत्रों पर स्टार्क-हेगनर प्रमेय सम्मिलित हैं; संपत्तियों के सर्वेक्षण के लिए देखें (लेवी 1999)
अतिशयोक्तिपूर्ण ज्यामिति में, '''क्लेन क्वार्टिक''' होता हैं, जिसका नाम फेलिक्स क्लेन के नाम पर रखा गया है, इस जीनस के लिए उच्चतम संभव ऑर्डर ऑटोमोर्फिज्म समूह के साथ जीनस 3 की कॉम्पैक्ट रीमैन सतह है, अर्थात् क्रम 168 अभिविन्यास-संरक्षण ऑटोमोर्फिज्म, और {{math|168 × 2 {{=}} 336}} ऑटोमोर्फिज्म यदि अभिविन्यास विपरीत हो सकता है। इस प्रकार, क्लेन क्वार्टिक न्यूनतम संभव जीनस की हर्विट्ज़ सतह है; हर्विट्ज़ की ऑटोमोर्फिज्म प्रमेय देखें। इसका (अभिविन्यास-संरक्षण) ऑटोमोर्फिज्म समूह पीएसएल (2, 7) के लिए आइसोमोर्फिक है, जो वैकल्पिक समूह A<sub>5</sub> के पश्चात् दूसरा सबसे छोटा गैर-एबेलियन सरल समूह है। चतुर्थक का वर्णन सबसे पहले (क्लेन 1878बी) में किया गया था।


मूल रूप से, "क्लेन क्वार्टिक" विशेष रूप से एक बीजगणितीय समीकरण द्वारा परिभाषित समष्टि प्रक्षेप्य स्थान '''P'''<sup>2</sup>('''C''') के उपसमुच्चय को संदर्भित करता है। इसमें एक विशिष्ट रीमैनियन मीट्रिक है (जो इसे '''P'''<sup>2</sup>('''C''') में एक न्यूनतम सतह बनाती है), जिसके तहत इसकी गॉसियन वक्रता स्थिर नहीं है। किंतु अधिक सामान्यतः (जैसा कि इस लेख में है) अब इसे किसी भी रीमैन सतह के रूप में माना जाता है जो इस बीजगणितीय वक्र के अनुरूप है, और विशेष रूप से वह जो एक निश्चित कोकॉम्पैक्ट समूह G द्वारा हाइपरबॉलिक स्थान '''H'''<sup>2</sup> का भागफल है जो आइसोमेट्रीज़ द्वारा '''H'''<sup>2</sup> पर स्वतंत्र रूप से कार्य करता है। यह क्लेन क्वार्टिक को निरंतर वक्रता -1 का रीमैनियन मीट्रिक देता है जो इसे '''H'''<sup>2</sup> से प्राप्त होता है। अनुरूप रूप से समतुल्य रीमैनियन सतहों का यह समुच्चय बिल्कुल जीनस 3 की सभी कॉम्पैक्ट रीमैनियन सतहों के समान है, जिसका अनुरूप ऑटोमोर्फिज्म समूह क्रम 168 के अद्वितीय सरल समूह के लिए आइसोमोर्फिक है। इस समूह को PSL(2, 7) के रूप में भी जाना जाता है, और आइसोमॉर्फिक समूह PSL(3, 2) के रूप में भी जाना जाता है। स्पेस सिद्धांत को कवर करके, ऊपर उल्लिखित समूह G जीनस 3 की कॉम्पैक्ट सतह के मौलिक समूह के लिए आइसोमोर्फिक है।
क्लेन का चतुर्थक गणित की अनेक शाखाओं में होता है, जिसमें प्रतिनिधित्व सिद्धांत, होमोलॉजी सिद्धांत, ऑक्टोनियन गुणन फ़र्मेट का अंतिम प्रमेय और कक्षा संख्या के काल्पनिक द्विघात संख्या क्षेत्रों पर स्टार्क-हेगनर प्रमेय सम्मिलित हैं; संपत्तियों के सर्वेक्षण के लिए देखें (लेवी 1999) हैं।
 
मूल रूप से, "क्लेन क्वार्टिक" विशेष रूप से बीजगणितीय समीकरण द्वारा परिभाषित समष्टि प्रक्षेप्य स्थान '''P'''<sup>2</sup>('''C''') के उपसमुच्चय को संदर्भित करता है। इसमें विशिष्ट रीमैनियन मीट्रिक है (जो इसे '''P'''<sup>2</sup>('''C''') में न्यूनतम सतह बनाती है), जिसके अनुसार इसकी गॉसियन वक्रता स्थिर नहीं है। किंतु अधिक सामान्यतः (जैसा कि इस लेख में है) अब इसे किसी भी रीमैन सतह के रूप में माना जाता है जो इस बीजगणितीय वक्र के अनुरूप है, और विशेष रूप से वह जो निश्चित कोकॉम्पैक्ट समूह G द्वारा हाइपरबॉलिक स्थान '''H'''<sup>2</sup> का भागफल है जो आइसोमेट्रीज़ द्वारा '''H'''<sup>2</sup> पर स्वतंत्र रूप से कार्य करता है। यह क्लेन क्वार्टिक को निरंतर वक्रता -1 का रीमैनियन मीट्रिक देता है जो इसे '''H'''<sup>2</sup> से प्राप्त होता है। अनुरूप रूप से समतुल्य रीमैनियन सतहों का यह समुच्चय बिल्कुल जीनस 3 की सभी कॉम्पैक्ट रीमैनियन सतहों के समान है, जिसका अनुरूप ऑटोमोर्फिज्म समूह क्रम 168 के अद्वितीय सरल समूह के लिए आइसोमोर्फिक है। इस समूह को PSL(2, 7) के रूप में भी जाना जाता है, और आइसोमॉर्फिक समूह PSL(3, 2) के रूप में भी जाना जाता है। स्पेस सिद्धांत को कवर करके, ऊपर उल्लिखित समूह G जीनस 3 की कॉम्पैक्ट सतह के मौलिक समूह के लिए आइसोमोर्फिक है।


== संवर्त और विवर्त फॉर्म                                                        ==
== संवर्त और विवर्त फॉर्म                                                        ==
चतुर्थक के दो अलग-अलग रूपों में अंतर करना महत्वपूर्ण है। ज्यामिति में समान्यत: संवर्त चतुर्थक का अर्थ होता है; स्थलाकृतिक रूप से इसका जीनस 3 है और यह एक सघन स्थान है। विवर्त या "छिद्रित" चतुर्थक संख्या सिद्धांत में रुचिकर है; स्थलाकृतिक रूप से यह 24 पंचर वाली एक जीनस 3 सतह है, और ज्यामितीय रूप से ये पंचर क्यूप्स हैं। जैसा कि नीचे चर्चा की गई है, नियमित हेप्टागोन द्वारा टाइलिंग के 24 केंद्रों पर छिद्र करके संवर्त क्वार्टिक से विवर्त क्वार्टिक को (टोपोलॉजिकली) प्राप्त किया जा सकता है। विवर्त और संवर्त चतुर्थक के अलग-अलग आव्यूह हैं, चूँकि वे अतिशयोक्तिपूर्ण और पूर्ण दोनों हैं <ref>{{Harv|Levy|1999|loc=p. 24}}</ref> - ज्यामितीय रूप से, क्यूप्स "अनंत पर बिंदु" हैं, छिद्र नहीं, इसलिए विवर्त चतुर्थक अभी भी पूर्ण है।
चतुर्थक के दो भिन्न-भिन्न रूपों में अंतर करना महत्वपूर्ण है। ज्यामिति में समान्यत: संवर्त चतुर्थक का अर्थ होता है; स्थलाकृतिक रूप से इसका जीनस 3 है और यह सघन स्थान है। विवर्त या "छिद्रित" चतुर्थक संख्या सिद्धांत में रुचिकर है; स्थलाकृतिक रूप से यह 24 पंचर वाली जीनस 3 सतह है, और ज्यामितीय रूप से ये पंचर क्यूप्स हैं। जैसा कि नीचे चर्चा की गई है, नियमित हेप्टागोन द्वारा टाइलिंग के 24 केंद्रों पर छिद्र करके संवर्त क्वार्टिक से विवर्त क्वार्टिक को (टोपोलॉजिकली) प्राप्त किया जा सकता है। विवर्त और संवर्त चतुर्थक के भिन्न-भिन्न आव्यूह हैं, चूँकि वह अतिशयोक्तिपूर्ण और पूर्ण दोनों हैं <ref>{{Harv|Levy|1999|loc=p. 24}}</ref> - ज्यामितीय रूप से, क्यूप्स "अनंत पर बिंदु" हैं, छिद्र नहीं, इसलिए विवर्त चतुर्थक अभी भी पूर्ण है।


==[[बीजगणितीय वक्र]] के रूप में                                                        ==
==[[बीजगणितीय वक्र]] के रूप में                                                        ==
क्लेन चतुर्थक को समष्टि संख्या {{math|'''C'''}} पर एक प्रक्षेपी बीजगणितीय वक्र के रूप में देखा जा सकता है, जिसे {{math|'''P'''<sup>2</sup>('''C''')}} पर सजातीय निर्देशांक{{math|[''x'':''y'':''z'']}} में निम्नलिखित चतुर्थक समीकरण द्वारा परिभाषित किया गया है:
क्लेन चतुर्थक को समष्टि संख्या {{math|'''C'''}} पर प्रक्षेपी बीजगणितीय वक्र के रूप में देखा जा सकता है, जिसे {{math|'''P'''<sup>2</sup>('''C''')}} पर सजातीय निर्देशांक{{math|[''x'':''y'':''z'']}} में निम्नलिखित चतुर्थक समीकरण द्वारा परिभाषित किया गया है:


:<math>x^3y + y^3z + z^3x = 0.</math>
:<math>x^3y + y^3z + z^3x = 0.</math>
Line 22: Line 23:


==चतुर्भुज बीजगणित निर्माण                                          ==
==चतुर्भुज बीजगणित निर्माण                                          ==
कॉम्पैक्ट क्लेन चतुर्थक का निर्माण एक उपयुक्त फुच्सियन समूह {{math|Γ(''I'')}}की क्रिया द्वारा अतिपरवलयिक तल के भागफल के रूप में किया जा सकता है, जो क्षेत्र {{math|'''Q'''(''η'')}} के बीजगणितीय पूर्णांक {{math|'''Z'''(''η'')}} के वलय में आदर्श <math>I=\langle \eta-2\rangle</math> से जुड़ा प्रमुख सर्वांगसम उपसमूह है, जहां {{math|''η'' {{=}} 2 cos(2''π''/7)}} पहचान नोट करें
कॉम्पैक्ट क्लेन चतुर्थक का निर्माण उपयुक्त फुच्सियन समूह {{math|Γ(''I'')}}की क्रिया द्वारा अतिपरवलयिक तल के भागफल के रूप में किया जा सकता है, जो क्षेत्र {{math|'''Q'''(''η'')}} के बीजगणितीय पूर्णांक {{math|'''Z'''(''η'')}} के वलय में आदर्श <math>I=\langle \eta-2\rangle</math> से जुड़ा प्रमुख सर्वांगसम उपसमूह है, जहां {{math|''η'' {{=}} 2 cos(2''π''/7)}} पहचान नोट करें


:<math>(2-\eta)^3= 7(\eta-1)^2,</math>
:<math>(2-\eta)^3= 7(\eta-1)^2,</math>
बीजगणितीय पूर्णांकों के वलय में {{math|2 – ''η''}} को 7 के अभाज्य गुणनखंड के रूप में प्रदर्शित करता है।
बीजगणितीय पूर्णांकों के वलय में {{math|2 – ''η''}} को 7 के अभाज्य गुणनखंड के रूप में प्रदर्शित करता है।


समूह {{math|Γ(''I'')}} (2,3,7) अतिपरवलयिक त्रिभुज समूह का एक उपसमूह है। अर्थात्, {{math|Γ(''I'')}} जनरेटर {{mvar|i,j}} और संबंधों द्वारा एक सहयोगी बीजगणित के रूप में उत्पन्न चतुर्धातुक बीजगणित में इकाई मानक के तत्वों के समूह का एक उपसमूह है
समूह {{math|Γ(''I'')}} (2,3,7) अतिपरवलयिक त्रिभुज समूह का उपसमूह है। अर्थात्, {{math|Γ(''I'')}} जनरेटर {{mvar|i,j}} और संबंधों द्वारा सहयोगी बीजगणित के रूप में उत्पन्न चतुर्धातुक बीजगणित में इकाई मानक के तत्वों के समूह का उपसमूह है


:<math>i^2=j^2=\eta, \qquad ij=-ji.</math>
:<math>i^2=j^2=\eta, \qquad ij=-ji.</math>
कोई व्यक्ति चतुर्धातुक बीजगणित में एक उपयुक्त हर्विट्ज़ चतुर्धातुक क्रम <math>\mathcal Q_{\mathrm{Hur}}</math> चुनता है, {{math|Γ(''I'')}} तब <math>1+I\mathcal Q_{\mathrm{Hur}}</math> में मानक 1 तत्वों का समूह होता है। {{math|Γ(''I'')}} में अतिशयोक्तिपूर्ण तत्व के एक अंश का न्यूनतम निरपेक्ष मान <math>\eta^2+3\eta+2</math> है, जो क्लेन क्वार्टिक के सिस्टोल के लिए मान 3.936 के अनुरूप है, जो इस जीनस में उच्चतम में से एक है।
कोई व्यक्ति चतुर्धातुक बीजगणित में उपयुक्त हर्विट्ज़ चतुर्धातुक क्रम <math>\mathcal Q_{\mathrm{Hur}}</math> चुनता है, {{math|Γ(''I'')}} तब <math>1+I\mathcal Q_{\mathrm{Hur}}</math> में मानक 1 तत्वों का समूह होता है। {{math|Γ(''I'')}} में अतिशयोक्तिपूर्ण तत्व के अंश का न्यूनतम निरपेक्ष मान <math>\eta^2+3\eta+2</math> है, जो क्लेन क्वार्टिक के सिस्टोल के लिए मान 3.936 के अनुरूप है, जो इस जीनस में उच्चतम में से है।


==टाइलिंग                                      ==
==टाइलिंग                                      ==
[[File:3-7 kisrhombille.svg|thumb|परावर्तन डोमेन द्वारा चतुर्थक की टाइलिंग [[एक रोम्बस के लिए 3-7]] का भागफल है।]]क्लेन चतुर्थक समरूपता समूह (एक नियमित मानचित्र (ग्राफ सिद्धांत)) से जुड़े टाइलिंग को स्वीकार करता है <ref name="scholl"/>), और इनका उपयोग समरूपता समूह को समझने में किया जाता है, जिसका संबंध क्लेन के मूल पेपर से है। समूह क्रिया के लिए एक [[मौलिक डोमेन]] दिया गया है (पूर्ण, अभिविन्यास-विपरीत समरूपता समूह के लिए, एक (2,3,7) त्रिकोण), प्रतिबिंब डोमेन (समूह के तहत इस डोमेन की छवियां) चतुर्थक की एक टाइलिंग देते हैं जैसे कि टाइलिंग का ऑटोमोर्फिज्म समूह सतह के ऑटोमोर्फिज्म समूह के समान होता है - टाइलिंग की रेखाओं में प्रतिबिंब समूह में प्रतिबिंबों के अनुरूप होते हैं (किसी दिए गए मौलिक त्रिकोण की रेखाओं में प्रतिबिंब 3 उत्पन्न करने वाले प्रतिबिंबों का एक समुच्चय देते हैं)। यह टाइलिंग अतिशयोक्तिपूर्ण ज्यामिति (चतुर्थक का [[सार्वभौमिक आवरण]]) के क्रम-3 द्विभाजित [[सातकोणक]] टाइलिंग का एक भागफल है, और सभी हर्विट्ज़ सतहों को भागफल के समान ही टाइल किया गया है।
[[File:3-7 kisrhombille.svg|thumb|परावर्तन डोमेन द्वारा चतुर्थक की टाइलिंग [[एक रोम्बस के लिए 3-7|रोम्बस के लिए 3-7]] का भागफल है।]]क्लेन चतुर्थक समरूपता समूह (एक नियमित मानचित्र (ग्राफ सिद्धांत)) से जुड़े टाइलिंग को स्वीकार करता है <ref name="scholl"/>), और इनका उपयोग समरूपता समूह को समझने में किया जाता है, जिसका संबंध क्लेन के मूल पेपर से है। समूह क्रिया के लिए [[मौलिक डोमेन]] दिया गया है (पूर्ण, अभिविन्यास-विपरीत समरूपता समूह के लिए, (2,3,7) त्रिकोण), प्रतिबिंब डोमेन (समूह के अनुसार इस डोमेन की छवियां) चतुर्थक की टाइलिंग देते हैं जैसे कि टाइलिंग का ऑटोमोर्फिज्म समूह सतह के ऑटोमोर्फिज्म समूह के समान होता है - टाइलिंग की रेखाओं में प्रतिबिंब समूह में प्रतिबिंबों के अनुरूप होते हैं (किसी दिए गए मौलिक त्रिकोण की रेखाओं में प्रतिबिंब 3 उत्पन्न करने वाले प्रतिबिंबों का समुच्चय देते हैं)। यह टाइलिंग अतिशयोक्तिपूर्ण ज्यामिति (चतुर्थक का [[सार्वभौमिक आवरण]]) के क्रम-3 द्विभाजित [[सातकोणक]] टाइलिंग का भागफल है, और सभी हर्विट्ज़ सतहों को भागफल के समान ही टाइल किया गया है।


यह टाइलिंग एक समान है किंतु नियमित नहीं है (यह स्केलीन त्रिकोण द्वारा होती है), और इसके अतिरिक्त अधिकांशतः नियमित टाइलिंग का उपयोग किया जाता है। (2,3,7) वर्ग में किसी भी टाइलिंग के भागफल का उपयोग किया जा सकता है (और इसमें समान ऑटोमोर्फिज्म समूह होगा); इनमें से, दो नियमित टाइलिंग 24 नियमित अतिशयोक्तिपूर्ण हेप्टागोन्स द्वारा टाइलिंग हैं, प्रत्येक डिग्री 3 (56 शीर्षों पर मिलते हुए) और दोहरी टाइलिंग 56 समबाहु त्रिभुजों द्वारा, प्रत्येक डिग्री 7 (24 शीर्षों पर मिलते हुए) हैं। ऑटोमोर्फिज्म समूह का क्रम संबंधित है, दोनों स्थितियों में बहुभुजों की संख्या बहुभुज में किनारों की संख्या से गुणा है।
यह टाइलिंग समान है किंतु नियमित नहीं है (यह स्केलीन त्रिकोण द्वारा होती है), और इसके अतिरिक्त अधिकांशतः नियमित टाइलिंग का उपयोग किया जाता है। (2,3,7) वर्ग में किसी भी टाइलिंग के भागफल का उपयोग किया जा सकता है (और इसमें समान ऑटोमोर्फिज्म समूह होता हैं); इनमें से, दो नियमित टाइलिंग 24 नियमित अतिशयोक्तिपूर्ण हेप्टागोन्स द्वारा टाइलिंग हैं, प्रत्येक डिग्री 3 (56 शीर्षों पर मिलते हुए) और दोहरी टाइलिंग 56 समबाहु त्रिभुजों द्वारा, प्रत्येक डिग्री 7 (24 शीर्षों पर मिलते हुए) हैं। ऑटोमोर्फिज्म समूह का क्रम संबंधित है, दोनों स्थितियों में बहुभुजों की संख्या बहुभुज में किनारों की संख्या से गुणा है।
:24 × 7 = 168
:24 × 7 = 168
:56 × 3 = 168
:56 × 3 = 168
Line 42: Line 43:
मैथ्यू समूह M<sub>24</sub> प्राप्त करने के लिए ऑटोमोर्फिज्म समूह को बढ़ाया जा सकता है (एक समरूपता द्वारा जो टाइलिंग की समरूपता द्वारा अनुभव नहीं किया जाता है)<ref name="richter">{{Harv|Richter}}</ref>
मैथ्यू समूह M<sub>24</sub> प्राप्त करने के लिए ऑटोमोर्फिज्म समूह को बढ़ाया जा सकता है (एक समरूपता द्वारा जो टाइलिंग की समरूपता द्वारा अनुभव नहीं किया जाता है)<ref name="richter">{{Harv|Richter}}</ref>


चतुर्थक की प्रत्येक टाइलिंग के अनुरूप (चतुर्थक विविधता का उपसमुच्चय में विभाजन) एक [[अमूर्त बहुफलक|एब्स्ट्रेक्ट बहुफलक]] है, जो ज्यामिति से एब्स्ट्रेक्ट होता है और केवल टाइलिंग के संयोजन को दर्शाता है (यह एक टाइलिंग से एक एब्स्ट्रेक्ट पॉलीटोप प्राप्त करने का एक सामान्य विधि है) - पॉलीहेड्रॉन के कोने, किनारे और फलक , समान घटना संबंधों के साथ, टाइलिंग के कोने, किनारों और फलक के समुच्चय के समान होते हैं, और एब्स्ट्रेक्ट पॉलीहेड्रॉन का (कॉम्बिनेटोरियल) ऑटोमोर्फिज्म समूह (ज्यामितीय) ऑटोमोर्फिज्म समूह के समान होता है चतुर्थांश का. इस तरह ज्यामिति कॉम्बिनेटरिक्स में एकत्रित हो जाती है।
चतुर्थक की प्रत्येक टाइलिंग के अनुरूप (चतुर्थक विविधता का उपसमुच्चय में विभाजन) [[अमूर्त बहुफलक|एब्स्ट्रेक्ट बहुफलक]] है, जो ज्यामिति से एब्स्ट्रेक्ट होता है और केवल टाइलिंग के संयोजन को दर्शाता है (यह टाइलिंग से एब्स्ट्रेक्ट पॉलीटोप प्राप्त करने का सामान्य विधि है) - पॉलीहेड्रॉन के कोने, किनारे और फलक , समान घटना संबंधों के साथ, टाइलिंग के कोने, किनारों और फलक के समुच्चय के समान होते हैं, और एब्स्ट्रेक्ट पॉलीहेड्रॉन का (कॉम्बिनेटोरियल) ऑटोमोर्फिज्म समूह (ज्यामितीय) ऑटोमोर्फिज्म समूह के समान होता है चतुर्थांश का. इस प्रकार ज्यामिति कॉम्बिनेटरिक्स में एकत्रित हो जाती है।


=== एफ़िन चतुर्थक ===
=== एफ़िन चतुर्थक ===
Line 50: Line 51:


== मौलिक डोमेन और पैंट अपघटन ==
== मौलिक डोमेन और पैंट अपघटन ==
फ़ुचियन समूह की क्रिया द्वारा क्लेन चतुर्थक को अतिशयोक्तिपूर्ण तल के भागफल के रूप में प्राप्त किया जा सकता है। मूल डोमेन एक नियमित 14-गॉन है, जिसका गॉस-बोनट प्रमेय के अनुसार क्षेत्रफल <math>8\pi</math> है। इसे निकटवर्ती चित्र में देखा जा सकता है, जिसमें 336 (2,3,7) त्रिकोण भी सम्मिलित हैं जो सतह को टेसेलेट करते हैं और समरूपता के समूह को उत्पन्न करते हैं।
फ़ुचियन समूह की क्रिया द्वारा क्लेन चतुर्थक को अतिशयोक्तिपूर्ण तल के भागफल के रूप में प्राप्त किया जा सकता है। मूल डोमेन नियमित 14-गॉन है, जिसका गॉस-बोनट प्रमेय के अनुसार क्षेत्रफल <math>8\pi</math> है। इसे निकटवर्ती चित्र में देखा जा सकता है, जिसमें 336 (2,3,7) त्रिकोण भी सम्मिलित हैं जो सतह को टेसेलेट करते हैं और समरूपता के समूह को उत्पन्न करते हैं।


[[File:Klein quartic in 14-gon.svg|thumb|right|क्लेन चतुर्थक का मौलिक डोमेन। समान संख्याओं वाली भुजाओं को जोड़कर सतह प्राप्त की जाती है।]](2,3,7) त्रिभुजों द्वारा टेस्सेलेशन के अंदर 24 नियमित सप्तभुजों द्वारा टेस्सेलेशन होता है। सतह का सिस्टोल 8 सप्तभुज पक्षों के मध्य बिंदुओं से होकर गुजरता है; इस कारण से इसे साहित्य में आठ चरणों वाली जियोडेसिक के रूप में संदर्भित किया गया है, और यही कारण है कि नीचे दिए गए अनुभाग में पुस्तक का शीर्षक दिया गया है। पैंट के विघटन को दर्शाने वाले चित्र में सभी रंगीन वक्र सिस्टोल हैं, चूँकि , यह केवल एक उपसमुच्चय है; कुल मिलाकर 21 हैं। सिस्टोल की लंबाई है
[[File:Klein quartic in 14-gon.svg|thumb|right|क्लेन चतुर्थक का मौलिक डोमेन। समान संख्याओं वाली भुजाओं को जोड़कर सतह प्राप्त की जाती है।]](2,3,7) त्रिभुजों द्वारा टेस्सेलेशन के अंदर 24 नियमित सप्तभुजों द्वारा टेस्सेलेशन होता है। सतह का सिस्टोल 8 सप्तभुज पक्षों के मध्य बिंदुओं से होकर गुजरता है; इस कारण से इसे साहित्य में आठ चरणों वाली जियोडेसिक के रूप में संदर्भित किया गया है, और यही कारण है कि नीचे दिए गए अनुभाग में पुस्तक का शीर्षक दिया गया है। पैंट के विघटन को दर्शाने वाले चित्र में सभी रंगीन वक्र सिस्टोल हैं, चूँकि , यह केवल उपसमुच्चय है; कुल मिलाकर 21 हैं। सिस्टोल की लंबाई है


:<math>16\sinh^{-1}\left(\left(\tfrac{1}{2}\sqrt{\csc^2\left(\tfrac{\pi}{7}\right)-4}\right)\sin\left(\tfrac{\pi}{7}\right)\right)\approx3.93594624883.</math>
:<math>16\sinh^{-1}\left(\left(\tfrac{1}{2}\sqrt{\csc^2\left(\tfrac{\pi}{7}\right)-4}\right)\sin\left(\tfrac{\pi}{7}\right)\right)\approx3.93594624883.</math>
Line 61: Line 62:
:<math>2\cosh^{-1}\left(2+\sqrt{3}\right)\approx3.9833047820988736.</math>
:<math>2\cosh^{-1}\left(2+\sqrt{3}\right)\approx3.9833047820988736.</math>


[[File:Kleinpants.png|thumb|right|क्लेन क्वार्टिक का एक पैंट अपघटन। बाईं ओर का चित्र मौलिक डोमेन के (2,3,7) टेसेलेशन में सीमा भू-भौतिकी को दर्शाता है। दाईं ओर की आकृति में, प्रत्येक पैंट को अलग-अलग रंग दिया गया है ताकि यह स्पष्ट हो सके कि मूल डोमेन का कौन सा हिस्सा पैंट की किस जोड़ी से संबंधित है।]]
[[File:Kleinpants.png|thumb|right|क्लेन क्वार्टिक का पैंट अपघटन। बाईं ओर का चित्र मौलिक डोमेन के (2,3,7) टेसेलेशन में सीमा भू-भौतिकी को दर्शाता है। दाईं ओर की आकृति में, प्रत्येक पैंट को भिन्न-भिन्न रंग दिया गया है ताकि यह स्पष्ट हो सके कि मूल डोमेन का कौन सा हिस्सा पैंट की किस जोड़ी से संबंधित है।]]


क्लेन क्वार्टिक को इसके छह सिस्टोल के साथ काटकर चार जोड़ी पैंट में विघटित किया जा सकता है। यह अपघटन फ़ेंशेल-नील्सन निर्देशांक का एक सममित सेट देता है, जहां लंबाई मापदंड सभी सिस्टोल की लंबाई के समान होते हैं, और ट्विस्ट मापदंड सभी सिस्टोल की लंबाई के <math>\tfrac{1}{8}</math> के समान होते हैं। विशेष रूप से, <math>l(S)</math> को सिस्टोल लंबाई मानते हुए, निर्देशांक हैं
क्लेन क्वार्टिक को इसके छह सिस्टोल के साथ काटकर चार जोड़ी पैंट में विघटित किया जा सकता है। यह अपघटन फ़ेंशेल-नील्सन निर्देशांक का सममित समुच्चय देता है, जहां लंबाई मापदंड सभी सिस्टोल की लंबाई के समान होते हैं, और ट्विस्ट मापदंड सभी सिस्टोल की लंबाई के <math>\tfrac{1}{8}</math> के समान होते हैं। विशेष रूप से, <math>l(S)</math> को सिस्टोल लंबाई मानते हुए, निर्देशांक हैं


:<math>\left\{l(S),\tfrac{l(S)}{8};l(S),\tfrac{l(S)}{8};l(S),\tfrac{l(S)}{8};l(S),\tfrac{l(S)}{8};l(S),\tfrac{l(S)}{8};l(S),\tfrac{l(S)}{8}\right\}.</math>
:<math>\left\{l(S),\tfrac{l(S)}{8};l(S),\tfrac{l(S)}{8};l(S),\tfrac{l(S)}{8};l(S),\tfrac{l(S)}{8};l(S),\tfrac{l(S)}{8};l(S),\tfrac{l(S)}{8}\right\}.</math>
इस पैंट अपघटन के अनुरूप घन ग्राफ टेट्राहेड्रल ग्राफ है, अथार्त , 4 नोड्स का ग्राफ, प्रत्येक अन्य 3 से जुड़ा हुआ है। टेट्राहेड्रल ग्राफ प्रक्षेप्य फैनो विमान के लिए ग्राफ के समान है; वास्तव में, क्लेन क्वार्टिक का ऑटोमोर्फिज्म समूह फ़ानो विमान के समरूपी है।
इस पैंट अपघटन के अनुरूप घन ग्राफ टेट्राहेड्रल ग्राफ है, अथार्त , 4 नोड्स का ग्राफ, प्रत्येक अन्य 3 से जुड़ा हुआ है। टेट्राहेड्रल ग्राफ प्रक्षेप्य फैनो समतल के लिए ग्राफ के समान है; वास्तव में, क्लेन क्वार्टिक का ऑटोमोर्फिज्म समूह फ़ानो समतल के समरूपी है।


== वर्णक्रमीय सिद्धांत ==
== वर्णक्रमीय सिद्धांत ==


[[File:Kleineigenspace.png|thumb|right|क्लेन चतुर्थक के पहले धनात्मक आइजेनवैल्यू के अनुरूप आठ कार्य। हल्की नीली रेखाओं के साथ कार्य शून्य हैं। ये प्लॉट [[FreeFEM++]] में तैयार किए गए थे।]]क्लेन चतुर्थक के [[वर्णक्रमीय सिद्धांत]] के बारे में बहुत कम साबित किया गया है। क्योंकि क्लेन क्वार्टिक में अपने टोपोलॉजिकल वर्ग में सतहों का सबसे बड़ा समरूपता समूह है, जीनस 2 में [[बोल्ज़ा सतह]] की तरह, यह अनुमान लगाया गया है कि यह जीनस 3 के सभी कॉम्पैक्ट रीमैन सतहों के बीच लाप्लास ऑपरेटर के पहले धनात्मक आइगेनवैल्यू को अधिकतम करता है। ऋणात्मक वक्रता. यह ऐसी सभी सतहों के बीच पहले धनात्मक आइजेनवैल्यू (8) की पारस्परिकता को भी अधिकतम करता है, एक तथ्य जो वर्तमान में ही सिद्ध हुआ है।<ref>Maxime Fortier Bourque, Bram Petri. [https://arxiv.org/abs/2111.14699 "The Klein quartic maximizes the multiplicity of the first positive eigenvalue of the Laplacian"]</ref> क्लेन चतुर्थक के आइगेनवैल्यू की गणना स्पष्टता की अलग-अलग डिग्री तक की गई है। पहले 15 विशिष्ट धनात्मक आइगेनवैल्यू ​​को उनकी बहुलताओं के साथ, निम्नलिखित तालिका में दिखाया गया है।
[[File:Kleineigenspace.png|thumb|right|क्लेन चतुर्थक के पहले धनात्मक आइजेनवैल्यू के अनुरूप आठ कार्य। हल्की नीली रेखाओं के साथ कार्य शून्य हैं। ये प्लॉट [[FreeFEM++]] में तैयार किए गए थे।]]क्लेन चतुर्थक के [[वर्णक्रमीय सिद्धांत]] के बारे में बहुत कम साबित किया गया है। क्योंकि क्लेन क्वार्टिक में अपने टोपोलॉजिकल वर्ग में सतहों का सबसे बड़ा समरूपता समूह है, जीनस 2 में [[बोल्ज़ा सतह]] की तरह, यह अनुमान लगाया गया है कि यह जीनस 3 के सभी कॉम्पैक्ट रीमैन सतहों के मध्य लाप्लास ऑपरेटर के पहले धनात्मक आइगेनवैल्यू को अधिकतम करता है। ऋणात्मक वक्रता. यह ऐसी सभी सतहों के मध्य पहले धनात्मक आइजेनवैल्यू (8) की पारस्परिकता को भी अधिकतम करता है, तथ्य जो वर्तमान में ही सिद्ध हुआ है।<ref>Maxime Fortier Bourque, Bram Petri. [https://arxiv.org/abs/2111.14699 "The Klein quartic maximizes the multiplicity of the first positive eigenvalue of the Laplacian"]</ref> क्लेन चतुर्थक के आइगेनवैल्यू की गणना स्पष्टता की भिन्न-भिन्न डिग्री तक की गई है। पहले 15 विशिष्ट धनात्मक आइगेनवैल्यू ​​को उनकी बहुलताओं के साथ, निम्नलिखित तालिका में दिखाया गया है।


{| class="wikitable"
{| class="wikitable"
Line 146: Line 147:


== त्रि-आयामी मॉडल ==
== त्रि-आयामी मॉडल ==
[[File:KleinDualInsideOutDivided.gif|thumb|[[ग्रेग एगन]] का एक एनीमेशन, जिसमें क्लेन के क्वार्टिक कर्व को तीन आयामों में एम्बेड किया गया है, जो एक टेट्राहेड्रोन की समरूपता वाले रूप में प्रारंभ होता है, और एक और समरूपता प्रदर्शित करने के लिए अंदर की ओर मुड़ता है।]]क्लेन चतुर्थक को 3-आयामी आकृति के रूप में अनुभव नहीं किया जा सकता है, इस अर्थ में कि किसी भी 3-आयामी आकृति में {{math|PSL(2,7)}} के समान (घूर्णी) समरूपता नहीं है, क्योंकि {{math|PSL(2,7)}} {{math|SO(3)}} (या {{math|O(3)}}) के उपसमूह के रूप में एम्बेड नहीं होता है - इसमें वास्तविक संख्याओं पर (गैर-तुच्छ) 3-आयामी रैखिक प्रतिनिधित्व नहीं होता है।
[[File:KleinDualInsideOutDivided.gif|thumb|[[ग्रेग एगन]] का एनीमेशन, जिसमें क्लेन के क्वार्टिक कर्व को तीन आयामों में एम्बेड किया गया है, जो टेट्राहेड्रोन की समरूपता वाले रूप में प्रारंभ होता है, और और समरूपता प्रदर्शित करने के लिए अंदर की ओर मुड़ता है।]]क्लेन चतुर्थक को 3-आयामी आकृति के रूप में अनुभव नहीं किया जा सकता है, इस अर्थ में कि किसी भी 3-आयामी आकृति में {{math|PSL(2,7)}} के समान (घूर्णी) समरूपता नहीं है, क्योंकि {{math|PSL(2,7)}} {{math|SO(3)}} (या {{math|O(3)}}) के उपसमूह के रूप में एम्बेड नहीं होता है - इसमें वास्तविक संख्याओं पर (गैर-तुच्छ) 3-आयामी रैखिक प्रतिनिधित्व नहीं होता है।


चूँकि , क्लेन चतुर्थक के कई 3-आयामी मॉडल दिए गए हैं, जो क्लेन के मूल पेपर से प्रारंभ होते हैं,<ref name="scholl">{{Harv|Scholl|Schürmann|Wills|2002}}</ref><ref name="baez">{{cite web |last1=Baez |first1=John C. |author1-link=John C. Baez |title=क्लेन का चतुर्थक वक्र|url=https://math.ucr.edu/home/baez/klein.html |website=John Baez's stuff |date=23 May 2013}}</ref><ref name="westendorp">{{cite web |last1=Westendorp |first1=Gerard |title=रीमैन सतहों की प्लेटोनिक टाइलिंग|url=https://westy31.home.xs4all.nl/Geometry/Geometry.html}}</ref><ref>{{cite web |last1=Stay |first1=Mike |title=क्लेन चतुर्थक|url=https://math.ucr.edu/~mike/klein/}}</ref><ref name="sequin">{{cite conference |url=http://archive.bridgesmathart.org/2006/bridges2006-245.pdf |title=Patterns on the Genus-3 Klein Quartic |first=Carlo H. |last=Séquin |date=2006 |conference=Bridges 2006 |editor1-first=Reza |editor1-last=Sarhangi |editor2-first=John |editor2-last=Sharp |book-title=BRIDGES Mathematical Connections in Art, Music, and Science Conference Proceedings |publisher=Tarquin |location=London, UK |pages=245-254 |isbn=0-9665201-7-3 |issn=1099-6702}}</ref> जो चतुर्थक की विशेषताओं को प्रदर्शित करना चाहता है और स्थलाकृतिक रूप से समरूपता को संरक्षित करना चाहता है, चूँकि सभी ज्यामितीय रूप से नहीं है। परिणामी मॉडल में अधिकांशतः या तो टेट्राहेड्रल (क्रम 12) या अष्टफलकीय (क्रम 24) समरूपताएं होती हैं; शेष क्रम 7 समरूपता को इतनी सरलता से कल्पना नहीं की जा सकती है, और वास्तव में यह क्लेन के पेपर का शीर्षक है।
चूँकि , क्लेन चतुर्थक के अनेक 3-आयामी मॉडल दिए गए हैं, जो क्लेन के मूल पेपर से प्रारंभ होते हैं,<ref name="scholl">{{Harv|Scholl|Schürmann|Wills|2002}}</ref><ref name="baez">{{cite web |last1=Baez |first1=John C. |author1-link=John C. Baez |title=क्लेन का चतुर्थक वक्र|url=https://math.ucr.edu/home/baez/klein.html |website=John Baez's stuff |date=23 May 2013}}</ref><ref name="westendorp">{{cite web |last1=Westendorp |first1=Gerard |title=रीमैन सतहों की प्लेटोनिक टाइलिंग|url=https://westy31.home.xs4all.nl/Geometry/Geometry.html}}</ref><ref>{{cite web |last1=Stay |first1=Mike |title=क्लेन चतुर्थक|url=https://math.ucr.edu/~mike/klein/}}</ref><ref name="sequin">{{cite conference |url=http://archive.bridgesmathart.org/2006/bridges2006-245.pdf |title=Patterns on the Genus-3 Klein Quartic |first=Carlo H. |last=Séquin |date=2006 |conference=Bridges 2006 |editor1-first=Reza |editor1-last=Sarhangi |editor2-first=John |editor2-last=Sharp |book-title=BRIDGES Mathematical Connections in Art, Music, and Science Conference Proceedings |publisher=Tarquin |location=London, UK |pages=245-254 |isbn=0-9665201-7-3 |issn=1099-6702}}</ref> जो चतुर्थक की विशेषताओं को प्रदर्शित करना चाहता है और स्थलाकृतिक रूप से समरूपता को संरक्षित करना चाहता है, चूँकि सभी ज्यामितीय रूप से नहीं है। परिणामी मॉडल में अधिकांशतः या तो टेट्राहेड्रल (क्रम 12) या अष्टफलकीय (क्रम 24) समरूपताएं होती हैं; शेष क्रम 7 समरूपता को इतनी सरलता से कल्पना नहीं की जा सकती है, और वास्तव में यह क्लेन के पेपर का शीर्षक है।


[[File:The Eightfold Way - Silvio Levy - cover.jpg|thumb|upright|आठ गुना रास्ता - [[हेलामन फर्ग्यूसन]] द्वारा मूर्तिकला और साथ में पुस्तक।]]अधिकांशतः चतुर्थक को या तो टेट्राहेड्रल समरूपता के साथ एक स्मूथ जीनस 3 सतह द्वारा तैयार किया जाता है (नियमित टेट्राहेड्रोन के किनारों को ट्यूबों/हैंडल के साथ बदलने से ऐसा आकार मिलता है), जिसे टेट्रस करार दिया गया है,<ref name="sequin" /> या बहुफलकीय सन्निकटन द्वारा, जिसे टेट्रोइड्स सहमति दिया गया है;<ref name="sequin" /> दोनों ही स्थितियों में यह आकृति को 3 आयामों में एम्बेड करना है। सबसे उल्लेखनीय चिकना मॉडल (टेट्रस) कैलिफोर्निया के बर्कले में [[गणितीय विज्ञान अनुसंधान संस्थान]] में हेलमैन फर्ग्यूसन द्वारा बनाई गई मूर्तिकला द एटफोल्ड वह है, जो संगमरमर और सर्पीन से बनी है, और 14 नवंबर, 1993 को इसका अनावरण किया गया था। शीर्षक इस तथ्य को संदर्भित करता है कि प्रारंभ त्रिकोणीय सतह के किसी भी शीर्ष पर और किसी भी किनारे पर चलते हुए, यदि आप शीर्ष पर पहुंचने पर बारी-बारी से बाएं और दाएं मुड़ते हैं, तो आप सदैव आठ किनारों के बाद मूल बिंदु पर लौट आते हैं। मूर्तिकला के अधिग्रहण के फलस्वरूप समय-समय पर पत्रों की एक पुस्तक का प्रकाशन हुआ {{Harv|Levy|1999}}, क्वार्टिक के गुणों का विवरण और क्लेन के पेपर का पहला अंग्रेजी अनुवाद सम्मिलित है। टेट्राहेड्रल समरूपता वाले पॉलीहेड्रल मॉडल में अधिकांशतः उत्तल पतवार एक छोटा टेट्राहेड्रोन होता है - देखें {{Harv|शुल्टे|विल्स|1985}} और {{Harv|स्कॉल|शूरमन|विल्स|2002}} उदाहरणों और उदाहरणों के लिए इनमें से कुछ मॉडल में 20 त्रिकोण या 56 त्रिकोण होते हैं (एब्स्ट्रेक्ट रूप से, [[नियमित तिरछा बहुफलक|नियमित विषम बहुफलक]] {3,7|,4}, जिसमें 56 फलक, 84 किनारे और 24 शीर्ष होते हैं), जिन्हें मोड़ के साथ समबाहु के रूप में अनुभव नहीं किया जा सकता है। चतुष्फलक की भुजाएँ; जबकि अन्य में 24 हेप्टागोन होते हैं - इन हेप्टागोन को गैर-उत्तल होते हुए भी समतल माना जा सकता है,<ref name="schulte">{{Harv|Schulte|Wills|1985}}</ref> और मॉडल त्रिकोणीय की तुलना में अधिक समष्टि हैं क्योंकि समष्टि (लचीले) शीर्षों के अतिरिक्त (गैर-लचीले) हेप्टागोनल फलक के आकार में प्रतिबिंबित होती है।<ref name="scholl"/>
[[File:The Eightfold Way - Silvio Levy - cover.jpg|thumb|upright|आठ गुना रास्ता - [[हेलामन फर्ग्यूसन]] द्वारा मूर्तिकला और साथ में पुस्तक।]]अधिकांशतः चतुर्थक को या तो टेट्राहेड्रल समरूपता के साथ स्मूथ जीनस 3 सतह द्वारा तैयार किया जाता है (नियमित टेट्राहेड्रोन के किनारों को ट्यूबों/हैंडल के साथ परिवर्तित करने से ऐसा आकार मिलता है), जिसे टेट्रस करार दिया गया है,<ref name="sequin" /> या बहुफलकीय सन्निकटन द्वारा, जिसे टेट्रोइड्स सहमति दिया गया है;<ref name="sequin" /> दोनों ही स्थितियों में यह आकृति को 3 आयामों में एम्बेड करना है। सबसे उल्लेखनीय चिकना मॉडल (टेट्रस) कैलिफोर्निया के बर्कले में [[गणितीय विज्ञान अनुसंधान संस्थान]] में हेलमैन फर्ग्यूसन द्वारा बनाई गई मूर्तिकला द एटफोल्ड वह है, जो संगमरमर और सर्पीन से बनी है, और 14 नवंबर, 1993 को इसका अनावरण किया गया था। शीर्षक इस तथ्य को संदर्भित करता है कि प्रारंभ त्रिकोणीय सतह के किसी भी शीर्ष पर और किसी भी किनारे पर चलते हुए, यदि आप शीर्ष पर पहुंचने पर बारी-बारी से बाएं और दाएं मुड़ते हैं, तो आप सदैव आठ किनारों के पश्चात् मूल बिंदु पर लौट आते हैं। मूर्तिकला के अधिग्रहण के फलस्वरूप समय-समय पर पत्रों की पुस्तक का प्रकाशन हुआ {{Harv|Levy|1999}}, क्वार्टिक के गुणों का विवरण और क्लेन के पेपर का पहला अंग्रेजी अनुवाद सम्मिलित है। टेट्राहेड्रल समरूपता वाले पॉलीहेड्रल मॉडल में अधिकांशतः उत्तल पतवार छोटा टेट्राहेड्रोन होता है - देखें {{Harv|शुल्टे|विल्स|1985}} और {{Harv|स्कॉल|शूरमन|विल्स|2002}} उदाहरणों और उदाहरणों के लिए इनमें से कुछ मॉडल में 20 त्रिकोण या 56 त्रिकोण होते हैं (एब्स्ट्रेक्ट रूप से, [[नियमित तिरछा बहुफलक|नियमित विषम बहुफलक]] {3,7|,4}, जिसमें 56 फलक, 84 किनारे और 24 शीर्ष होते हैं), जिन्हें मोड़ के साथ समबाहु के रूप में अनुभव नहीं किया जा सकता है। चतुष्फलक की भुजाएँ; जबकि अन्य में 24 हेप्टागोन होते हैं - इन हेप्टागोन को गैर-उत्तल होते हुए भी समतल माना जा सकता है,<ref name="schulte">{{Harv|Schulte|Wills|1985}}</ref> और मॉडल त्रिकोणीय की तुलना में अधिक समष्टि हैं क्योंकि समष्टि (लचीले) शीर्षों के अतिरिक्त (गैर-लचीले) हेप्टागोनल फलक के आकार में प्रतिबिंबित होती है।<ref name="scholl"/>


[[File:Small cubicuboctahedron.png|thumb|[[छोटा क्यूबिकुबोक्टाहेड्रोन]] अष्टफलकीय समरूपता के साथ क्लेन चतुर्थक की टाइलिंग का एक बहुफलकीय विसर्जन है।]]
[[File:Small cubicuboctahedron.png|thumb|[[छोटा क्यूबिकुबोक्टाहेड्रोन]] अष्टफलकीय समरूपता के साथ क्लेन चतुर्थक की टाइलिंग का बहुफलकीय विसर्जन है।]]


वैकल्पिक रूप से, चतुर्थक को अष्टफलकीय समरूपता के साथ एक बहुफलक द्वारा प्रतिरूपित किया जा सकता है: क्लेन ने चतुर्थफलकीय समरूपता के साथ और अनंत पर बिंदुओं वाले ("विवर्त बहुफलक"),<ref name="westendorp" /> अर्थात् ऑर्थोगोनल अक्षों पर मिलने वाले तीन हाइपरबोलॉइड्स, <ref name="scholl" /> जबकि इसे एक संवर्त बहुफलक के रूप में भी प्रतिरूपित किया जा सकता है, जिसे विसर्जित किया जाना चाहिए (स्वयं-प्रतिच्छिद्रन होना चाहिए), एम्बेडेड नहीं है।<ref name="scholl" /> इस तरह के पॉलीहेड्रा में विभिन्न उत्तल पतवारें हो सकती हैं, जिनमें काटे गए घन,<ref name="egan">{{cite web |last1=Egan |first1=Greg |author1-link=Greg Egan |title=Klein’s Quartic Curve |url=https://www.gregegan.net/SCIENCE/KleinQuartic/KleinQuartic.html |date=5 June 2017 |series=Science Notes}}</ref> स्नब क्यूब, <ref name="schulte" /> या रोम्बिकुबोक्टाहेड्रोन सम्मिलित हैं, जैसा कि दाईं ओर छोटे क्यूबिकुबोक्टाहेड्रोन में होता है।<ref name="richter" /> छोटे क्यूबिक्यूबोक्टाहेड्रोन विसर्जन को कुछ त्रिकोणों (2 त्रिकोण एक वर्ग बनाते हैं, 6 एक अष्टकोण बनाते हैं) को जोड़कर प्राप्त किया जाता है, जिसे वेबैक मशीन पर 2016-03-03 में संग्रहीत त्रिकोणों को रंगकर देखा जा सकता है (संबंधित टाइलिंग टोपोलॉजिकल रूप से है किंतु ज्यामितीय रूप से 3 4 | 4 टाइलिंग नहीं है)। इस विसर्जन का उपयोग पीएसएल (2,7) में क्रमपरिवर्तन जोड़कर ज्यामितीय रूप से मैथ्यू समूह M<sub>24</sub> का निर्माण करने के लिए भी किया जा सकता है जो वर्गों और अष्टकोणों की द्विभाजित रेखाओं के विपरीत बिंदुओं को आपस में बदल देता है।<ref name="richter" />
वैकल्पिक रूप से, चतुर्थक को अष्टफलकीय समरूपता के साथ बहुफलक द्वारा प्रतिरूपित किया जा सकता है: क्लेन ने चतुर्थफलकीय समरूपता के साथ और अनंत पर बिंदुओं वाले ("विवर्त बहुफलक"),<ref name="westendorp" /> अर्थात् ऑर्थोगोनल अक्षों पर मिलने वाले तीन हाइपरबोलॉइड्स, <ref name="scholl" /> जबकि इसे संवर्त बहुफलक के रूप में भी प्रतिरूपित किया जा सकता है, जिसे विसर्जित किया जाना चाहिए (स्वयं-प्रतिच्छिद्रन होना चाहिए), एम्बेडेड नहीं है।<ref name="scholl" /> इस प्रकार के पॉलीहेड्रा में विभिन्न उत्तल पतवारें हो सकती हैं, जिनमें काटे गए घन,<ref name="egan">{{cite web |last1=Egan |first1=Greg |author1-link=Greg Egan |title=Klein’s Quartic Curve |url=https://www.gregegan.net/SCIENCE/KleinQuartic/KleinQuartic.html |date=5 June 2017 |series=Science Notes}}</ref> स्नब क्यूब, <ref name="schulte" /> या रोम्बिकुबोक्टाहेड्रोन सम्मिलित हैं, जैसा कि दाईं ओर छोटे क्यूबिकुबोक्टाहेड्रोन में होता है।<ref name="richter" /> छोटे क्यूबिक्यूबोक्टाहेड्रोन विसर्जन को कुछ त्रिकोणों (2 त्रिकोण वर्ग बनाते हैं, 6 अष्टकोण बनाते हैं) को जोड़कर प्राप्त किया जाता है, जिसे वेबैक मशीन पर 2016-03-03 में संग्रहीत त्रिकोणों को रंगकर देखा जा सकता है (संबंधित टाइलिंग टोपोलॉजिकल रूप से है किंतु ज्यामितीय रूप से 3 4 | 4 टाइलिंग नहीं है)। इस विसर्जन का उपयोग पीएसएल (2,7) में क्रमपरिवर्तन जोड़कर ज्यामितीय रूप से मैथ्यू समूह M<sub>24</sub> का निर्माण करने के लिए भी किया जा सकता है जो वर्गों और अष्टकोणों की द्विभाजित रेखाओं के विपरीत बिंदुओं को आपस में परिवर्तित कर देता है।<ref name="richter" />
==डेसिन डी'एनफैंट्स==
==डेसिन डी'एनफैंट्स==
क्लेन क्वार्टिक पर डेसिन डी'एनफैंट अपने ऑटोमोर्फिज्म समूह (भागफल रीमैन क्षेत्र के साथ) द्वारा भागफल मानचित्र से जुड़ा हुआ है, जो ऑर्डर -3 हेप्टागोनल टाइलिंग का स्पष्ट रूप से 1-स्केलेटन है।<ref>{{citation | last = le Bruyn | first = Lieven | title = The best rejected proposal ever | date = 7 March 2007 | url = http://www.neverendingbooks.org/index.php/the-best-rejected-proposal-ever.html | url-status = dead | archive-url = https://web.archive.org/web/20140227065015/http://www.neverendingbooks.org/index.php/the-best-rejected-proposal-ever.html | archive-date = 27 February 2014 }}.</ref> अर्थात्, भागफल मानचित्र अंक {{math|0, 1728}}, और ∞ पर विस्तृत है; 1728 से विभाजित करने पर एक बेली फ़ंक्शन (0, 1, और {{math|∞}} पर विस्तृत) प्राप्त होता है, जहां 56 शीर्ष (डेसिन में काले बिंदु) 0 के ऊपर स्थित होते हैं, 84 किनारों के मध्य बिंदु (डेसिन में सफेद बिंदु) 1 के ऊपर स्थित होते हैं, और 24 हेप्टागन के केंद्र अनंत पर स्थित होते हैं। परिणामी डेसिन एक "प्लेटोनिक" डेसिन है, जिसका अर्थ है किनारे-संक्रमणीय और "स्वच्छ" (प्रत्येक सफेद बिंदु में वैलेंस 2 है)।
क्लेन क्वार्टिक पर डेसिन डी'एनफैंट अपने ऑटोमोर्फिज्म समूह (भागफल रीमैन क्षेत्र के साथ) द्वारा भागफल मानचित्र से जुड़ा हुआ है, जो ऑर्डर -3 हेप्टागोनल टाइलिंग का स्पष्ट रूप से 1-स्केलेटन है।<ref>{{citation | last = le Bruyn | first = Lieven | title = The best rejected proposal ever | date = 7 March 2007 | url = http://www.neverendingbooks.org/index.php/the-best-rejected-proposal-ever.html | url-status = dead | archive-url = https://web.archive.org/web/20140227065015/http://www.neverendingbooks.org/index.php/the-best-rejected-proposal-ever.html | archive-date = 27 February 2014 }}.</ref> अर्थात्, भागफल मानचित्र अंक {{math|0, 1728}}, और ∞ पर विस्तृत है; 1728 से विभाजित करने पर बेली फलन(0, 1, और {{math|∞}} पर विस्तृत) प्राप्त होता है, जहां 56 शीर्ष (डेसिन में काले बिंदु) 0 के ऊपर स्थित होते हैं, 84 किनारों के मध्य बिंदु (डेसिन में सफेद बिंदु) 1 के ऊपर स्थित होते हैं, और 24 हेप्टागन के केंद्र अनंत पर स्थित होते हैं। परिणामी डेसिन "प्लेटोनिक" डेसिन है, जिसका अर्थ है किनारे-संक्रमणीय और "स्वच्छ" (प्रत्येक सफेद बिंदु में वैलेंस 2 है)।


==संबंधित रीमैन सतहें==
==संबंधित रीमैन सतहें==
Line 163: Line 164:
ज्यामितीय रूप से, यह सबसे छोटी हर्विट्ज़ सतह (निम्नतम जीनस) है; अगला मैकबीथ सतह (जीनस 7) है, और निम्नलिखित पहला हर्विट्ज़ ट्रिपलेट (जीनस 14 की 3 सतहें) है। अधिक सामान्यतः, यह किसी दिए गए जीनस की सबसे सममित सतह है (हर्विट्ज़ सतह होने के नाते); इस वर्ग में, बोल्ज़ा सतह सबसे सममित जीनस 2 सतह है, जबकि ब्रिंग की सतह अत्यधिक सममित जीनस 4 सतह है - आगे की चर्चा के लिए रीमैन सतहों की आइसोमेट्री देखें।
ज्यामितीय रूप से, यह सबसे छोटी हर्विट्ज़ सतह (निम्नतम जीनस) है; अगला मैकबीथ सतह (जीनस 7) है, और निम्नलिखित पहला हर्विट्ज़ ट्रिपलेट (जीनस 14 की 3 सतहें) है। अधिक सामान्यतः, यह किसी दिए गए जीनस की सबसे सममित सतह है (हर्विट्ज़ सतह होने के नाते); इस वर्ग में, बोल्ज़ा सतह सबसे सममित जीनस 2 सतह है, जबकि ब्रिंग की सतह अत्यधिक सममित जीनस 4 सतह है - आगे की चर्चा के लिए रीमैन सतहों की आइसोमेट्री देखें।


बीजगणितीय रूप से, (एफ़िन) क्लेन चतुर्थक मॉड्यूलर वक्र X(7) है और प्रक्षेप्य क्लेन चतुर्थक इसका संघनन है, जैसे कि डोडेकाहेड्रोन (प्रत्येक चेहरे के केंद्र में एक पुच्छल के साथ) मॉड्यूलर वक्र X(5) है; यह संख्या सिद्धांत की प्रासंगिकता को स्पष्ट करता है।
बीजगणितीय रूप से, (एफ़िन) क्लेन चतुर्थक मॉड्यूलर वक्र X(7) है और प्रक्षेप्य क्लेन चतुर्थक इसका संघनन है, जैसे कि डोडेकाहेड्रोन (प्रत्येक चेहरे के केंद्र में पुच्छल के साथ) मॉड्यूलर वक्र X(5) है; यह संख्या सिद्धांत की प्रासंगिकता को स्पष्ट करता है।


अधिक सूक्ष्मता से, (प्रोजेक्टिव) क्लेन क्वार्टिक एक शिमुरा वक्र है (जैसा कि जीनस 7 और 14 की हर्विट्ज़ सतहें हैं), और इस तरह आयाम 6 की मुख्य रूप से ध्रुवीकृत एबेलियन किस्म को पैरामीट्रिज करता है।<ref>Elkies, section 4.4 (pp. 94–97) in {{Harv|Levy|1999}}.</ref>
अधिक सूक्ष्मता से, (प्रोजेक्टिव) क्लेन क्वार्टिक शिमुरा वक्र है (जैसा कि जीनस 7 और 14 की हर्विट्ज़ सतहें हैं), और इस प्रकार आयाम 6 की मुख्य रूप से ध्रुवीकृत एबेलियन किस्म को पैरामीट्रिज करता है।<ref>Elkies, section 4.4 (pp. 94–97) in {{Harv|Levy|1999}}.</ref>


अधिक असाधारण रूप से, क्लेन क्वार्टिक व्लादिमीर अर्नोल्ड के अर्थ में "ट्रिनिटी" का भाग है, जिसे मैके पत्राचार के रूप में भी वर्णित किया जा सकता है। इस संग्रह में, प्रक्षेप्य विशेष रैखिक समूह पीएसएल(2,5), पीएसएल(2,7), और पीएसएल(2,11) (आदेश 60, 168, 660) अनुरूप हैं। ध्यान दें कि 4 × 5 × 6/2 = 60, 6 × 7 × 8/2 = 168, और 10 × 11 × 12/2 = 660। ये इकोसाहेड्रल समरूपता (जीनस 0), क्लेन क्वार्टिक की समरूपता (जीनस 3), और बकीबॉल सतह (जीनस 70) के अनुरूप हैं। ये आगे कई अन्य असाधारण घटनाओं से जुड़े हुए हैं, जिन्हें "त्रिमूर्तियों" में विस्तृत किया गया है।<ref name="martin">{{citation | last1 = Martin | first2 = Pablo | last2 = Singerman | first1 = David | title = From Biplanes to the Klein quartic and the Buckyball | url = http://www.neverendingbooks.org/DATA/biplanesingerman.pdf | date = April 17, 2008 }}</ref>
अधिक असाधारण रूप से, क्लेन क्वार्टिक व्लादिमीर अर्नोल्ड के अर्थ में "ट्रिनिटी" का भाग है, जिसे मैके पत्राचार के रूप में भी वर्णित किया जा सकता है। इस संग्रह में, प्रक्षेप्य विशेष रैखिक समूह पीएसएल(2,5), पीएसएल(2,7), और पीएसएल(2,11) (आदेश 60, 168, 660) अनुरूप हैं। ध्यान दें कि 4 × 5 × 6/2 = 60, 6 × 7 × 8/2 = 168, और 10 × 11 × 12/2 = 660। ये इकोसाहेड्रल समरूपता (जीनस 0), क्लेन क्वार्टिक की समरूपता (जीनस 3), और बकीबॉल सतह (जीनस 70) के अनुरूप हैं। ये आगे अनेक अन्य असाधारण घटनाओं से जुड़े हुए हैं, जिन्हें "त्रिमूर्तियों" में विस्तृत किया गया है।<ref name="martin">{{citation | last1 = Martin | first2 = Pablo | last2 = Singerman | first1 = David | title = From Biplanes to the Klein quartic and the Buckyball | url = http://www.neverendingbooks.org/DATA/biplanesingerman.pdf | date = April 17, 2008 }}</ref>


==यह भी देखें==
==यह भी देखें==

Revision as of 15:41, 23 August 2023

दो दोहरे क्लेन ग्राफ़ के साथ क्लेन चतुर्थक(समान संख्या से चिह्नित 14-गॉन किनारे समान हैं।) क्लेन चतुर्थक हेप्टागोनल टाइलिंग (हरे रंग में 3-नियमित ग्राफ़ की तुलना करें) और इसके दोहरे त्रिकोणीय टाइलिंग (बैंगनी में 7-नियमित ग्राफ़ की तुलना करें) का भागफल है।

अतिशयोक्तिपूर्ण ज्यामिति में, क्लेन क्वार्टिक होता हैं, जिसका नाम फेलिक्स क्लेन के नाम पर रखा गया है, इस जीनस के लिए उच्चतम संभव ऑर्डर ऑटोमोर्फिज्म समूह के साथ जीनस 3 की कॉम्पैक्ट रीमैन सतह है, अर्थात् क्रम 168 अभिविन्यास-संरक्षण ऑटोमोर्फिज्म, और 168 × 2 = 336 ऑटोमोर्फिज्म यदि अभिविन्यास विपरीत हो सकता है। इस प्रकार, क्लेन क्वार्टिक न्यूनतम संभव जीनस की हर्विट्ज़ सतह है; हर्विट्ज़ की ऑटोमोर्फिज्म प्रमेय देखें। इसका (अभिविन्यास-संरक्षण) ऑटोमोर्फिज्म समूह पीएसएल (2, 7) के लिए आइसोमोर्फिक है, जो वैकल्पिक समूह A5 के पश्चात् दूसरा सबसे छोटा गैर-एबेलियन सरल समूह है। चतुर्थक का वर्णन सबसे पहले (क्लेन 1878बी) में किया गया था।

क्लेन का चतुर्थक गणित की अनेक शाखाओं में होता है, जिसमें प्रतिनिधित्व सिद्धांत, होमोलॉजी सिद्धांत, ऑक्टोनियन गुणन फ़र्मेट का अंतिम प्रमेय और कक्षा संख्या के काल्पनिक द्विघात संख्या क्षेत्रों पर स्टार्क-हेगनर प्रमेय सम्मिलित हैं; संपत्तियों के सर्वेक्षण के लिए देखें (लेवी 1999) हैं।

मूल रूप से, "क्लेन क्वार्टिक" विशेष रूप से बीजगणितीय समीकरण द्वारा परिभाषित समष्टि प्रक्षेप्य स्थान P2(C) के उपसमुच्चय को संदर्भित करता है। इसमें विशिष्ट रीमैनियन मीट्रिक है (जो इसे P2(C) में न्यूनतम सतह बनाती है), जिसके अनुसार इसकी गॉसियन वक्रता स्थिर नहीं है। किंतु अधिक सामान्यतः (जैसा कि इस लेख में है) अब इसे किसी भी रीमैन सतह के रूप में माना जाता है जो इस बीजगणितीय वक्र के अनुरूप है, और विशेष रूप से वह जो निश्चित कोकॉम्पैक्ट समूह G द्वारा हाइपरबॉलिक स्थान H2 का भागफल है जो आइसोमेट्रीज़ द्वारा H2 पर स्वतंत्र रूप से कार्य करता है। यह क्लेन क्वार्टिक को निरंतर वक्रता -1 का रीमैनियन मीट्रिक देता है जो इसे H2 से प्राप्त होता है। अनुरूप रूप से समतुल्य रीमैनियन सतहों का यह समुच्चय बिल्कुल जीनस 3 की सभी कॉम्पैक्ट रीमैनियन सतहों के समान है, जिसका अनुरूप ऑटोमोर्फिज्म समूह क्रम 168 के अद्वितीय सरल समूह के लिए आइसोमोर्फिक है। इस समूह को PSL(2, 7) के रूप में भी जाना जाता है, और आइसोमॉर्फिक समूह PSL(3, 2) के रूप में भी जाना जाता है। स्पेस सिद्धांत को कवर करके, ऊपर उल्लिखित समूह G जीनस 3 की कॉम्पैक्ट सतह के मौलिक समूह के लिए आइसोमोर्फिक है।

संवर्त और विवर्त फॉर्म

चतुर्थक के दो भिन्न-भिन्न रूपों में अंतर करना महत्वपूर्ण है। ज्यामिति में समान्यत: संवर्त चतुर्थक का अर्थ होता है; स्थलाकृतिक रूप से इसका जीनस 3 है और यह सघन स्थान है। विवर्त या "छिद्रित" चतुर्थक संख्या सिद्धांत में रुचिकर है; स्थलाकृतिक रूप से यह 24 पंचर वाली जीनस 3 सतह है, और ज्यामितीय रूप से ये पंचर क्यूप्स हैं। जैसा कि नीचे चर्चा की गई है, नियमित हेप्टागोन द्वारा टाइलिंग के 24 केंद्रों पर छिद्र करके संवर्त क्वार्टिक से विवर्त क्वार्टिक को (टोपोलॉजिकली) प्राप्त किया जा सकता है। विवर्त और संवर्त चतुर्थक के भिन्न-भिन्न आव्यूह हैं, चूँकि वह अतिशयोक्तिपूर्ण और पूर्ण दोनों हैं [1] - ज्यामितीय रूप से, क्यूप्स "अनंत पर बिंदु" हैं, छिद्र नहीं, इसलिए विवर्त चतुर्थक अभी भी पूर्ण है।

बीजगणितीय वक्र के रूप में

क्लेन चतुर्थक को समष्टि संख्या C पर प्रक्षेपी बीजगणितीय वक्र के रूप में देखा जा सकता है, जिसे P2(C) पर सजातीय निर्देशांक[x:y:z] में निम्नलिखित चतुर्थक समीकरण द्वारा परिभाषित किया गया है:

इस समीकरण का स्थान P2(C) मूल रीमैनियन सतह है जिसका क्लेन ने वर्णन किया है।

चतुर्भुज बीजगणित निर्माण

कॉम्पैक्ट क्लेन चतुर्थक का निर्माण उपयुक्त फुच्सियन समूह Γ(I)की क्रिया द्वारा अतिपरवलयिक तल के भागफल के रूप में किया जा सकता है, जो क्षेत्र Q(η) के बीजगणितीय पूर्णांक Z(η) के वलय में आदर्श से जुड़ा प्रमुख सर्वांगसम उपसमूह है, जहां η = 2 cos(2π/7) पहचान नोट करें

बीजगणितीय पूर्णांकों के वलय में 2 – η को 7 के अभाज्य गुणनखंड के रूप में प्रदर्शित करता है।

समूह Γ(I) (2,3,7) अतिपरवलयिक त्रिभुज समूह का उपसमूह है। अर्थात्, Γ(I) जनरेटर i,j और संबंधों द्वारा सहयोगी बीजगणित के रूप में उत्पन्न चतुर्धातुक बीजगणित में इकाई मानक के तत्वों के समूह का उपसमूह है

कोई व्यक्ति चतुर्धातुक बीजगणित में उपयुक्त हर्विट्ज़ चतुर्धातुक क्रम चुनता है, Γ(I) तब में मानक 1 तत्वों का समूह होता है। Γ(I) में अतिशयोक्तिपूर्ण तत्व के अंश का न्यूनतम निरपेक्ष मान है, जो क्लेन क्वार्टिक के सिस्टोल के लिए मान 3.936 के अनुरूप है, जो इस जीनस में उच्चतम में से है।

टाइलिंग

परावर्तन डोमेन द्वारा चतुर्थक की टाइलिंग रोम्बस के लिए 3-7 का भागफल है।

क्लेन चतुर्थक समरूपता समूह (एक नियमित मानचित्र (ग्राफ सिद्धांत)) से जुड़े टाइलिंग को स्वीकार करता है [2]), और इनका उपयोग समरूपता समूह को समझने में किया जाता है, जिसका संबंध क्लेन के मूल पेपर से है। समूह क्रिया के लिए मौलिक डोमेन दिया गया है (पूर्ण, अभिविन्यास-विपरीत समरूपता समूह के लिए, (2,3,7) त्रिकोण), प्रतिबिंब डोमेन (समूह के अनुसार इस डोमेन की छवियां) चतुर्थक की टाइलिंग देते हैं जैसे कि टाइलिंग का ऑटोमोर्फिज्म समूह सतह के ऑटोमोर्फिज्म समूह के समान होता है - टाइलिंग की रेखाओं में प्रतिबिंब समूह में प्रतिबिंबों के अनुरूप होते हैं (किसी दिए गए मौलिक त्रिकोण की रेखाओं में प्रतिबिंब 3 उत्पन्न करने वाले प्रतिबिंबों का समुच्चय देते हैं)। यह टाइलिंग अतिशयोक्तिपूर्ण ज्यामिति (चतुर्थक का सार्वभौमिक आवरण) के क्रम-3 द्विभाजित सातकोणक टाइलिंग का भागफल है, और सभी हर्विट्ज़ सतहों को भागफल के समान ही टाइल किया गया है।

यह टाइलिंग समान है किंतु नियमित नहीं है (यह स्केलीन त्रिकोण द्वारा होती है), और इसके अतिरिक्त अधिकांशतः नियमित टाइलिंग का उपयोग किया जाता है। (2,3,7) वर्ग में किसी भी टाइलिंग के भागफल का उपयोग किया जा सकता है (और इसमें समान ऑटोमोर्फिज्म समूह होता हैं); इनमें से, दो नियमित टाइलिंग 24 नियमित अतिशयोक्तिपूर्ण हेप्टागोन्स द्वारा टाइलिंग हैं, प्रत्येक डिग्री 3 (56 शीर्षों पर मिलते हुए) और दोहरी टाइलिंग 56 समबाहु त्रिभुजों द्वारा, प्रत्येक डिग्री 7 (24 शीर्षों पर मिलते हुए) हैं। ऑटोमोर्फिज्म समूह का क्रम संबंधित है, दोनों स्थितियों में बहुभुजों की संख्या बहुभुज में किनारों की संख्या से गुणा है।

24 × 7 = 168
56 × 3 = 168

अतिशयोक्तिपूर्ण तल पर कवरिंग टाइलिंग ऑर्डर-3 हेप्टागोनल टाइलिंग और ऑर्डर-7 त्रिकोणीय टाइलिंग हैं।

मैथ्यू समूह M24 प्राप्त करने के लिए ऑटोमोर्फिज्म समूह को बढ़ाया जा सकता है (एक समरूपता द्वारा जो टाइलिंग की समरूपता द्वारा अनुभव नहीं किया जाता है)[3]

चतुर्थक की प्रत्येक टाइलिंग के अनुरूप (चतुर्थक विविधता का उपसमुच्चय में विभाजन) एब्स्ट्रेक्ट बहुफलक है, जो ज्यामिति से एब्स्ट्रेक्ट होता है और केवल टाइलिंग के संयोजन को दर्शाता है (यह टाइलिंग से एब्स्ट्रेक्ट पॉलीटोप प्राप्त करने का सामान्य विधि है) - पॉलीहेड्रॉन के कोने, किनारे और फलक , समान घटना संबंधों के साथ, टाइलिंग के कोने, किनारों और फलक के समुच्चय के समान होते हैं, और एब्स्ट्रेक्ट पॉलीहेड्रॉन का (कॉम्बिनेटोरियल) ऑटोमोर्फिज्म समूह (ज्यामितीय) ऑटोमोर्फिज्म समूह के समान होता है चतुर्थांश का. इस प्रकार ज्यामिति कॉम्बिनेटरिक्स में एकत्रित हो जाती है।

एफ़िन चतुर्थक

उपरोक्त प्रक्षेप्य चतुर्थक (एक संवर्त मैनिफोल्ड) की टाइलिंग है; एफ़िन क्वार्टिक में 24 क्यूप्स (टोपोलॉजिकली, पंचर) होते हैं, जो नियमित त्रिकोणीय टाइलिंग के 24 शीर्षों के अनुरूप होते हैं, या समकक्ष रूप से हेप्टागोनल टाइलिंग में 24 हेप्टागोन्स के केंद्रों के अनुरूप होते हैं, और इन्हें निम्नानुसार अनुभव किया जा सकता है।

मोबियस ट्रांसफॉर्मेशन द्वारा अतिशयोक्तिपूर्ण प्लेन के ऊपरी आधे-प्लेन मॉडल H2 पर SL(2, R) की कार्य को ध्यान में रखते हुए, एफ़िन क्लेन क्वार्टिक को भागफल Γ(7)\H2 के रूप में अनुभव किया जा सकता है। (यहां Γ(7) SL(2, Z) का सर्वांगसम उपसमूह है, जिसमें ऐसे आव्यूह सम्मिलित हैं जो पहचान आव्यूह के सर्वांगसम होते हैं जब सभी प्रविष्टियों को मॉड्यूल 7 में लिया जाता है।)

मौलिक डोमेन और पैंट अपघटन

फ़ुचियन समूह की क्रिया द्वारा क्लेन चतुर्थक को अतिशयोक्तिपूर्ण तल के भागफल के रूप में प्राप्त किया जा सकता है। मूल डोमेन नियमित 14-गॉन है, जिसका गॉस-बोनट प्रमेय के अनुसार क्षेत्रफल है। इसे निकटवर्ती चित्र में देखा जा सकता है, जिसमें 336 (2,3,7) त्रिकोण भी सम्मिलित हैं जो सतह को टेसेलेट करते हैं और समरूपता के समूह को उत्पन्न करते हैं।

क्लेन चतुर्थक का मौलिक डोमेन। समान संख्याओं वाली भुजाओं को जोड़कर सतह प्राप्त की जाती है।

(2,3,7) त्रिभुजों द्वारा टेस्सेलेशन के अंदर 24 नियमित सप्तभुजों द्वारा टेस्सेलेशन होता है। सतह का सिस्टोल 8 सप्तभुज पक्षों के मध्य बिंदुओं से होकर गुजरता है; इस कारण से इसे साहित्य में आठ चरणों वाली जियोडेसिक के रूप में संदर्भित किया गया है, और यही कारण है कि नीचे दिए गए अनुभाग में पुस्तक का शीर्षक दिया गया है। पैंट के विघटन को दर्शाने वाले चित्र में सभी रंगीन वक्र सिस्टोल हैं, चूँकि , यह केवल उपसमुच्चय है; कुल मिलाकर 21 हैं। सिस्टोल की लंबाई है

एक समतुल्य संवर्त सूत्र है

जबकि क्लेन क्वार्टिक जीनस 3 की सतहों के लिए समरूपता समूह को अधिकतम करता है, यह सिस्टोल की लंबाई को अधिकतम नहीं करता है। अनुमानित मैक्सिमाइज़र वह सतह है जिसे "M3" (श्मुट्ज़ 1993) कहा जाता है। M3 (2,3,12) त्रिभुजों के टेसेलेशन से आता है, और इसके सिस्टोल में बहुलता 24 और लंबाई है

क्लेन क्वार्टिक का पैंट अपघटन। बाईं ओर का चित्र मौलिक डोमेन के (2,3,7) टेसेलेशन में सीमा भू-भौतिकी को दर्शाता है। दाईं ओर की आकृति में, प्रत्येक पैंट को भिन्न-भिन्न रंग दिया गया है ताकि यह स्पष्ट हो सके कि मूल डोमेन का कौन सा हिस्सा पैंट की किस जोड़ी से संबंधित है।

क्लेन क्वार्टिक को इसके छह सिस्टोल के साथ काटकर चार जोड़ी पैंट में विघटित किया जा सकता है। यह अपघटन फ़ेंशेल-नील्सन निर्देशांक का सममित समुच्चय देता है, जहां लंबाई मापदंड सभी सिस्टोल की लंबाई के समान होते हैं, और ट्विस्ट मापदंड सभी सिस्टोल की लंबाई के के समान होते हैं। विशेष रूप से, को सिस्टोल लंबाई मानते हुए, निर्देशांक हैं

इस पैंट अपघटन के अनुरूप घन ग्राफ टेट्राहेड्रल ग्राफ है, अथार्त , 4 नोड्स का ग्राफ, प्रत्येक अन्य 3 से जुड़ा हुआ है। टेट्राहेड्रल ग्राफ प्रक्षेप्य फैनो समतल के लिए ग्राफ के समान है; वास्तव में, क्लेन क्वार्टिक का ऑटोमोर्फिज्म समूह फ़ानो समतल के समरूपी है।

वर्णक्रमीय सिद्धांत

क्लेन चतुर्थक के पहले धनात्मक आइजेनवैल्यू के अनुरूप आठ कार्य। हल्की नीली रेखाओं के साथ कार्य शून्य हैं। ये प्लॉट FreeFEM++ में तैयार किए गए थे।

क्लेन चतुर्थक के वर्णक्रमीय सिद्धांत के बारे में बहुत कम साबित किया गया है। क्योंकि क्लेन क्वार्टिक में अपने टोपोलॉजिकल वर्ग में सतहों का सबसे बड़ा समरूपता समूह है, जीनस 2 में बोल्ज़ा सतह की तरह, यह अनुमान लगाया गया है कि यह जीनस 3 के सभी कॉम्पैक्ट रीमैन सतहों के मध्य लाप्लास ऑपरेटर के पहले धनात्मक आइगेनवैल्यू को अधिकतम करता है। ऋणात्मक वक्रता. यह ऐसी सभी सतहों के मध्य पहले धनात्मक आइजेनवैल्यू (8) की पारस्परिकता को भी अधिकतम करता है, तथ्य जो वर्तमान में ही सिद्ध हुआ है।[4] क्लेन चतुर्थक के आइगेनवैल्यू की गणना स्पष्टता की भिन्न-भिन्न डिग्री तक की गई है। पहले 15 विशिष्ट धनात्मक आइगेनवैल्यू ​​को उनकी बहुलताओं के साथ, निम्नलिखित तालिका में दिखाया गया है।

क्लेन चतुर्थक के पहले 15 धनात्मक आइगेनवैल्यू की संख्यात्मक गणना
आइगेनवैल्यू न्यूमेरिकल मान बहुलता
0 1
2.67793 8
6.62251 7
10.8691 6
12.1844 8
17.2486 7
21.9705 7
24.0811 8
25.9276 6
30.8039 6
36.4555 8
37.4246 8
41.5131 6
44.8884 8
49.0429 6
50.6283 6


त्रि-आयामी मॉडल

ग्रेग एगन का एनीमेशन, जिसमें क्लेन के क्वार्टिक कर्व को तीन आयामों में एम्बेड किया गया है, जो टेट्राहेड्रोन की समरूपता वाले रूप में प्रारंभ होता है, और और समरूपता प्रदर्शित करने के लिए अंदर की ओर मुड़ता है।

क्लेन चतुर्थक को 3-आयामी आकृति के रूप में अनुभव नहीं किया जा सकता है, इस अर्थ में कि किसी भी 3-आयामी आकृति में PSL(2,7) के समान (घूर्णी) समरूपता नहीं है, क्योंकि PSL(2,7) SO(3) (या O(3)) के उपसमूह के रूप में एम्बेड नहीं होता है - इसमें वास्तविक संख्याओं पर (गैर-तुच्छ) 3-आयामी रैखिक प्रतिनिधित्व नहीं होता है।

चूँकि , क्लेन चतुर्थक के अनेक 3-आयामी मॉडल दिए गए हैं, जो क्लेन के मूल पेपर से प्रारंभ होते हैं,[2][5][6][7][8] जो चतुर्थक की विशेषताओं को प्रदर्शित करना चाहता है और स्थलाकृतिक रूप से समरूपता को संरक्षित करना चाहता है, चूँकि सभी ज्यामितीय रूप से नहीं है। परिणामी मॉडल में अधिकांशतः या तो टेट्राहेड्रल (क्रम 12) या अष्टफलकीय (क्रम 24) समरूपताएं होती हैं; शेष क्रम 7 समरूपता को इतनी सरलता से कल्पना नहीं की जा सकती है, और वास्तव में यह क्लेन के पेपर का शीर्षक है।

File:The Eightfold Way - Silvio Levy - cover.jpg
आठ गुना रास्ता - हेलामन फर्ग्यूसन द्वारा मूर्तिकला और साथ में पुस्तक।

अधिकांशतः चतुर्थक को या तो टेट्राहेड्रल समरूपता के साथ स्मूथ जीनस 3 सतह द्वारा तैयार किया जाता है (नियमित टेट्राहेड्रोन के किनारों को ट्यूबों/हैंडल के साथ परिवर्तित करने से ऐसा आकार मिलता है), जिसे टेट्रस करार दिया गया है,[8] या बहुफलकीय सन्निकटन द्वारा, जिसे टेट्रोइड्स सहमति दिया गया है;[8] दोनों ही स्थितियों में यह आकृति को 3 आयामों में एम्बेड करना है। सबसे उल्लेखनीय चिकना मॉडल (टेट्रस) कैलिफोर्निया के बर्कले में गणितीय विज्ञान अनुसंधान संस्थान में हेलमैन फर्ग्यूसन द्वारा बनाई गई मूर्तिकला द एटफोल्ड वह है, जो संगमरमर और सर्पीन से बनी है, और 14 नवंबर, 1993 को इसका अनावरण किया गया था। शीर्षक इस तथ्य को संदर्भित करता है कि प्रारंभ त्रिकोणीय सतह के किसी भी शीर्ष पर और किसी भी किनारे पर चलते हुए, यदि आप शीर्ष पर पहुंचने पर बारी-बारी से बाएं और दाएं मुड़ते हैं, तो आप सदैव आठ किनारों के पश्चात् मूल बिंदु पर लौट आते हैं। मूर्तिकला के अधिग्रहण के फलस्वरूप समय-समय पर पत्रों की पुस्तक का प्रकाशन हुआ (Levy 1999), क्वार्टिक के गुणों का विवरण और क्लेन के पेपर का पहला अंग्रेजी अनुवाद सम्मिलित है। टेट्राहेड्रल समरूपता वाले पॉलीहेड्रल मॉडल में अधिकांशतः उत्तल पतवार छोटा टेट्राहेड्रोन होता है - देखें (शुल्टे & विल्स 1985) और (स्कॉल, शूरमन & विल्स 2002) उदाहरणों और उदाहरणों के लिए इनमें से कुछ मॉडल में 20 त्रिकोण या 56 त्रिकोण होते हैं (एब्स्ट्रेक्ट रूप से, नियमित विषम बहुफलक {3,7|,4}, जिसमें 56 फलक, 84 किनारे और 24 शीर्ष होते हैं), जिन्हें मोड़ के साथ समबाहु के रूप में अनुभव नहीं किया जा सकता है। चतुष्फलक की भुजाएँ; जबकि अन्य में 24 हेप्टागोन होते हैं - इन हेप्टागोन को गैर-उत्तल होते हुए भी समतल माना जा सकता है,[9] और मॉडल त्रिकोणीय की तुलना में अधिक समष्टि हैं क्योंकि समष्टि (लचीले) शीर्षों के अतिरिक्त (गैर-लचीले) हेप्टागोनल फलक के आकार में प्रतिबिंबित होती है।[2]

छोटा क्यूबिकुबोक्टाहेड्रोन अष्टफलकीय समरूपता के साथ क्लेन चतुर्थक की टाइलिंग का बहुफलकीय विसर्जन है।

वैकल्पिक रूप से, चतुर्थक को अष्टफलकीय समरूपता के साथ बहुफलक द्वारा प्रतिरूपित किया जा सकता है: क्लेन ने चतुर्थफलकीय समरूपता के साथ और अनंत पर बिंदुओं वाले ("विवर्त बहुफलक"),[6] अर्थात् ऑर्थोगोनल अक्षों पर मिलने वाले तीन हाइपरबोलॉइड्स, [2] जबकि इसे संवर्त बहुफलक के रूप में भी प्रतिरूपित किया जा सकता है, जिसे विसर्जित किया जाना चाहिए (स्वयं-प्रतिच्छिद्रन होना चाहिए), एम्बेडेड नहीं है।[2] इस प्रकार के पॉलीहेड्रा में विभिन्न उत्तल पतवारें हो सकती हैं, जिनमें काटे गए घन,[10] स्नब क्यूब, [9] या रोम्बिकुबोक्टाहेड्रोन सम्मिलित हैं, जैसा कि दाईं ओर छोटे क्यूबिकुबोक्टाहेड्रोन में होता है।[3] छोटे क्यूबिक्यूबोक्टाहेड्रोन विसर्जन को कुछ त्रिकोणों (2 त्रिकोण वर्ग बनाते हैं, 6 अष्टकोण बनाते हैं) को जोड़कर प्राप्त किया जाता है, जिसे वेबैक मशीन पर 2016-03-03 में संग्रहीत त्रिकोणों को रंगकर देखा जा सकता है (संबंधित टाइलिंग टोपोलॉजिकल रूप से है किंतु ज्यामितीय रूप से 3 4 | 4 टाइलिंग नहीं है)। इस विसर्जन का उपयोग पीएसएल (2,7) में क्रमपरिवर्तन जोड़कर ज्यामितीय रूप से मैथ्यू समूह M24 का निर्माण करने के लिए भी किया जा सकता है जो वर्गों और अष्टकोणों की द्विभाजित रेखाओं के विपरीत बिंदुओं को आपस में परिवर्तित कर देता है।[3]

डेसिन डी'एनफैंट्स

क्लेन क्वार्टिक पर डेसिन डी'एनफैंट अपने ऑटोमोर्फिज्म समूह (भागफल रीमैन क्षेत्र के साथ) द्वारा भागफल मानचित्र से जुड़ा हुआ है, जो ऑर्डर -3 हेप्टागोनल टाइलिंग का स्पष्ट रूप से 1-स्केलेटन है।[11] अर्थात्, भागफल मानचित्र अंक 0, 1728, और ∞ पर विस्तृत है; 1728 से विभाजित करने पर बेली फलन(0, 1, और पर विस्तृत) प्राप्त होता है, जहां 56 शीर्ष (डेसिन में काले बिंदु) 0 के ऊपर स्थित होते हैं, 84 किनारों के मध्य बिंदु (डेसिन में सफेद बिंदु) 1 के ऊपर स्थित होते हैं, और 24 हेप्टागन के केंद्र अनंत पर स्थित होते हैं। परिणामी डेसिन "प्लेटोनिक" डेसिन है, जिसका अर्थ है किनारे-संक्रमणीय और "स्वच्छ" (प्रत्येक सफेद बिंदु में वैलेंस 2 है)।

संबंधित रीमैन सतहें

क्लेन चतुर्थक विभिन्न अन्य रीमैन सतहों से संबंधित है।

ज्यामितीय रूप से, यह सबसे छोटी हर्विट्ज़ सतह (निम्नतम जीनस) है; अगला मैकबीथ सतह (जीनस 7) है, और निम्नलिखित पहला हर्विट्ज़ ट्रिपलेट (जीनस 14 की 3 सतहें) है। अधिक सामान्यतः, यह किसी दिए गए जीनस की सबसे सममित सतह है (हर्विट्ज़ सतह होने के नाते); इस वर्ग में, बोल्ज़ा सतह सबसे सममित जीनस 2 सतह है, जबकि ब्रिंग की सतह अत्यधिक सममित जीनस 4 सतह है - आगे की चर्चा के लिए रीमैन सतहों की आइसोमेट्री देखें।

बीजगणितीय रूप से, (एफ़िन) क्लेन चतुर्थक मॉड्यूलर वक्र X(7) है और प्रक्षेप्य क्लेन चतुर्थक इसका संघनन है, जैसे कि डोडेकाहेड्रोन (प्रत्येक चेहरे के केंद्र में पुच्छल के साथ) मॉड्यूलर वक्र X(5) है; यह संख्या सिद्धांत की प्रासंगिकता को स्पष्ट करता है।

अधिक सूक्ष्मता से, (प्रोजेक्टिव) क्लेन क्वार्टिक शिमुरा वक्र है (जैसा कि जीनस 7 और 14 की हर्विट्ज़ सतहें हैं), और इस प्रकार आयाम 6 की मुख्य रूप से ध्रुवीकृत एबेलियन किस्म को पैरामीट्रिज करता है।[12]

अधिक असाधारण रूप से, क्लेन क्वार्टिक व्लादिमीर अर्नोल्ड के अर्थ में "ट्रिनिटी" का भाग है, जिसे मैके पत्राचार के रूप में भी वर्णित किया जा सकता है। इस संग्रह में, प्रक्षेप्य विशेष रैखिक समूह पीएसएल(2,5), पीएसएल(2,7), और पीएसएल(2,11) (आदेश 60, 168, 660) अनुरूप हैं। ध्यान दें कि 4 × 5 × 6/2 = 60, 6 × 7 × 8/2 = 168, और 10 × 11 × 12/2 = 660। ये इकोसाहेड्रल समरूपता (जीनस 0), क्लेन क्वार्टिक की समरूपता (जीनस 3), और बकीबॉल सतह (जीनस 70) के अनुरूप हैं। ये आगे अनेक अन्य असाधारण घटनाओं से जुड़े हुए हैं, जिन्हें "त्रिमूर्तियों" में विस्तृत किया गया है।[13]

यह भी देखें

  • ग्रुनबाम-रिग्बी विन्यास
  • शिमुरा वक्र
  • हर्विट्ज़ सतह
  • बोल्ज़ा सतह
  • लाओ वक्र
  • मैकबीथ सतह
  • प्रथम हर्विट्ज़ त्रिक

संदर्भ

  1. (Levy 1999, p. 24)
  2. 2.0 2.1 2.2 2.3 2.4 (Scholl, Schürmann & Wills 2002)
  3. 3.0 3.1 3.2 (Richter)
  4. Maxime Fortier Bourque, Bram Petri. "The Klein quartic maximizes the multiplicity of the first positive eigenvalue of the Laplacian"
  5. Baez, John C. (23 May 2013). "क्लेन का चतुर्थक वक्र". John Baez's stuff.
  6. 6.0 6.1 Westendorp, Gerard. "रीमैन सतहों की प्लेटोनिक टाइलिंग".
  7. Stay, Mike. "क्लेन चतुर्थक".
  8. 8.0 8.1 8.2 Séquin, Carlo H. (2006). "Patterns on the Genus-3 Klein Quartic" (PDF). In Sarhangi, Reza; Sharp, John (eds.). BRIDGES Mathematical Connections in Art, Music, and Science Conference Proceedings. Bridges 2006. London, UK: Tarquin. pp. 245–254. ISBN 0-9665201-7-3. ISSN 1099-6702.
  9. 9.0 9.1 (Schulte & Wills 1985)
  10. Egan, Greg (5 June 2017). "Klein's Quartic Curve". Science Notes.
  11. le Bruyn, Lieven (7 March 2007), The best rejected proposal ever, archived from the original on 27 February 2014.
  12. Elkies, section 4.4 (pp. 94–97) in (Levy 1999).
  13. Martin, David; Singerman, Pablo (April 17, 2008), From Biplanes to the Klein quartic and the Buckyball (PDF)

साहित्य

बाहरी संबंध