आर्थर-मर्लिन प्रोटोकॉल: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Interactive proof system in computational complexity theory}} {{More citations needed|date=July 2016}} कम्प्यूटेशनल जटिल...")
 
No edit summary
Line 1: Line 1:
{{short description|Interactive proof system in computational complexity theory}}
{{short description|Interactive proof system in computational complexity theory}}
{{More citations needed|date=July 2016}}
[[कम्प्यूटेशनल जटिलता सिद्धांत]] में, आर्थर-मर्लिन प्रोटोकॉल, द्वारा प्रस्तुत किया गया {{Harvtxt|Babai|1985}}, [[इंटरैक्टिव प्रमाण प्रणाली]] है जिसमें सत्यापनकर्ता द्वारा उछाले गए सिक्के सार्वजनिक होने के लिए बाध्य हैं (अर्थात नीतिकर्ता को भी इसकी जानकारी होती है)। {{Harvtxt|Goldwasser|Sipser|1986}} साबित हुआ कि सभी (औपचारिक) [[औपचारिक भाषा]] में निजी सिक्कों के साथ मनमानी लंबाई के इंटरैक्टिव प्रमाण होते हैं, सार्वजनिक सिक्कों के साथ भी इंटरैक्टिव प्रमाण होते हैं।
[[कम्प्यूटेशनल जटिलता सिद्धांत]] में, एक आर्थर-मर्लिन प्रोटोकॉल, द्वारा प्रस्तुत किया गया {{Harvtxt|Babai|1985}}, एक [[इंटरैक्टिव प्रमाण प्रणाली]] है जिसमें सत्यापनकर्ता द्वारा उछाले गए सिक्के सार्वजनिक होने के लिए बाध्य हैं (अर्थात नीतिकर्ता को भी इसकी जानकारी होती है)। {{Harvtxt|Goldwasser|Sipser|1986}} साबित हुआ कि सभी (औपचारिक) [[औपचारिक भाषा]] में निजी सिक्कों के साथ मनमानी लंबाई के इंटरैक्टिव प्रमाण होते हैं, सार्वजनिक सिक्कों के साथ भी इंटरैक्टिव प्रमाण होते हैं।


प्रोटोकॉल में क्रमशः आर्थर और मर्लिन नामक दो प्रतिभागियों को देखते हुए, मूल धारणा यह है कि आर्थर एक मानक कंप्यूटर (या सत्यापनकर्ता) है जो [[यादृच्छिक संख्या पीढ़ी]] से सुसज्जित है, जबकि मर्लिन प्रभावी रूप से अनंत कम्प्यूटेशनल शक्ति वाला एक दैवज्ञ (कंप्यूटर विज्ञान) है (जिसे प्रोवर के रूप में भी जाना जाता है)। हालाँकि, मर्लिन आवश्यक रूप से ईमानदार नहीं है, इसलिए आर्थर को आर्थर के प्रश्नों के उत्तर में मर्लिन द्वारा प्रदान की गई जानकारी का विश्लेषण करना चाहिए और समस्या का निर्णय स्वयं करना चाहिए। इस प्रोटोकॉल द्वारा एक समस्या को हल करने योग्य माना जाता है यदि जब भी उत्तर हाँ हो, तो मर्लिन के पास प्रतिक्रियाओं की कुछ श्रृंखला होती है जो आर्थर को कम से कम स्वीकार करने के लिए प्रेरित करेगी {{frac|2|3}} समय का, और यदि जब भी उत्तर नहीं है, तो आर्थर कभी भी इससे अधिक स्वीकार नहीं करेगा {{frac|1|3}} समय का। इस प्रकार, आर्थर एक संभाव्य बहुपद-समय सत्यापनकर्ता के रूप में कार्य करता है, यह मानते हुए कि उसे अपने निर्णय और प्रश्न पूछने के लिए बहुपद समय आवंटित किया गया है।
प्रोटोकॉल में क्रमशः आर्थर और मर्लिन नामक दो प्रतिभागियों को देखते हुए, मूल धारणा यह है कि आर्थर मानक कंप्यूटर (या सत्यापनकर्ता) है जो [[यादृच्छिक संख्या पीढ़ी]] से सुसज्जित है, जबकि मर्लिन प्रभावी रूप से अनंत कम्प्यूटेशनल शक्ति वाला दैवज्ञ (कंप्यूटर विज्ञान) है (जिसे प्रोवर के रूप में भी जाना जाता है)। हालाँकि, मर्लिन आवश्यक रूप से ईमानदार नहीं है, इसलिए आर्थर को आर्थर के प्रश्नों के उत्तर में मर्लिन द्वारा प्रदान की गई जानकारी का विश्लेषण करना चाहिए और समस्या का निर्णय स्वयं करना चाहिए। इस प्रोटोकॉल द्वारा समस्या को हल करने योग्य माना जाता है यदि जब भी उत्तर हाँ हो, तो मर्लिन के पास प्रतिक्रियाओं की कुछ श्रृंखला होती है जो आर्थर को कम से कम स्वीकार करने के लिए प्रेरित करेगी {{frac|2|3}} समय का, और यदि जब भी उत्तर नहीं है, तो आर्थर कभी भी इससे अधिक स्वीकार नहीं करेगा {{frac|1|3}} समय का। इस प्रकार, आर्थर संभाव्य बहुपद-समय सत्यापनकर्ता के रूप में कार्य करता है, यह मानते हुए कि उसे अपने निर्णय और प्रश्न पूछने के लिए बहुपद समय आवंटित किया गया है।


==एमए==
==एमए==
ऐसा सबसे सरल प्रोटोकॉल 1-संदेश प्रोटोकॉल है जहां मर्लिन आर्थर को एक संदेश भेजता है, और फिर आर्थर एक संभाव्य बहुपद समय गणना चलाकर निर्णय लेता है कि उसे स्वीकार करना है या नहीं। (यह एनपी की सत्यापनकर्ता-आधारित परिभाषा के समान है, एकमात्र अंतर यह है कि आर्थर को यहां यादृच्छिकता का उपयोग करने की अनुमति है।) मर्लिन के पास इस प्रोटोकॉल में आर्थर के सिक्के उछालने तक पहुंच नहीं है, क्योंकि यह एक एकल-संदेश प्रोटोकॉल है और आर्थर मर्लिन का संदेश प्राप्त करने के बाद ही अपने सिक्के उछालता है। इस प्रोटोकॉल को एमए कहा जाता है. अनौपचारिक रूप से, एक औपचारिक भाषा एल 'एमए' में है यदि भाषा में सभी तारों के लिए, एक बहुपद आकार का प्रमाण है कि मर्लिन उच्च संभावना के साथ आर्थर को इस तथ्य को समझाने के लिए भेज सकता है, और भाषा में नहीं सभी तारों के लिए कोई सबूत नहीं है जो उच्च संभावना के साथ आर्थर को आश्वस्त करता है।
ऐसा सबसे सरल प्रोटोकॉल 1-संदेश प्रोटोकॉल है जहां मर्लिन आर्थर को संदेश भेजता है, और फिर आर्थर संभाव्य बहुपद समय गणना चलाकर निर्णय लेता है कि उसे स्वीकार करना है या नहीं। (यह एनपी की सत्यापनकर्ता-आधारित परिभाषा के समान है, मात्र अंतर यह है कि आर्थर को यहां यादृच्छिकता का उपयोग करने की अनुमति है।) मर्लिन के पास इस प्रोटोकॉल में आर्थर के सिक्के उछालने तक पहुंच नहीं है, क्योंकि यह -संदेश प्रोटोकॉल है और आर्थर मर्लिन का संदेश प्राप्त करने के बाद ही अपने सिक्के उछालता है। इस प्रोटोकॉल को एमए कहा जाता है. अनौपचारिक रूप से, औपचारिक भाषा एल 'एमए' में है यदि भाषा में सभी तारों के लिए, बहुपद आकार का प्रमाण है कि मर्लिन उच्च संभावना के साथ आर्थर को इस तथ्य को समझाने के लिए भेज सकता है, और भाषा में नहीं सभी तारों के लिए कोई सबूत नहीं है जो उच्च संभावना के साथ आर्थर को आश्वस्त करता है।


औपचारिक रूप से, जटिलता वर्ग 'एमए' निर्णय समस्याओं का समूह है जिसे आर्थर-मर्लिन प्रोटोकॉल द्वारा बहुपद समय में तय किया जा सकता है जहां मर्लिन का एकमात्र कदम आर्थर द्वारा किसी भी गणना से पहले होता है। दूसरे शब्दों में, एक भाषा L 'MA' में है यदि एक बहुपद-समय नियतात्मक ट्यूरिंग मशीन M और बहुपद p, q मौजूद है जैसे कि प्रत्येक इनपुट स्ट्रिंग x लंबाई n = |x| के लिए,
औपचारिक रूप से, जटिलता वर्ग 'एमए' निर्णय समस्याओं का समूह है जिसे आर्थर-मर्लिन प्रोटोकॉल द्वारा बहुपद समय में तय किया जा सकता है जहां मर्लिन का मात्र कदम आर्थर द्वारा किसी भी गणना से पहले होता है। दूसरे शब्दों में, भाषा L 'MA' में है यदि बहुपद-समय नियतात्मक ट्यूरिंग मशीन M और बहुपद p, q मौजूद है जैसे कि प्रत्येक इनपुट स्ट्रिंग x लंबाई n = |x| के लिए,
*यदि x, L में है, तो <math>\exists z\in\{0,1\}^{q(n)}\,\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(M(x,y,z)=1)\ge2/3,</math>
*यदि x, L में है, तो <math>\exists z\in\{0,1\}^{q(n)}\,\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(M(x,y,z)=1)\ge2/3,</math>
*यदि x, L में नहीं है, तो <math>\forall z\in\{0,1\}^{q(n)}\,\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(M(x,y,z)=0)\ge2/3.</math>
*यदि x, L में नहीं है, तो <math>\forall z\in\{0,1\}^{q(n)}\,\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(M(x,y,z)=0)\ge2/3.</math>
दूसरी शर्त को वैकल्पिक रूप से इस प्रकार लिखा जा सकता है
दूसरी शर्त को वैकल्पिक रूप से इस प्रकार लिखा जा सकता है
*यदि x, L में नहीं है, तो <math>\forall z\in\{0,1\}^{q(n)}\,\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(M(x,y,z)=1)\le1/3.</math>
*यदि x, L में नहीं है, तो <math>\forall z\in\{0,1\}^{q(n)}\,\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(M(x,y,z)=1)\le1/3.</math>
उपरोक्त अनौपचारिक परिभाषा के साथ इसकी तुलना करने के लिए, z मर्लिन का कथित प्रमाण है (जिसका आकार एक बहुपद से घिरा हुआ है) और y वह यादृच्छिक स्ट्रिंग है जिसका उपयोग आर्थर करता है, जो बहुपद से भी घिरा हुआ है।
उपरोक्त अनौपचारिक परिभाषा के साथ इसकी तुलना करने के लिए, z मर्लिन का कथित प्रमाण है (जिसका आकार बहुपद से घिरा हुआ है) और y वह यादृच्छिक स्ट्रिंग है जिसका उपयोग आर्थर करता है, जो बहुपद से भी घिरा हुआ है।


==AM==
==AM==
[[जटिलता वर्ग]] एएम (या एएम [2]) [[निर्णय समस्या]]ओं का समूह है जिसे दो संदेशों के साथ आर्थर-मर्लिन प्रोटोकॉल द्वारा बहुपद समय में तय किया जा सकता है। केवल एक प्रश्न/प्रतिक्रिया युग्म है: आर्थर कुछ यादृच्छिक सिक्के उछालता है और अपने सिक्के उछालने के ''सभी'' परिणामों का परिणाम मर्लिन को भेजता है, मर्लिन एक कथित प्रमाण के साथ उत्तर देता है, और आर्थर निश्चित रूप से प्रमाण की पुष्टि करता है। इस प्रोटोकॉल में, आर्थर को केवल सिक्का उछालने के परिणाम मर्लिन को भेजने की अनुमति है, और अंतिम चरण में आर्थर को केवल अपने पहले से उत्पन्न यादृच्छिक सिक्का फ्लिप और मर्लिन के संदेश का उपयोग करके यह निर्णय लेना होगा कि उसे स्वीकार करना है या अस्वीकार करना है।
[[जटिलता वर्ग]] एएम (या एएम [2]) [[निर्णय समस्या]]ओं का समूह है जिसे दो संदेशों के साथ आर्थर-मर्लिन प्रोटोकॉल द्वारा बहुपद समय में तय किया जा सकता है। केवल प्रश्न/प्रतिक्रिया युग्म है: आर्थर कुछ यादृच्छिक सिक्के उछालता है और अपने सिक्के उछालने के ''सभी'' परिणामों का परिणाम मर्लिन को भेजता है, मर्लिन कथित प्रमाण के साथ उत्तर देता है, और आर्थर निश्चित रूप से प्रमाण की पुष्टि करता है। इस प्रोटोकॉल में, आर्थर को केवल सिक्का उछालने के परिणाम मर्लिन को भेजने की अनुमति है, और अंतिम चरण में आर्थर को केवल अपने पहले से उत्पन्न यादृच्छिक सिक्का फ्लिप और मर्लिन के संदेश का उपयोग करके यह निर्णय लेना होगा कि उसे स्वीकार करना है या अस्वीकार करना है।


दूसरे शब्दों में, एक भाषा ''L'' AM में है यदि बहुपद-समय नियतात्मक ट्यूरिंग मशीन ''M'' और बहुपद ''p'', ''q'' मौजूद है जैसे कि प्रत्येक इनपुट स्ट्रिंग ''x'' लंबाई के लिए ''n'' = |''x''|,
दूसरे शब्दों में, भाषा ''L'' AM में है यदि बहुपद-समय नियतात्मक ट्यूरिंग मशीन ''M'' और बहुपद ''p'', ''q'' मौजूद है जैसे कि प्रत्येक इनपुट स्ट्रिंग ''x'' लंबाई के लिए ''n'' = |''x''|,
*यदि ''x'' ''L'' में है, तो <math>\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(\exists z\in\{0,1\}^{q(n)}\,M(x,y,z)=1)\ge2/3,</math>
*यदि ''x'' ''L'' में है, तो <math>\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(\exists z\in\{0,1\}^{q(n)}\,M(x,y,z)=1)\ge2/3,</math>
*यदि x, L में नहीं है, तो <math>\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(\forall z\in\{0,1\}^{q(n)}\,M(x,y,z)=0)\ge2/3.</math>
*यदि x, L में नहीं है, तो <math>\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(\forall z\in\{0,1\}^{q(n)}\,M(x,y,z)=0)\ge2/3.</math>
यहां दूसरी शर्त को इस प्रकार फिर से लिखा जा सकता है
यहां दूसरी शर्त को इस प्रकार फिर से लिखा जा सकता है
*यदि x, L में नहीं है, तो <math>\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(\exists z\in\{0,1\}^{q(n)}\,M(x,y,z)=1)\le1/3.</math>
*यदि x, L में नहीं है, तो <math>\Pr\nolimits_{y\in\{0,1\}^{p(n)}}(\exists z\in\{0,1\}^{q(n)}\,M(x,y,z)=1)\le1/3.</math>
जैसा कि ऊपर दिया गया है, z मर्लिन का कथित प्रमाण है (जिसका आकार एक बहुपद से घिरा हुआ है) और y वह यादृच्छिक स्ट्रिंग है जिसका उपयोग आर्थर करता है, जो बहुपद से भी घिरा हुआ है।
जैसा कि ऊपर दिया गया है, z मर्लिन का कथित प्रमाण है (जिसका आकार बहुपद से घिरा हुआ है) और y वह यादृच्छिक स्ट्रिंग है जिसका उपयोग आर्थर करता है, जो बहुपद से भी घिरा हुआ है।


जटिलता वर्ग 'एएम[के]' समस्याओं का समूह है जिसे के प्रश्नों और प्रतिक्रियाओं के साथ बहुपद समय में तय किया जा सकता है। जैसा कि ऊपर परिभाषित है 'AM' 'AM[2]' है। 'एएम[3]' की शुरुआत मर्लिन से आर्थर के लिए एक संदेश से होगी, फिर आर्थर से मर्लिन के लिए एक संदेश और फिर अंत में मर्लिन से आर्थर के लिए एक संदेश के साथ। अंतिम संदेश हमेशा मर्लिन की ओर से आर्थर के लिए होना चाहिए, क्योंकि आर्थर के लिए अपना उत्तर तय करने के बाद मर्लिन को संदेश भेजने से कभी मदद नहीं मिलती।
जटिलता वर्ग 'एएम[के]' समस्याओं का समूह है जिसे के प्रश्नों और प्रतिक्रियाओं के साथ बहुपद समय में तय किया जा सकता है। जैसा कि ऊपर परिभाषित है 'AM' 'AM[2]' है। 'एएम[3]' की शुरुआत मर्लिन से आर्थर के लिए संदेश से होगी, फिर आर्थर से मर्लिन के लिए संदेश और फिर अंत में मर्लिन से आर्थर के लिए संदेश के साथ। अंतिम संदेश हमेशा मर्लिन की ओर से आर्थर के लिए होना चाहिए, क्योंकि आर्थर के लिए अपना उत्तर तय करने के बाद मर्लिन को संदेश भेजने से कभी मदद नहीं मिलती।


==गुण==
==गुण==
Line 33: Line 32:
* 'AM' में 'MA' समाहित है, क्योंकि 'AM'[3] में 'MA' शामिल है: आर्थर, मर्लिन का प्रमाणपत्र प्राप्त करने के बाद, आवश्यक संख्या में सिक्के उछाल सकता है, उन्हें मर्लिन को भेज सकता है, और प्रतिक्रिया को अनदेखा कर सकता है।
* 'AM' में 'MA' समाहित है, क्योंकि 'AM'[3] में 'MA' शामिल है: आर्थर, मर्लिन का प्रमाणपत्र प्राप्त करने के बाद, आवश्यक संख्या में सिक्के उछाल सकता है, उन्हें मर्लिन को भेज सकता है, और प्रतिक्रिया को अनदेखा कर सकता है।
* यह खुला है कि क्या 'एएम' और 'एमए' अलग हैं। प्रशंसनीय सर्किट निचली सीमा के तहत ('पी' = 'बीपीपी' के समान), वे दोनों 'एनपी' के बराबर हैं।<ref>{{Cite book |last1=Impagliazzo |first1=Russell |last2=Wigderson |first2=Avi |date=1997-05-04 |title=P = BPP if E requires exponential circuits: derandomizing the XOR lemma |publisher=ACM |pages=220–229 |doi=10.1145/258533.258590 |isbn=0897918886|s2cid=18921599 }}</ref>
* यह खुला है कि क्या 'एएम' और 'एमए' अलग हैं। प्रशंसनीय सर्किट निचली सीमा के तहत ('पी' = 'बीपीपी' के समान), वे दोनों 'एनपी' के बराबर हैं।<ref>{{Cite book |last1=Impagliazzo |first1=Russell |last2=Wigderson |first2=Avi |date=1997-05-04 |title=P = BPP if E requires exponential circuits: derandomizing the XOR lemma |publisher=ACM |pages=220–229 |doi=10.1145/258533.258590 |isbn=0897918886|s2cid=18921599 }}</ref>
* AM क्लास BP⋅NP के समान है जहां BP बाउंडेड-एरर प्रोबेबिलिस्टिक ऑपरेटर को दर्शाता है। भी,<math> \exists \cdot \mathsf{BPP}</math>(ExistsBPP के रूप में भी लिखा जाता है) एमए का एक उपसमूह है। क्या एमए के बराबर है<math> \exists \cdot \mathsf{BPP}</math>एक खुला प्रश्न है.
* AM क्लास BP⋅NP के समान है जहां BP बाउंडेड-एरर प्रोबेबिलिस्टिक ऑपरेटर को दर्शाता है। भी,<math> \exists \cdot \mathsf{BPP}</math>(ExistsBPP के रूप में भी लिखा जाता है) एमए का उपसमूह है। क्या एमए के बराबर है<math> \exists \cdot \mathsf{BPP}</math> खुला प्रश्न है.
* एक निजी सिक्का प्रोटोकॉल में रूपांतरण, जिसमें मर्लिन आर्थर के यादृच्छिक निर्णयों के नतीजे की भविष्यवाणी नहीं कर सकता है, सामान्य मामले में बातचीत के दौर की संख्या अधिकतम 2 तक बढ़ा देगा। तो AM का निजी-सिक्का संस्करण सार्वजनिक-सिक्का संस्करण के बराबर है।
* निजी सिक्का प्रोटोकॉल में रूपांतरण, जिसमें मर्लिन आर्थर के यादृच्छिक निर्णयों के नतीजे की भविष्यवाणी नहीं कर सकता है, सामान्य मामले में बातचीत के दौर की संख्या अधिकतम 2 तक बढ़ा देगा। तो AM का निजी-सिक्का संस्करण सार्वजनिक-सिक्का संस्करण के बराबर है।
* एमए में [[एनपी (जटिलता)]] और [[बीपीपी (जटिलता)]] दोनों शामिल हैं। बीपीपी के लिए यह तत्काल है, क्योंकि आर्थर मर्लिन को आसानी से अनदेखा कर सकता है और समस्या को सीधे हल कर सकता है; एनपी के लिए, मर्लिन को केवल आर्थर को एक प्रमाणपत्र भेजने की आवश्यकता है, जिसे आर्थर बहुपद समय में नियतात्मक रूप से मान्य कर सकता है।
* एमए में [[एनपी (जटिलता)]] और [[बीपीपी (जटिलता)]] दोनों शामिल हैं। बीपीपी के लिए यह तत्काल है, क्योंकि आर्थर मर्लिन को आसानी से अनदेखा कर सकता है और समस्या को सीधे हल कर सकता है; एनपी के लिए, मर्लिन को केवल आर्थर को प्रमाणपत्र भेजने की आवश्यकता है, जिसे आर्थर बहुपद समय में नियतात्मक रूप से मान्य कर सकता है।
* एमए और एएम दोनों [[बहुपद पदानुक्रम]] में समाहित हैं। विशेष रूप से, एमए Σ के प्रतिच्छेदन में निहित है<sub>2</sub><sup>पी</sup>और Π<sub>2</sub><sup>P</sup> और AM Π में निहित है<sub>2</sub><sup>पी</sup>. इससे भी अधिक, MA उपवर्ग S2P (जटिलता)| में समाहित है{{nowrap|S{{su|p=P|b=2}}}},<ref>{{cite web|url=http://www.ccs.neu.edu/home/koods/papers/russell98symmetric.pdf |title=सममित प्रत्यावर्तन BPP को कैप्चर करता है|website=Ccs.neu.edu|access-date=2016-07-26}}</ref> सममित प्रत्यावर्तन को व्यक्त करने वाला एक जटिलता वर्ग। यह सिप्सर-लॉटमैन प्रमेय का सामान्यीकरण है।
* एमए और एएम दोनों [[बहुपद पदानुक्रम]] में समाहित हैं। विशेष रूप से, एमए Σ के प्रतिच्छेदन में निहित है<sub>2</sub><sup>पी</sup>और Π<sub>2</sub><sup>P</sup> और AM Π में निहित है<sub>2</sub><sup>पी</sup>. इससे भी अधिक, MA उपवर्ग S2P (जटिलता)| में समाहित है{{nowrap|S{{su|p=P|b=2}}}},<ref>{{cite web|url=http://www.ccs.neu.edu/home/koods/papers/russell98symmetric.pdf |title=सममित प्रत्यावर्तन BPP को कैप्चर करता है|website=Ccs.neu.edu|access-date=2016-07-26}}</ref> सममित प्रत्यावर्तन को व्यक्त करने वाला जटिलता वर्ग। यह सिप्सर-लॉटमैन प्रमेय का सामान्यीकरण है।
* एएम एनपी/पॉली में समाहित है, जो बहुपद आकार [[सलाह (जटिलता)]] के साथ गैर-नियतात्मक बहुपद समय में गणना योग्य निर्णय समस्याओं का वर्ग है। प्रमाण P/poly#Adleman's theorem|Adleman's theorem का एक रूपांतर है।
* एएम एनपी/पॉली में समाहित है, जो बहुपद आकार [[सलाह (जटिलता)]] के साथ गैर-नियतात्मक बहुपद समय में गणना योग्य निर्णय समस्याओं का वर्ग है। प्रमाण P/poly#Adleman's theorem|Adleman's theorem का रूपांतर है।
* एमए [[पीपी (जटिलता)]] में निहित है; यह परिणाम वीरशैचिन के कारण है।<ref>{{Cite book|last=Vereschchagin|first=N.K. |pages=138–143 |doi=10.1109/sct.1992.215389|isbn=081862955X|year=1992|chapter=On the power of PP |title=&#91;1992&#93; Proceedings of the Seventh Annual Structure in Complexity Theory Conference |s2cid=195705029 }}</ref>
* एमए [[पीपी (जटिलता)]] में निहित है; यह परिणाम वीरशैचिन के कारण है।<ref>{{Cite book|last=Vereschchagin|first=N.K. |pages=138–143 |doi=10.1109/sct.1992.215389|isbn=081862955X|year=1992|chapter=On the power of PP |title=&#91;1992&#93; Proceedings of the Seventh Annual Structure in Complexity Theory Conference |s2cid=195705029 }}</ref>
* एमए इसके क्वांटम संस्करण, [[क्यूएमए]] में निहित है।<ref>{{Cite journal |last1=Vidick |first1=Thomas |last2=Watrous |first2=John |date=2016 |title=क्वांटम प्रमाण|journal=Foundations and Trends in Theoretical Computer Science |volume=11 |issue=1–2 |pages=1–215 |doi=10.1561/0400000068 |issn=1551-305X|arxiv=1610.01664 |s2cid=54255188 }}</ref>
* एमए इसके क्वांटम संस्करण, [[क्यूएमए]] में निहित है।<ref>{{Cite journal |last1=Vidick |first1=Thomas |last2=Watrous |first2=John |date=2016 |title=क्वांटम प्रमाण|journal=Foundations and Trends in Theoretical Computer Science |volume=11 |issue=1–2 |pages=1–215 |doi=10.1561/0400000068 |issn=1551-305X|arxiv=1610.01664 |s2cid=54255188 }}</ref>
* एएम में यह निर्णय लेने की [[ग्राफ समरूपता समस्या]] शामिल है कि क्या दो ग्राफ समरूपी नहीं हैं। निजी सिक्कों का उपयोग करने वाला प्रोटोकॉल निम्नलिखित है और इसे सार्वजनिक सिक्का प्रोटोकॉल में बदला जा सकता है। दो ग्राफ ''जी'' और ''एच'' दिए गए हैं, आर्थर यादृच्छिक रूप से उनमें से एक को चुनता है, और इसके शीर्षों का एक यादृच्छिक क्रमचय चुनता है, मर्लिन को क्रमबद्ध ग्राफ ''आई'' प्रस्तुत करता है। मर्लिन को जवाब देना होगा कि क्या ''I'' ''G'' या ''H'' से बना है। यदि ग्राफ़ गैर-समरूपी हैं, तो मर्लिन पूर्ण निश्चितता के साथ उत्तर देने में सक्षम होंगे (यह जांच कर कि क्या ''I'' ''G'' के समरूपी है)। हालाँकि, यदि ग्राफ समरूपी हैं, तो यह संभव है कि ''जी'' या ''एच'' का उपयोग ''आई'' बनाने के लिए किया गया था, और समान रूप से संभव है। इस मामले में, मर्लिन के पास उन्हें अलग बताने का कोई तरीका नहीं है और वह आर्थर को अधिकतम 1/2 संभावना के साथ मना सकता है, और इसे दोहराव द्वारा 1/4 तक बढ़ाया जा सकता है। यह वास्तव में [[शून्य ज्ञान प्रमाण]] है।
* एएम में यह निर्णय लेने की [[ग्राफ समरूपता समस्या]] शामिल है कि क्या दो ग्राफ समरूपी नहीं हैं। निजी सिक्कों का उपयोग करने वाला प्रोटोकॉल निम्नलिखित है और इसे सार्वजनिक सिक्का प्रोटोकॉल में बदला जा सकता है। दो ग्राफ ''जी'' और ''एच'' दिए गए हैं, आर्थर यादृच्छिक रूप से उनमें से को चुनता है, और इसके शीर्षों का यादृच्छिक क्रमचय चुनता है, मर्लिन को क्रमबद्ध ग्राफ ''आई'' प्रस्तुत करता है। मर्लिन को जवाब देना होगा कि क्या ''I'' ''G'' या ''H'' से बना है। यदि ग्राफ़ गैर-समरूपी हैं, तो मर्लिन पूर्ण निश्चितता के साथ उत्तर देने में सक्षम होंगे (यह जांच कर कि क्या ''I'' ''G'' के समरूपी है)। हालाँकि, यदि ग्राफ समरूपी हैं, तो यह संभव है कि ''जी'' या ''एच'' का उपयोग ''आई'' बनाने के लिए किया गया था, और समान रूप से संभव है। इस मामले में, मर्लिन के पास उन्हें अलग बताने का कोई तरीका नहीं है और वह आर्थर को अधिकतम 1/2 संभावना के साथ मना सकता है, और इसे दोहराव द्वारा 1/4 तक बढ़ाया जा सकता है। यह वास्तव में [[शून्य ज्ञान प्रमाण]] है।
* यदि AM में coNP है तो बहुपद पदानुक्रम = AM। यह इस बात का प्रमाण है कि ग्राफ समरूपता एनपी-पूर्ण होने की संभावना नहीं है, क्योंकि इसका तात्पर्य बहुपद पदानुक्रम के पतन से है।
* यदि AM में coNP है तो बहुपद पदानुक्रम = AM। यह इस बात का प्रमाण है कि ग्राफ समरूपता एनपी-पूर्ण होने की संभावना नहीं है, क्योंकि इसका तात्पर्य बहुपद पदानुक्रम के पतन से है।
* [[विस्तारित रीमैन परिकल्पना]] को मानते हुए, यह ज्ञात है कि किसी भी ''डी'' समस्या के लिए बहुभिन्नरूपी बहुपदों का एक संग्रह दिया गया है <math>f_i</math> प्रत्येक पूर्णांक गुणांक और अधिकतम d डिग्री के साथ, क्या उनके पास एक सामान्य सम्मिश्र शून्य है? 'AM' में है.<ref>{{cite web|url=http://people.csail.mit.edu/madhu/FT98/course.html |title=Course: Algebra and Computation |website=People.csail.mit.edu |access-date=2016-07-26}}</ref>
* [[विस्तारित रीमैन परिकल्पना]] को मानते हुए, यह ज्ञात है कि किसी भी ''डी'' समस्या के लिए बहुभिन्नरूपी बहुपदों का संग्रह दिया गया है <math>f_i</math> प्रत्येक पूर्णांक गुणांक और अधिकतम d डिग्री के साथ, क्या उनके पास सामान्य सम्मिश्र शून्य है? 'AM' में है.<ref>{{cite web|url=http://people.csail.mit.edu/madhu/FT98/course.html |title=Course: Algebra and Computation |website=People.csail.mit.edu |access-date=2016-07-26}}</ref>


 
== संदर्भ ==
==संदर्भ==
{{Reflist}}
{{Reflist}}



Revision as of 23:44, 4 August 2023

कम्प्यूटेशनल जटिलता सिद्धांत में, आर्थर-मर्लिन प्रोटोकॉल, द्वारा प्रस्तुत किया गया Babai (1985), इंटरैक्टिव प्रमाण प्रणाली है जिसमें सत्यापनकर्ता द्वारा उछाले गए सिक्के सार्वजनिक होने के लिए बाध्य हैं (अर्थात नीतिकर्ता को भी इसकी जानकारी होती है)। Goldwasser & Sipser (1986) साबित हुआ कि सभी (औपचारिक) औपचारिक भाषा में निजी सिक्कों के साथ मनमानी लंबाई के इंटरैक्टिव प्रमाण होते हैं, सार्वजनिक सिक्कों के साथ भी इंटरैक्टिव प्रमाण होते हैं।

प्रोटोकॉल में क्रमशः आर्थर और मर्लिन नामक दो प्रतिभागियों को देखते हुए, मूल धारणा यह है कि आर्थर मानक कंप्यूटर (या सत्यापनकर्ता) है जो यादृच्छिक संख्या पीढ़ी से सुसज्जित है, जबकि मर्लिन प्रभावी रूप से अनंत कम्प्यूटेशनल शक्ति वाला दैवज्ञ (कंप्यूटर विज्ञान) है (जिसे प्रोवर के रूप में भी जाना जाता है)। हालाँकि, मर्लिन आवश्यक रूप से ईमानदार नहीं है, इसलिए आर्थर को आर्थर के प्रश्नों के उत्तर में मर्लिन द्वारा प्रदान की गई जानकारी का विश्लेषण करना चाहिए और समस्या का निर्णय स्वयं करना चाहिए। इस प्रोटोकॉल द्वारा समस्या को हल करने योग्य माना जाता है यदि जब भी उत्तर हाँ हो, तो मर्लिन के पास प्रतिक्रियाओं की कुछ श्रृंखला होती है जो आर्थर को कम से कम स्वीकार करने के लिए प्रेरित करेगी 23 समय का, और यदि जब भी उत्तर नहीं है, तो आर्थर कभी भी इससे अधिक स्वीकार नहीं करेगा 13 समय का। इस प्रकार, आर्थर संभाव्य बहुपद-समय सत्यापनकर्ता के रूप में कार्य करता है, यह मानते हुए कि उसे अपने निर्णय और प्रश्न पूछने के लिए बहुपद समय आवंटित किया गया है।

एमए

ऐसा सबसे सरल प्रोटोकॉल 1-संदेश प्रोटोकॉल है जहां मर्लिन आर्थर को संदेश भेजता है, और फिर आर्थर संभाव्य बहुपद समय गणना चलाकर निर्णय लेता है कि उसे स्वीकार करना है या नहीं। (यह एनपी की सत्यापनकर्ता-आधारित परिभाषा के समान है, मात्र अंतर यह है कि आर्थर को यहां यादृच्छिकता का उपयोग करने की अनुमति है।) मर्लिन के पास इस प्रोटोकॉल में आर्थर के सिक्के उछालने तक पहुंच नहीं है, क्योंकि यह ल-संदेश प्रोटोकॉल है और आर्थर मर्लिन का संदेश प्राप्त करने के बाद ही अपने सिक्के उछालता है। इस प्रोटोकॉल को एमए कहा जाता है. अनौपचारिक रूप से, औपचारिक भाषा एल 'एमए' में है यदि भाषा में सभी तारों के लिए, बहुपद आकार का प्रमाण है कि मर्लिन उच्च संभावना के साथ आर्थर को इस तथ्य को समझाने के लिए भेज सकता है, और भाषा में नहीं सभी तारों के लिए कोई सबूत नहीं है जो उच्च संभावना के साथ आर्थर को आश्वस्त करता है।

औपचारिक रूप से, जटिलता वर्ग 'एमए' निर्णय समस्याओं का समूह है जिसे आर्थर-मर्लिन प्रोटोकॉल द्वारा बहुपद समय में तय किया जा सकता है जहां मर्लिन का मात्र कदम आर्थर द्वारा किसी भी गणना से पहले होता है। दूसरे शब्दों में, भाषा L 'MA' में है यदि बहुपद-समय नियतात्मक ट्यूरिंग मशीन M और बहुपद p, q मौजूद है जैसे कि प्रत्येक इनपुट स्ट्रिंग x लंबाई n = |x| के लिए,

  • यदि x, L में है, तो
  • यदि x, L में नहीं है, तो

दूसरी शर्त को वैकल्पिक रूप से इस प्रकार लिखा जा सकता है

  • यदि x, L में नहीं है, तो

उपरोक्त अनौपचारिक परिभाषा के साथ इसकी तुलना करने के लिए, z मर्लिन का कथित प्रमाण है (जिसका आकार बहुपद से घिरा हुआ है) और y वह यादृच्छिक स्ट्रिंग है जिसका उपयोग आर्थर करता है, जो बहुपद से भी घिरा हुआ है।

AM

जटिलता वर्ग एएम (या एएम [2]) निर्णय समस्याओं का समूह है जिसे दो संदेशों के साथ आर्थर-मर्लिन प्रोटोकॉल द्वारा बहुपद समय में तय किया जा सकता है। केवल प्रश्न/प्रतिक्रिया युग्म है: आर्थर कुछ यादृच्छिक सिक्के उछालता है और अपने सिक्के उछालने के सभी परिणामों का परिणाम मर्लिन को भेजता है, मर्लिन कथित प्रमाण के साथ उत्तर देता है, और आर्थर निश्चित रूप से प्रमाण की पुष्टि करता है। इस प्रोटोकॉल में, आर्थर को केवल सिक्का उछालने के परिणाम मर्लिन को भेजने की अनुमति है, और अंतिम चरण में आर्थर को केवल अपने पहले से उत्पन्न यादृच्छिक सिक्का फ्लिप और मर्लिन के संदेश का उपयोग करके यह निर्णय लेना होगा कि उसे स्वीकार करना है या अस्वीकार करना है।

दूसरे शब्दों में, भाषा L AM में है यदि बहुपद-समय नियतात्मक ट्यूरिंग मशीन M और बहुपद p, q मौजूद है जैसे कि प्रत्येक इनपुट स्ट्रिंग x लंबाई के लिए n = |x|,

  • यदि x L में है, तो
  • यदि x, L में नहीं है, तो

यहां दूसरी शर्त को इस प्रकार फिर से लिखा जा सकता है

  • यदि x, L में नहीं है, तो

जैसा कि ऊपर दिया गया है, z मर्लिन का कथित प्रमाण है (जिसका आकार बहुपद से घिरा हुआ है) और y वह यादृच्छिक स्ट्रिंग है जिसका उपयोग आर्थर करता है, जो बहुपद से भी घिरा हुआ है।

जटिलता वर्ग 'एएम[के]' समस्याओं का समूह है जिसे के प्रश्नों और प्रतिक्रियाओं के साथ बहुपद समय में तय किया जा सकता है। जैसा कि ऊपर परिभाषित है 'AM' 'AM[2]' है। 'एएम[3]' की शुरुआत मर्लिन से आर्थर के लिए संदेश से होगी, फिर आर्थर से मर्लिन के लिए संदेश और फिर अंत में मर्लिन से आर्थर के लिए संदेश के साथ। अंतिम संदेश हमेशा मर्लिन की ओर से आर्थर के लिए होना चाहिए, क्योंकि आर्थर के लिए अपना उत्तर तय करने के बाद मर्लिन को संदेश भेजने से कभी मदद नहीं मिलती।

गुण

A diagram showcasing the relationships of MA and AM with other complexity classes described in the article.* एमए और एएम दोनों अपरिवर्तित रहते हैं यदि उनकी परिभाषाओं को पूर्ण पूर्णता की आवश्यकता के लिए बदल दिया जाता है, जिसका अर्थ है कि आर्थर संभावना 1 (2/3 के बजाय) को स्वीकार करता है जब x भाषा में होता है।[1]

  • किसी भी स्थिरांक k ≥ 2 के लिए, वर्ग 'AM[k]' 'AM[2]' के बराबर है। यदि k को इनपुट आकार से बहुपद रूप से संबंधित किया जा सकता है, तो वर्ग 'AM'[poly(n)] वर्ग, 'IP (जटिलता)' के बराबर है, जिसे 'PSPACE' के बराबर माना जाता है और व्यापक रूप से वर्ग 'AM[2]' से अधिक मजबूत माना जाता है।
  • 'AM' में 'MA' समाहित है, क्योंकि 'AM'[3] में 'MA' शामिल है: आर्थर, मर्लिन का प्रमाणपत्र प्राप्त करने के बाद, आवश्यक संख्या में सिक्के उछाल सकता है, उन्हें मर्लिन को भेज सकता है, और प्रतिक्रिया को अनदेखा कर सकता है।
  • यह खुला है कि क्या 'एएम' और 'एमए' अलग हैं। प्रशंसनीय सर्किट निचली सीमा के तहत ('पी' = 'बीपीपी' के समान), वे दोनों 'एनपी' के बराबर हैं।[2]
  • AM क्लास BP⋅NP के समान है जहां BP बाउंडेड-एरर प्रोबेबिलिस्टिक ऑपरेटर को दर्शाता है। भी,(ExistsBPP के रूप में भी लिखा जाता है) एमए का उपसमूह है। क्या एमए के बराबर है खुला प्रश्न है.
  • निजी सिक्का प्रोटोकॉल में रूपांतरण, जिसमें मर्लिन आर्थर के यादृच्छिक निर्णयों के नतीजे की भविष्यवाणी नहीं कर सकता है, सामान्य मामले में बातचीत के दौर की संख्या अधिकतम 2 तक बढ़ा देगा। तो AM का निजी-सिक्का संस्करण सार्वजनिक-सिक्का संस्करण के बराबर है।
  • एमए में एनपी (जटिलता) और बीपीपी (जटिलता) दोनों शामिल हैं। बीपीपी के लिए यह तत्काल है, क्योंकि आर्थर मर्लिन को आसानी से अनदेखा कर सकता है और समस्या को सीधे हल कर सकता है; एनपी के लिए, मर्लिन को केवल आर्थर को प्रमाणपत्र भेजने की आवश्यकता है, जिसे आर्थर बहुपद समय में नियतात्मक रूप से मान्य कर सकता है।
  • एमए और एएम दोनों बहुपद पदानुक्रम में समाहित हैं। विशेष रूप से, एमए Σ के प्रतिच्छेदन में निहित है2पीऔर Π2P और AM Π में निहित है2पी. इससे भी अधिक, MA उपवर्ग S2P (जटिलता)| में समाहित हैSP
    2
    ,[3] सममित प्रत्यावर्तन को व्यक्त करने वाला जटिलता वर्ग। यह सिप्सर-लॉटमैन प्रमेय का सामान्यीकरण है।
  • एएम एनपी/पॉली में समाहित है, जो बहुपद आकार सलाह (जटिलता) के साथ गैर-नियतात्मक बहुपद समय में गणना योग्य निर्णय समस्याओं का वर्ग है। प्रमाण P/poly#Adleman's theorem|Adleman's theorem का रूपांतर है।
  • एमए पीपी (जटिलता) में निहित है; यह परिणाम वीरशैचिन के कारण है।[4]
  • एमए इसके क्वांटम संस्करण, क्यूएमए में निहित है।[5]
  • एएम में यह निर्णय लेने की ग्राफ समरूपता समस्या शामिल है कि क्या दो ग्राफ समरूपी नहीं हैं। निजी सिक्कों का उपयोग करने वाला प्रोटोकॉल निम्नलिखित है और इसे सार्वजनिक सिक्का प्रोटोकॉल में बदला जा सकता है। दो ग्राफ जी और एच दिए गए हैं, आर्थर यादृच्छिक रूप से उनमें से को चुनता है, और इसके शीर्षों का यादृच्छिक क्रमचय चुनता है, मर्लिन को क्रमबद्ध ग्राफ आई प्रस्तुत करता है। मर्लिन को जवाब देना होगा कि क्या I G या H से बना है। यदि ग्राफ़ गैर-समरूपी हैं, तो मर्लिन पूर्ण निश्चितता के साथ उत्तर देने में सक्षम होंगे (यह जांच कर कि क्या I G के समरूपी है)। हालाँकि, यदि ग्राफ समरूपी हैं, तो यह संभव है कि जी या एच का उपयोग आई बनाने के लिए किया गया था, और समान रूप से संभव है। इस मामले में, मर्लिन के पास उन्हें अलग बताने का कोई तरीका नहीं है और वह आर्थर को अधिकतम 1/2 संभावना के साथ मना सकता है, और इसे दोहराव द्वारा 1/4 तक बढ़ाया जा सकता है। यह वास्तव में शून्य ज्ञान प्रमाण है।
  • यदि AM में coNP है तो बहुपद पदानुक्रम = AM। यह इस बात का प्रमाण है कि ग्राफ समरूपता एनपी-पूर्ण होने की संभावना नहीं है, क्योंकि इसका तात्पर्य बहुपद पदानुक्रम के पतन से है।
  • विस्तारित रीमैन परिकल्पना को मानते हुए, यह ज्ञात है कि किसी भी डी समस्या के लिए बहुभिन्नरूपी बहुपदों का संग्रह दिया गया है प्रत्येक पूर्णांक गुणांक और अधिकतम d डिग्री के साथ, क्या उनके पास सामान्य सम्मिश्र शून्य है? 'AM' में है.[6]

संदर्भ

  1. For a proof, see Rafael Pass and Jean-Baptiste Jeannin (March 24, 2009). "Lecture 17: Arthur-Merlin games, Zero-knowledge proofs" (PDF). Retrieved June 23, 2010.
  2. Impagliazzo, Russell; Wigderson, Avi (1997-05-04). P = BPP if E requires exponential circuits: derandomizing the XOR lemma. ACM. pp. 220–229. doi:10.1145/258533.258590. ISBN 0897918886. S2CID 18921599.
  3. "सममित प्रत्यावर्तन BPP को कैप्चर करता है" (PDF). Ccs.neu.edu. Retrieved 2016-07-26.
  4. Vereschchagin, N.K. (1992). "On the power of PP". [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference. pp. 138–143. doi:10.1109/sct.1992.215389. ISBN 081862955X. S2CID 195705029.
  5. Vidick, Thomas; Watrous, John (2016). "क्वांटम प्रमाण". Foundations and Trends in Theoretical Computer Science. 11 (1–2): 1–215. arXiv:1610.01664. doi:10.1561/0400000068. ISSN 1551-305X. S2CID 54255188.
  6. "Course: Algebra and Computation". People.csail.mit.edu. Retrieved 2016-07-26.


ग्रन्थसूची


बाहरी संबंध