ज्यामितीय मात्राकरण
गणितीय भौतिकी में, ज्यामितीय परिमाणीकरण एक शास्त्रीय सिद्धांत के अनुरूप क्वांटम यांत्रिकी को परिभाषित करने के लिए एक गणितीय दृष्टिकोण है। यह क्वांटिज़ेशन (भौतिकी) को पूरा करने का प्रयास करता है, जिसके लिए सामान्य तौर पर कोई सटीक नुस्खा नहीं है, इस तरह शास्त्रीय सिद्धांत और क्वांटम सिद्धांत के बीच कुछ समानताएं प्रकट होती हैं। उदाहरण के लिए, क्वांटम यांत्रिकी के हाइजेनबर्ग चित्र में हाइजेनबर्ग समीकरण और शास्त्रीय भौतिकी में हैमिल्टन समीकरण के बीच समानता का निर्माण किया जाना चाहिए।
उत्पत्ति
1927 में हरमन वेइल द्वारा प्रस्तावित, प्राकृतिक परिमाणीकरण के शुरुआती प्रयासों में से एक वेइल परिमाणीकरण था। यहां, एक क्वांटम-मैकेनिकल ऑब्जर्वेबल (हिल्बर्ट स्पेस पर एक स्व-आसन्न ऑपरेटर) को एक वास्तविक-मूल्यवान फ़ंक्शन के साथ जोड़ने का प्रयास किया गया है। शास्त्रीय चरण अंतरिक्ष पर। इस चरण के स्थान में स्थिति और गति को हाइजेनबर्ग समूह के जनरेटर के लिए मैप किया गया है, और हिल्बर्ट अंतरिक्ष हाइजेनबर्ग समूह के एक समूह प्रतिनिधित्व के रूप में प्रकट होता है। 1946 में, हिलब्रांड जे. ग्रोएनवॉल्ड|एच. जे ग्रोएनवॉल्ड ने इस तरह के अवलोकनों की एक जोड़ी के उत्पाद पर विचार किया और पूछा कि शास्त्रीय चरण अंतरिक्ष पर संबंधित कार्य क्या होगा।[1] इसने उन्हें कार्यों की एक जोड़ी के मोयल उत्पाद | फेज-स्पेस स्टार-उत्पाद की खोज करने के लिए प्रेरित किया।
1970 के दशक में बर्ट्रम कॉन्स्टेंट और जीन मैरी सोरियाउ द्वारा ज्यामितीय परिमाणीकरण का आधुनिक सिद्धांत विकसित किया गया था। सिद्धांत की प्रेरणाओं में से एक प्रतिनिधित्व सिद्धांत में किरिलोव की कक्षा पद्धति को समझना और सामान्य बनाना था।
विरूपण परिमाणीकरण
अधिक आम तौर पर, यह तकनीक विकृति परिमाणीकरण की ओर ले जाती है, जहां ★- उत्पाद को सिंपलेक्टिक मैनिफोल्ड या जहर कई गुना पर कार्यों के बीजगणित के विरूपण के रूप में लिया जाता है। हालांकि, एक प्राकृतिक परिमाणीकरण योजना (एक मज़ेदार) के रूप में, वेइल का नक्शा संतोषजनक नहीं है। उदाहरण के लिए, क्लासिकल एंगुलर-मोमेंटम-स्क्वायर का वेइल मैप केवल क्वांटम एंगुलर मोमेंटम स्क्वेयर ऑपरेटर नहीं है, बल्कि इसमें एक स्थिर शब्द 3ħ शामिल है2/2. (यह अतिरिक्त शब्द वास्तव में भौतिक रूप से महत्वपूर्ण है, क्योंकि यह हाइड्रोजन परमाणु में भू-अवस्था बोह्र कक्षा के अविच्छिन्न कोणीय संवेग के लिए जिम्मेदार है।[2]) केवल प्रतिनिधित्व परिवर्तन के रूप में, हालांकि, वेइल का नक्शा परंपरागत क्वांटम यांत्रिकी के वैकल्पिक चरण-स्थान फॉर्मूलेशन को रेखांकित करता है।
ज्यामितीय परिमाणीकरण
ज्यामितीय परिमाणीकरण प्रक्रिया निम्नलिखित तीन चरणों में आती है: पूर्व-परिमाणीकरण, ध्रुवीकरण और मेटाप्लेक्टिक सुधार। पूर्व-परिमाणीकरण एक प्राकृतिक हिल्बर्ट अंतरिक्ष का निर्माण करता है, साथ में वेधशालाओं के लिए एक परिमाणीकरण प्रक्रिया के साथ जो क्लासिकल पक्ष पर पोइसन कोष्ठक को क्वांटम पक्ष पर कम्यूटेटर में बदल देता है। फिर भी, प्रीक्वांटम हिल्बर्ट स्पेस को आमतौर पर बहुत बड़ा समझा जाता है।[3] विचार यह है कि तब किसी को 2एन-आयामी चरण स्थान पर एन चर के पॉइसन-कम्यूटिंग सेट का चयन करना चाहिए और उन कार्यों (या, अधिक ठीक से, अनुभागों) पर विचार करना चाहिए जो केवल इन एन चर पर निर्भर करते हैं। n चर या तो वास्तविक-मूल्यवान हो सकते हैं, जिसके परिणामस्वरूप एक स्थिति-शैली हिल्बर्ट स्थान, या जटिल विश्लेषणात्मक, सेगल-बार्गमैन अंतरिक्ष की तरह कुछ का उत्पादन होता है।[lower-alpha 1] एक ध्रुवीकरण एन पॉइसन-कम्यूटिंग कार्यों की ऐसी पसंद का एक समन्वय-स्वतंत्र विवरण है। मेटाप्लेक्टिक सुधार (जिसे अर्ध-रूप सुधार के रूप में भी जाना जाता है) उपरोक्त प्रक्रिया का एक तकनीकी संशोधन है जो वास्तविक ध्रुवीकरण के मामले में जरूरी है और अक्सर जटिल ध्रुवीकरण के लिए सुविधाजनक होता है।
पूर्व परिमाणीकरण
कल्पना करना एक सिंपलेक्टिक मैनिफोल्ड विथ सिंप्लेक्टिक फॉर्म . मान लीजिए कि पहले सटीक है, जिसका अर्थ है कि विश्व स्तर पर परिभाषित सहानुभूतिपूर्ण क्षमता है साथ . हम स्क्वायर-इंटीग्रेबल फ़ंक्शंस के प्रीक्वांटम हिल्बर्ट स्पेस पर विचार कर सकते हैं (लिउविल वॉल्यूम माप के संबंध में)। प्रत्येक सुचारू कार्य के लिए पर , हम कोस्टेंट-सोरियाउ प्रीक्वांटम ऑपरेटर को परिभाषित कर सकते हैं
- .
कहाँ हैमिल्टनियन वेक्टर क्षेत्र से जुड़ा है .
अधिक आम तौर पर, मान लीजिए संपत्ति है कि का अभिन्न अंग है किसी भी बंद सतह पर एक पूर्णांक होता है। फिर हम एक लाइन बंडल बना सकते हैं सम्बन्ध से जिसका वक्रता 2-रूप है . उस स्थिति में, प्रीक्वांटम हिल्बर्ट स्पेस वर्ग-पूर्णांक वर्गों का स्थान है , और हम के लिए सूत्र को प्रतिस्थापित करते हैं ऊपर के साथ
- ,
साथ संपर्क। प्रीक्वांटम ऑपरेटर संतुष्ट हैं
सभी सुचारू कार्यों के लिए और .[4] पूर्ववर्ती हिल्बर्ट अंतरिक्ष और ऑपरेटरों का निर्माण पूर्व परिमाणीकरण के रूप में जाना जाता है।
ध्रुवीकरण
ज्यामितीय परिमाणीकरण की प्रक्रिया में अगला चरण ध्रुवीकरण का चुनाव है। प्रत्येक बिंदु पर एक ध्रुवीकरण एक विकल्प है के जटिल स्पर्शरेखा स्थान का लैग्रैंगियन उप-स्थान . उप-स्थानों को एक अभिन्न वितरण बनाना चाहिए, जिसका अर्थ है कि प्रत्येक बिंदु पर उप-स्थान में पड़े दो सदिश क्षेत्रों के कम्यूटेटर को भी प्रत्येक बिंदु पर उप-स्थान में स्थित होना चाहिए। क्वांटम (प्रीक्वांटम के विपरीत) हिल्बर्ट अंतरिक्ष के वर्गों का स्थान है जो ध्रुवीकरण की दिशा में सहसंयोजक रूप से स्थिर हैं।[5][lower-alpha 2] विचार यह है कि क्वांटम हिल्बर्ट अंतरिक्ष में, अनुभाग केवल के कार्य होने चाहिए पर चर -आयामी शास्त्रीय चरण स्थान।
अगर एक ऐसा कार्य है जिसके लिए संबंधित हैमिल्टनियन प्रवाह ध्रुवीकरण को संरक्षित करता है क्वांटम हिल्बर्ट स्पेस को संरक्षित करेगा।[6] धारणा है कि का प्रवाह संरक्षित ध्रुवीकरण एक मजबूत है। आम तौर पर बहुत सारे कार्य इस धारणा को पूरा नहीं करेंगे।
हाफ-फॉर्म करेक्शन
अर्ध-रूप सुधार - जिसे मेटाप्लेक्टिक सुधार के रूप में भी जाना जाता है - उपरोक्त प्रक्रिया के लिए एक तकनीकी संशोधन है जो गैर-शून्य क्वांटम हिल्बर्ट स्थान प्राप्त करने के लिए वास्तविक ध्रुवीकरण के मामले में आवश्यक है; यह अक्सर जटिल मामले में भी उपयोगी होता है। रेखा बंडल के टेंसर उत्पाद द्वारा प्रतिस्थापित किया जाता है के विहित बंडल के वर्गमूल के साथ . लंबवत ध्रुवीकरण के मामले में, उदाहरण के लिए, कार्यों पर विचार करने के बजाय का जो स्वतंत्र हैं , एक रूप की वस्तुओं पर विचार करता है . के लिए सूत्र इसके बाद एक अतिरिक्त लाई डेरिवेटिव शब्द द्वारा पूरक होना चाहिए।[7] समतल पर एक जटिल ध्रुवीकरण के मामले में, उदाहरण के लिए, आधा-रूप सुधार हार्मोनिक ऑसिलेटर के परिमाणीकरण को ऊर्जा के लिए मानक क्वांटम यांत्रिक सूत्र को पुन: पेश करने की अनुमति देता है, , साथआधे रूपों के सौजन्य से।[8]
ज़हर कई गुना
पॉइसन मैनिफोल्ड्स और सिम्प्लेक्टिक फोलिएशन का ज्यामितीय परिमाणीकरण भी विकसित किया गया है। उदाहरण के लिए, यह अभिन्न प्रणाली और सुपरइंटेग्रेबल हैमिल्टनियन सिस्टम हैमिल्टनियन सिस्टम और गैर-स्वायत्त यांत्रिकी का मामला है।
उदाहरण
इस मामले में कि सहानुभूति कई गुना गोलाकार है | 2-क्षेत्र, इसे सह-संयुक्त कक्षा के रूप में महसूस किया जा सकता है . यह मानते हुए कि गोले का क्षेत्रफल का एक पूर्णांक गुणक है , हम ज्यामितीय परिमाणीकरण कर सकते हैं और परिणामी हिल्बर्ट अंतरिक्ष एसयू (2) का एक अलघुकरणीय प्रतिनिधित्व करता है। इस मामले में कि गोले का क्षेत्रफल है , हम द्वि-आयामी स्पिन-½ प्रतिनिधित्व प्राप्त करते हैं।
यह भी देखें
- अर्ध-रूप
- Lagrangian पत्ते
- किरिलोव कक्षा विधि
- परिमाणीकरण कमी के साथ शुरू होता है
टिप्पणियाँ
उद्धरण
स्रोत
- Bates, S; Weinstein, A. (1996). परिमाणीकरण की ज्यामिति पर व्याख्यान. American Mathematical Society. ISBN 978-082180798-9.
- Dahl, J.; Schleich, W. (2002). "रेडियल और कोणीय गतिज ऊर्जा की अवधारणा". Physical Review A. 65 (2). arXiv:quant-ph/0110134. Bibcode:2002PhRvA..65b2109D. doi:10.1103/PhysRevA.65.022109.
- Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (2005). क्वांटम यांत्रिकी में ज्यामितीय और बीजगणितीय सामयिक तरीके. World Scientific. ISBN 981-256-129-3.
- Groenewold, H. J. (1946). "प्रारंभिक क्वांटम यांत्रिकी के सिद्धांतों पर". Physica. 12 (7): 405–460. Bibcode:1946Phy....12..405G. doi:10.1016/S0031-8914(46)80059-4.
- Hall, B.C. (2013). गणितज्ञों के लिए क्वांटम थ्योरी. Graduate Texts in Mathematics. Vol. 267. Springer. ISBN 978-146147115-8.
- Kong, K. (2006). माइक्रो से मैक्रो क्वांटम सिस्टम तक, (सुपरसेलेक्शन नियमों और इसके अनुप्रयोगों के साथ एक एकीकृत औपचारिकता). World Scientific. ISBN 978-1-86094-625-7.
- Śniatycki, J. (1980). ज्यामितीय परिमाणीकरण और क्वांटम यांत्रिकी. Springer. ISBN 0-387-90469-7.
- Vaisman, I. (1991). पोइसन मैनिफोल्ड्स की ज्यामिति पर व्याख्यान. Birkhauser. ISBN 978-3-7643-5016-1.
- Woodhouse, N.M.J. (1991). ज्यामितीय परिमाणीकरण. Clarendon Press. ISBN 0-19-853673-9.
बाहरी संबंध
- William Ritter's review of Geometric Quantization presents a general framework for all problems in physics and fits geometric quantization into this framework arXiv:math-ph/0208008
- John Baez's review of Geometric Quantization, by John Baez is short and pedagogical
- Matthias Blau's primer on Geometric Quantization, one of the very few good primers (ps format only)
- A. Echeverria-Enriquez, M. Munoz-Lecanda, N. Roman-Roy, Mathematical foundations of geometric quantization, arXiv:math-ph/9904008.
- G. Sardanashvily, Geometric quantization of symplectic foliations, arXiv:math/0110196.