एपिटाक्सी

From Vigyanwiki
Revision as of 18:07, 10 February 2023 by alpha>Pranjalikushwaha (Edit text)
Crystallization
Process-of-Crystallization-200px.png
Fundamentals
Crystal · Crystal structure · Nucleation
Concepts
Crystallization · Crystal growth
Recrystallization · Seed crystal
Protocrystalline · Single crystal
Methods and technology
Boules
Bridgman–Stockbarger method
Van Arkel–de Boer process
Czochralski method
Epitaxy · Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos method
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil method
Zone melting

एपिटॉक्सी एक प्रकार के क्रिस्टल कि वृद्धि या उस पर भौतिक जमाव को संदर्भित करता है जिसमें क्रिस्टलीय मूल परत के संबंध में एक या अधिक पूर्णतः स्पष्ट अभिविन्यास कि नई क्रिस्टलीय परतें बनती हैं। जमा की गई क्रिस्टलीय परत को एक एपिटैक्सियल आवरण या एपिटैक्सियल परत कहा जाता है। मूल परत के लिए एपिटैक्सियल परत के सापेक्ष अभिविन्यास को प्रत्येक पदार्थ के क्रिस्टलीय जालक के उन्मुखीकरण के संदर्भ में परिभाषित किया गया है। अधिकांश एपिटैक्सियल वृद्धि के लिए, नई परत सामान्यतः क्रिस्टलीय होती है और ऊपरी परत के प्रत्येक क्रिस्टललेखीय प्रभावक्षेत्र में क्रियाधार क्रिस्टल संरचना के सापेक्ष एक पूर्णतः स्पष्ट अभिविन्यास होना चाहिए। एपिटॉक्सी में एकल-क्रिस्टल संरचनाएं सम्मिलित हो सकती हैं, हालांकि दानेदार पतली परतों में अनाज से अनाज की एपिटॉक्सी देखी गई है।[1][2] अधिकांश तकनीकी अनुप्रयोगों के लिए, एकल प्रभावक्षेत्र एपिटॉक्सी, जो क्रियाधार क्रिस्टल के संबंध में पूर्णतः स्पष्ट अभिविन्यास के साथ एक ऊपरी परत में क्रिस्टल की वृद्धि है, को पसंद किया जाता है। अति जालक संरचनाओं को विकसित करते समय एपिटॉक्सी एक महत्वपूर्ण भूमिका भी निभा सकता है।[3]

एपिटॉक्सी ग्रीक भाषा के मूल शब्द एपि से आया है, जिसका अर्थ है ऊपर और टॉक्सी का अर्थ है एक क्रमबद्ध तरीके से।

एपिटैक्सियल वृद्धि के मुख्य वाणिज्यिक अनुप्रयोगों में से एक अर्धचालक उद्योग है, जहां अर्धचालक पतली परतों को अर्धचालक क्रियाधार टुकड़े पर एपिटॉक्सी रूप से उगाया जाता है।[4] एक क्रियाधार टुकड़े के ऊपर एक समतलीय पतली परत के एपिटैक्सियल वृद्धि के मामले में, एपिटैक्सियल परत की जाली में क्रियाधार टुकड़े के क्रिस्टलीय जाली के सापेक्ष एक विशिष्ट अभिविन्यास होगा जैसे [001] कि पतली परत के मिलर सूचकांक को [001] क्रियाधार के सूचकांक के साथ संरेखित करना। सबसे सरल मामले में, एपिटैक्सियल परत क्रियाधार के रूप में एक ही सटीक अर्धचालक यौगिक की निरंतरता हो सकती है, इसे होमोएपिटाक्सी के रूप में जाना जाता है। अन्यथा, एपिटैक्सियल परत एक अलग यौगिक से बनी होगी, इसे हेटरोएपिटाक्सी के रूप में जाना जाता है।

प्रकार

होमोएपिटाक्सी एक प्रकार का एपिटॉक्सी है जो केवल एक पदार्थ के साथ किया जाता है, जिसमें एक क्रिस्टलीय पतली परत को एक ही पदार्थ के क्रियाधार या पतली परत पर उगाया जाता है। इस तकनीक का उपयोग प्रायः एक पतली परत को विकसित करने के लिए किया जाता है जो क्रियाधार की तुलना में अधिक शुद्ध हो और अलग -अलग अपमिश्रण (अर्धचालक) स्तरों वाले परतों को बनाने के लिए होती है।शैक्षणिक साहित्य में, होमोएपिटॉक्सी को प्रायः संक्षिप्त रूप में होमोपी द्वारा व्यक्त किया जाता है।

होमोटोपोटैक्सी होमोपिटैक्सी के समान एक प्रक्रिया है, सिवाय इसके कि पतली-फिल्म की वृद्धि द्वि-आयामी वृद्धि तक सीमित नहीं है। यहाँ क्रियाधार पतली-परत का पदार्थ है।

हेटरोएपिटाक्सी एक प्रकार का एपिटैक्सी है जो उन पदार्थो के साथ किया जाता है जो एक दूसरे से अलग होते हैं। हेटरोएपिटाक्सी में, क्रिस्टलीय पतली-परत एक क्रिस्टलीय क्रियाधार या एक अलग पदार्थ की पतली-परत पर बढ़ती है। इस तकनीक का उपयोग प्रायः उन पदार्थो की क्रिस्टलीय परतों को विकसित करने के लिए किया जाता है जिनके लिए क्रिस्टल दोबारा प्राप्त नहीं किए जा सकते हैं और विभिन्न पदार्थो की एकीकृत क्रिस्टलीय परतों को बनाने के लिए उपयोग किया जाता है। उदाहरणों में नीलम पर सिलिकॉन, नीलम पर गैलियम नाइट्राइड (जीएएन), गैलियम आर्सेनाइड (जीएएएस) या डायमंड या इरिडियम पर एल्यूमीनियम गैलियम इंडियम फॉस्फाइड (अल्गेनप) सम्मिलित हैं।[5] और षट्कोणीय बोरान नाइट्राइड (एचबीएन) पर ग्राफीन सम्मिलित हैं।[6]

हेटरोएपिटाक्सी तब होता है जब क्रियाधार की तुलना में अलग -अलग रचना और/या क्रिस्टल संरचना की एक पतली परत उगाई जाती है। इस स्थिति में, पतली परत पर तनाव की मात्रा बेमेल जाली Ԑ द्वारा निर्धारित की जाती है-

जहाँ और पतली परत और क्रियाधार के जालक स्थिरांक हैं। पतली परत और क्रियाधार में समान जालक अंतराल हो सकता है, लेकिन इसमें बहुत अलग तापीय प्रसार गुणांक भी हो सकते हैं। यदि कोई परत उच्च तापमान पर उगाई जाती है, तो यह कमरे के तापमान पर ठंडा होने पर बड़े उपभेदों का अनुभव कर सकती है। वास्तव में, एपिटॉक्सी प्राप्त करने के लिए आवश्यक है। यदि इससे बड़ा है, तो परत एक आयतनमितीय विकृति का अनुभव करती है जो प्रत्येक परत के साथ एक आवश्यक मोटाई तक बनती है। बढ़ी हुई मोटाई के साथ पतली परत लोचदार तनाव की अव्यवस्थाओं के बनने से मुक्त हो जाता है जो संरचना की गुणवत्ता को नुकसान पहुंचाने वाले बिखरे हुए केंद्र बन सकते हैं। हेटरोएपिटाक्सी का उपयोग सामान्यतः तथाकथित बैंड-गैप इंजीनियरिंग सिस्टम बनाने के लिए किया जाता है, जो कि डी विरूपण के कारण उत्पन्न अतिरिक्त ऊर्जा के द्वारा किया जाता है। माइक्रोइलेक्ट्रोनिक अनुप्रयोगों के लिए अत्यधिक क्षमता के साथ एक बहुत लोकप्रिय प्रणाली Si–Ge की है।[7]

हेटरोटोपोटैक्सी हेटरोएपिटाक्सी के समान प्रक्रिया है, इसके अतिरिक्त कि यह पतली-फिल्म की वृद्धि द्वि-आयामी विकास तक सीमित नहीं है, यहां क्रियाधार केवल पतली- परत पदार्थ की संरचना में समान है।

पेंडेओ-एपिटैक्सी एक ऐसी प्रक्रिया है जिसमें हेटेरोएपिटैक्सियल परत एक ही समय में लंबवत और पार्श्व रूप से बढ़ रही है।

2 डी क्रिस्टल हेटरोस्ट्रक्चर(विषम संरचना) में, षट्कोणीय बोरॉन नाइट्राइड में एम्बेडेड ग्राफीन नैनोरिबन[8][9] पेंडियो-एपिटैक्सी का एक उदाहरण देते हैं।

अनाज-से-अनाज एपिटॉक्सी में एक बहुक्रिस्टलाइन एपिटैक्सियल और मूल परत के अनाज के बीच एपिटैक्सियल विकास सम्मिलित है।[1][2] यह सामान्यतः तब हो सकता है जब मूल परत में केवल एक बाह्य तल बनावट होती है लेकिन कोई अंतः तल बनावट नहीं होती है। ऐसे मामले में, मूल परत में अलग-अलग अंतः तल बनावट के साथ अनाज होते हैं। एपिटैक्सियल ऊपरी परत तब जाली मिलान के कारण, मूल परत के प्रत्येक अनाज के साथ विशिष्ट बनावट बनाता है। इस तरह के एपिटैक्सियल ग्रोथ में एकल-क्रिस्टल महीन परते सम्मिलित नहीं हैं।

एपिटॉक्सी का उपयोग द्विध्रुवी संधि ट्रांजिस्टर (बीजेटी) और आधुनिक पूरक धातु-ऑक्साइड-अर्धचालकों (सीएमओएस) के लिए सिलिकॉन-आधारित विनिर्माण प्रक्रियाओं में किया जाता है, लेकिन यह गैलियम आर्सेनाइड जैसे यौगिक अर्धचालकों के लिए विशेष रूप से महत्वपूर्ण है। विनिर्माण मुद्दों में जमाव की प्रतिरोधकता और मोटाई की मात्रा और एकरूपता का नियंत्रण, सतह और कक्ष के वातावरण की सफाई और शुद्धता, सामान्यतः बहुत अधिक अपमिश्रित किए गए क्रियाधार टुकड़े की नई परतों में अपमिश्रित के प्रसार की रोकथाम, की खामियां सम्मिलित हैं। विकास प्रक्रिया, और निर्माण और हैंडलिंग के दौरान सतहों की रक्षा करना।

प्रक्रिया

चित्रा 1. पतली-फिल्म विकास के तीन प्राथमिक तरीकों के अनुप्रस्थ काट दृश्य (ए) वोल्मर-वेबर (वीडब्ल्यू: द्वीप गठन), (बी) फ्रैंक-वैन डेर मर्व (एफएम: परत-दर-परत ), और(c) स्ट्रैंस्की-क्रस्टनोव ( लेयर-प्लस-आइलैंड)।प्रत्येक मोड को कई अलग -अलग मात्रा में सतह कवरेज के लिए दिखाया गया है।

थर्मोडायनामिक संतुलन (कम एडैटोम सुपरसेटेशन) के पास, एपिटैक्सियल वृद्धि कि प्रक्रिया को तीन प्राथमिक विकास प्रणाली में वर्गीकृत किया गया है- वोल्मर-वेबर (वीडब्ल्यू), फ्रैंक-वैन डेर मर्व (एफएम) और स्ट्रांस्की-क्रस्टानोव (एसके)।[10]

वोल्मर-वेबर (वीडब्ल्यू) विकास प्रणाली में, एपिटैक्सियल परत वृद्धि की सतह पर 3 डी नाभिक से बाहर बढ़ती है। इस प्रणाली में, अवशोषी-अवशोषी पारस्परिक क्रिया अवशोषी- सतह पारस्परिक क्रिया की तुलना में अधिक मजबूत होते हैं, जो स्थानीय नाभिकन द्वारा द्वीप निर्माण की ओर जाता है और जब द्वीप एक दूसरे के साथ जुड़ते हैं तो एपिटैक्सियल परत बनती है।

फ्रैंक-वैन डेर मर्व (एफएम) विकास प्रणाली में, अवशोषी- सतह और अवशोषी-अवशोषी पारस्परिक क्रिया संतुलित होते हैं, जो 2D परत-दर-परत या चरण- प्रवाह एपिटैक्सियल वृद्धि को बढ़ावा देता है।

एसके प्रणाली वीडब्ल्यू और एफएम प्रणाली का संयोजन है। इस प्रक्रिया में, वृद्धि एफएम मोड में शुरू होती है, 2 डी परतें बनाते हैं, लेकिन एक महत्वपूर्ण मोटाई तक पहुंचने के बाद, एक वीडब्ल्यू-जैसे 3 डी द्वीप वृद्धि व्यवस्था में प्रवेश करता है।

प्रायोगिक एपिटैक्सियल वृद्धि, हालांकि ऊष्मागतिक साम्य से दूर, एक उच्च अतिसंतृप्ति व्यवस्था में होता है। उस मामले में, एपिटैक्सियल वृद्धि ऊष्मागतिकी के बजाय अधिपरमाणु गतिकी द्वारा नियंत्रित होता है, और 2 डी चरण- प्रवाह वृद्धि प्रमुख हो जाता है।[10]

विधियाँ

वाष्प-चरण

File:CBE im1.png
चित्रा 1: ए) मूव, बी) एमबीई, और सी) सीबीई के विकास कक्षों के अंदर बुनियादी प्रक्रियाएं।

अर्धचालक पतली परतों की होमोएपिटैक्सियल वृद्धि समान्यतः रासायनिक वाष्प जमाव या भौतिक वाष्प जमाव विधियों द्वारा कि जाती है जो गैसीय अवस्था में क्रियाधार को पूर्ववर्ती को वितरित करते हैं। उदाहरण के लिए, सिलिकॉन को आमतौर पर सिलिकॉन टेट्राक्लोराइड और हाइड्रोजन से लगभग 1200 से 1250°C पर एकत्र किया जाता है।[11]

जहां (g) और (s) क्रमशः गैस और ठोस चरणों का प्रतिनिधित्व करते हैं। यह प्रतिक्रिया प्रतिवर्ती है, और वृद्धि दर दो स्रोत गैसों के अनुपात पर दृढ़ता से निर्भर करती है। प्रति मिनट 2 माइक्रोमीटर से ऊपर की वृद्धि दर पॉलीक्रिस्टलाइन सिलिकॉन का उत्पादन करती है, और नकारात्मक वृद्धि दर (उत्कीर्णन (माइक्रोफैब्रिकेशन)) हो सकती है यदि बहुत अधिक हाईड्रोजन क्लोराईड उपोत्पाद उपस्थित है।(वास्तव में, हाइड्रोजन क्लोराइड को अभिप्रायपूर्वक टुकड़े को खोदने के लिए जोड़ा जा सकता है।) एक अतिरिक्त उत्कीर्णन अभिक्रिया निक्षेपण अभिक्रिया के साथ प्रतिस्पर्धा करती है-

सिलिकॉन वीपीई सिलेन, डाइक्लोरोसिलैन और ट्राइक्लोरोसिलेन स्रोत गैसों का भी उपयोग कर सकता है। उदाहरण के लिए, सिलेन की अभिक्रिया 650 डिग्री सेल्सियस पर इस प्रकार से होती है-

वीपीई को कभी -कभी स्रोत गैसों के रसायन विज्ञान द्वारा वर्गीकृत किया जाता है, जैसे कि हाइड्राइड वीपीई (एचवीपीई) और एमओवीपीई (एमओवीपीई या एमओसीवीडी)।

यौगिक अर्धचालक विकास में उपयोग की जाने वाली एक सामान्य तकनीक आणविक-बीम एपिटॉक्सी (एमबीई) है। इस पद्धति में, एक स्रोत सामग्री को कणों के एक वाष्पित बीम का उत्पादन करने के लिए गर्म किया जाता है, जो बहुत उच्च निर्वात (10−8 पास्कल (इकाई) व्यावहारिक रूप से मुक्त स्थान) के माध्यम से यात्रा करता है और एपीटैक्सियल वृद्धि प्रारम्भ करता है।[12][13] दूसरी ओर, रासायनिक बीम एपिटैक्सी, एक अति-उच्च निर्वात प्रक्रिया है जो आणविक बीम को उत्पन्न करने के लिए गैस चरण पूर्वगामी का उपयोग करती है।[14]

सूक्ष्मइलेक्ट्रॉनिक्स और अतिसूक्ष्म प्रौद्योगिकी में एक और व्यापक रूप से उपयोग की जाने वाली तकनीक परमाणु परत एपिटॉक्सी है, जिसमें पूर्वगामी गैसों को वैकल्पिक रूप से एक कक्ष में स्पंदित किया जाता है, जिससे सतह संतृप्ति और रसायन विज्ञान द्वारा परमाणु एकल परत का विकास होता है।

तरल-चरण

तरल-चरण एपिटॉक्सी (एलपीई) ठोस क्रियाधार पर पिघलने से अर्धचालक क्रिस्टल परतों को विकसित करने के लिए एक विधि है। यह जमाव अर्धचालक के पिघलने के बिंदु से निचले तापमान पर होता है। अर्धचालक किसी अन्य पदार्थ के पिघलने में घुल जाता है। ऐसी स्थितियों में जो विघटन और निक्षेपण के बीच संतुलन के निकट हैं, क्रियाधार पर अर्धचालक क्रिस्टल का जमाव अपेक्षाकृत तेज और समान है। सबसे अधिक उपयोग किया जाने वाला क्रियाधार इंडियम फॉस्फाइड (InP) है। कांच या चीनी मिट्टी जैसे अन्य क्रियाधार विशेष अनुप्रयोगों के लिए लागू किए जा सकते हैं। नाभिकन को सुविधाजनक बनाने के लिए, और बढ़ी हुई परत में तनाव से बचने के लिए क्रियाधार और बढ़ी हुई परत का तापीय विस्तार गुणांक समान होना चाहिए।

सिलिकॉन, जर्मेनियम, और गैलियम आर्सेनाइड की पतली परतें बनाने के लिए केन्द्रापसारक तरल-चरण एपिटॉक्सी का व्यावसायिक रूप से उपयोग किया जाता है।[15][16] केन्द्रापसारक से निर्मित पतली परत कि वृद्धि एक ऐसी प्रक्रिया है जिसका उपयोग एक अपकेंद्रित्र का उपयोग करके पदार्थ की पतली परतों को बनाने के लिए किया जाता है। इस प्रक्रिया का उपयोग पतली-फिल्म सौर कोशिकाओं [17][18] और दूर-अवरक्त फोटोडेटेक्टरों के लिए सिलिकॉन बनाने के लिए किया गया है।[19] परत के विकास को नियंत्रित करने के लिए तापमान और अपकेंद्रित्र स्पिन दर का उपयोग किया जाता है।[16] केन्द्रापसारक एलपीई में अपमिश्रक संकेन्द्रण प्रवणता बनाने की क्षमता है, जबकि समाधान स्थिर तापमान पर आयोजित किया जाता है।[20]

ठोस-चरण

ठोस-चरण एपिटॉक्सी (एसपीई) एक पदार्थ के अक्रिस्टलीय और क्रिस्टलीय चरणों के बीच एक संक्रमण है। यह सामान्यतः एक क्रिस्टलीय क्रियाधार पर अक्रिस्टलीय पदार्थ की एक पतली परत जमा करके निर्मित होता है, फिर इस पतली परत को क्रिस्टलाइज करने के लिए गर्म किया जाता है। एकल-क्रिस्टल क्रियाधार क्रिस्टल वृद्धि के लिए एक सांचा के रूप में कार्य करता है। आयन आरोपण के दौरान अरूपित किए गए सिलिकॉन परतों को पुन: स्थापित करने या सही करने के लिए उपयोग किए जाने वाले एनीलिंग चरण को भी एक प्रकार का ठोस चरण एपिटॉक्सी माना जाता है। इस प्रक्रिया के दौरान बढ़ते क्रिस्टल-अरूपित परत इंटरफेस में अशुद्धता अलगाव और पुनर्वितरण का उपयोग धातुओं और सिलिकॉन में कम-घुलनशीलता वाले अपमिश्रण को सम्मिलित करने के लिए किया जाता है।[21]

अपमिश्रण

स्रोत गैस, जैसे कि आर्सेन, फॉस्फीन, या डिबोरेन में अशुद्धियों को जोड़कर जमाव के दौरान एक एपिटैक्सियल परत को अपमिश्रित किया जा सकता है। स्रोत गैस में डोपेंट, सतह के वाष्पीकरण या गीले निक्षारण से मुक्त एपिटैक्सियल परत में भी फैल सकते हैं और स्वतः अपमिश्रण का कारण बन सकते हैं। गैस चरण में अशुद्धता की सघनता जमा पतली परत में इसकी सघनता को निर्धारित करती है। डोपिंग एक स्थल-प्रतिस्पर्धा तकनीक द्वारा भी प्राप्त की जा सकती है, जहां पूर्ववर्ती वृद्धि अनुपात को रिक्तियों, विशिष्ट अपमिश्रित प्रजातियों या खाली-अपमिश्रण समूहों को जालक में सम्मिलित करने के लिए मिलाया जाता है। इसके अतिरिक्त, उच्च तापमान जिस पर एपिटॉक्सी का प्रदर्शन किया जाता है, वे अपमिश्रण को वेफर (वाह्य-प्रसार) में अन्य परतों से बढ़ती परत में प्रसार करने की अनुमति दे सकते हैं।

खनिज

text
लगभग 6 सेमी लंबे हेमटिट पर रुटाइल एपिटैक्सियल।बाहिया, ब्राजील

खनिज विज्ञान में, एपिटॉक्सी एक व्यवस्थित तरीके से एक खनिज का एक दूसरे पर अतिवृद्धि है, जैसे कि खनिजों के कुछ क्रिस्टल दिशाओं को संरेखित किया जाता है। यह तब होता है जब अतिवृद्धि और क्रियाधार के जालक में कुछ समतलो में परमाणुओं के बीच समान दूरी होती हैं।[22]

यदि दोनों खनिजों के क्रिस्टल अच्छी तरह से बनते हैं तो क्रिस्टलरचनात्मक अक्षों की दिशा स्पष्ट हो तो केवल एक दृश्य निरीक्षण द्वारा एपिटैक्सिक संबंध का अनुमान लगाया जा सकता है।[22]

कभी-कभी कई अलग-अलग क्रिस्टल एक ही क्रियाधार पर अतिवृद्धि का निर्माण करते हैं, और फिर अगर वहाँ एपिटॉक्सी है तो सभी अतिवृद्धि क्रिस्टल में एक समान अभिविन्यास होगा। हालांकि, विपरीत जरूरी नहीं है। यदि अतिवृद्धि क्रिस्टल में एक समान अभिविन्यास होता है, तो संभवतः एक एपिटैक्सिक संबंध होता है, लेकिन यह निश्चित नहीं है।[22] कुछ लेखक[23] मानते हैं कि एक ही खनिज प्रजातियों की दूसरी पीढ़ी के अतिवृद्धि को भी एपिटॉक्सी के रूप में माना जाना चाहिए, और यह अर्धचालक वैज्ञानिकों के लिए सामान्य शब्दावली है जो एक परत के एपिटैक्सिक विकास को एक अलग अपमिश्रण (अर्धचालक) स्तर के साथ एक ही सामग्री के एक अर्धचालक क्रियाधार के साथ प्रेरित करते हैं। स्वाभाविक रूप से उत्पादित खनिजों के लिए, हालांकि अंतर्राष्ट्रीय खनिज संघ (IMA) की परिभाषा के लिए आवश्यक है कि दो खनिज विभिन्न प्रजातियों के हों।[24]

एपिटॉक्सी का एक और मानव निर्मित अनुप्रयोग चांदी के आयोडाइड का उपयोग करके कृत्रिम बर्फ का निर्माण है, जो संभव है क्योंकि षट्कोणीय क्रिस्टल प्रणाली चांदी के आयोडाइड और बर्फ में समान कोशिका आयाम हैं।[23]

समरूपी खनिज

जिन खनिजों की संरचना समान होती है (समरूपी खनिज (क्रिस्टलोग्राफी)) उनमें एपिटैक्सिक संबंध हो सकते हैं। जिसका एक उदाहरण ऐल्बाइट NaAlSi
3
O
8
पर माइक्रोकलाइन KAlSi
3
O
8
है। ये दोनों खनिज त्रिनताक्ष क्रिस्टल तंत्र हैं, स्पेस समूह के साथ 1, और समान इकाई कोशिका मापदंडों के साथ, ए = 8.16 Å, बी = 12.87 Å, सी = 7.11 Å, α = 93.45 °, β = 116.4 °, γ = 90.28 ° अल्बाइट के लिए और ए = 8.5784 Å, बी = 12.96 Å, सी = 7.2112 Å, अल्फा = 90.3 °, बीटा = 116.05 °, गामा = 89 ° माइक्रोकलाइन के लिए।

बहुरूपी खनिज

text
हेमटिट पर रुटाइल, नोवो होरिज़ोंटे, बाहिया, पूर्वोत्तर क्षेत्र, ब्राजील से
text
मैग्नेटाइट के बाद हेमटिट स्यूडोमोर्फ, सीढ़ीदार एपिटैक्सियल चेहरों के साथ।ला रियोजा प्रांत, अर्जेंटीना, अर्जेंटीना

खनिज जिनमें एक ही रचना होती है, लेकिन विभिन्न संरचनाएं (बहुरूपता (सामग्री विज्ञान)) में भी एपिटैक्सिक संबंध हो सकते हैं। उदाहरण पाइराइट और मार्कासाइट हैं दोनों ही FeS2, तथा स्पैलेराइट और वर्टज़ाइट, दोनों ZnS है।[22]

हेमेटाइट पर रूटाइल

खनिजों के कुछ जोड़े जो संरचनात्मक रूप से या संरचनागत रूप से संबंधित नहीं हैं, वे एपिटॉक्सी भी प्रदर्शित कर सकते हैं। एक सामान्य उदाहरण हेमेटाइट पर रूटाइल है।[22][25] रुटाइल चतुष्कोणीय क्रिस्टल तंत्र है और हेमेटाइट त्रिकोणीय क्रिस्टल तंत्र है, लेकिन रूटाइल के (100) समतल (अक्ष के लंबवत) और (001) हेमेटाइट के समतल (सी अक्ष के लंबवत) में परमाणुओं के बीच समान अंतर की दिशाएं हैं। एपिटॉक्सी में ये दिशाएं एक -दूसरे के साथ पंक्तिबद्ध होती हैं, जिसके परिणामस्वरूप रूटाइल अतिवृद्धि की धुरी हेमेटाइट के सी अक्ष के समानांतर होती है, और रुटाइल की सी अक्ष हेमेटाइट के अक्षों में से एक के समानांतर होती है।[22]

मैग्नेटाइट पर हेमेटाइट

एक अन्य उदाहरण हेमेटाइट है, Fe3+
2
O
3
मैग्नेटाइट Fe2+
Fe3+
2
O
4
पर। मैग्नेटाइट संरचना बंद-पैक ऑक्सीजन आयनों पर आधारित है और एबीसी-एबीसी अनुक्रम है। इस पैकिंग में बंद-पैक की गई परतें (111) के समानांतर होती हैं (एक समतल जो सममित रूप से एक घन के एक कोने से काटता है)। हेमेटाइट संरचना एक एबी-एबी अनुक्रम में एकत्र किए गए बंद-पैक ऑक्सीजन आयनों पर आधारित है, जिसके परिणामस्वरूप षट्कोणीय समरूपता के साथ एक क्रिस्टल होता है।[26]

यदि उद्धरण ऑक्सीजन आयन वास्तव में बंद-पैक संरचना में फिट होने के लिए धनायन काफी छोटे थे, तो निकटतम पड़ोसी ऑक्सीजन साइटों के बीच की दूरी दोनों प्रजातियों के लिए समान होगी। ऑक्सीजन आयन की त्रिज्या केवल 1.36 Å है[27] और Fe धनायन काफी बड़े हैं जो कुछ भिन्नताएँ प्रदर्शित कर सकते हैं। Fe कि त्रिज्या 0.49 Å से 0.92 Å तक बदलती है,[28] आवेश (2+ या 3+) और समन्वय संख्या (4 या 8) को दर्शाता है। फिर भी हेमेटाइट दो खनिजों के लिए समान हैं, इसलिए हेमेटाइट आसानी से मिलर इंडेक्स (111) मैग्नेटाइट के पर बढ़ सकता है। हेमेटाइट मिलर इंडेक्स (001) के साथ मैग्नेटाइट मिलर इंडेक्स (111) के समानांतर बढ़ सकता है।[26]

अनुप्रयोग

एपिटॉक्सी का उपयोग नैनो टेक्नोलॉजी में और अर्धचालक निर्माण में किया जाता है। वास्तव में, एपिटॉक्सी कई अर्धचालक पदार्थो के लिए उच्च गुणवत्ता वाले क्रिस्टल विकास का एकमात्र किफायती तरीका है। सतह विज्ञान में, एपिटॉक्सी का स्कैनिंग टनलिंग सूक्ष्मदर्शी के माध्यम से एकल क्रिस्टलीय सतहों पर सोखना कार्बनिक अणुओं के एकल परत और बहुपरत फिल्मों(पतली परत ) को बनाने और अध्ययन करने के लिए किया जाता है।[29][30]

यह भी देखें

संदर्भ

  1. 1.0 1.1 K, Prabahar (26 October 2020). "Grain to Grain Epitaxy-Like Nano Structures of (Ba,Ca)(ZrTi)O3/ CoFe2O4 for Magneto–Electric Based Devices". ACS Appl. Nano Mater. 3 (11): 11098–11106. doi:10.1021/acsanm.0c02265.
  2. 2.0 2.1 Hwang, Cherngye (30 September 1998). "Imaging of the grain‐to‐grain epitaxy in NiFe/FeMn thin‐film couples". Journal of Applied Physics. 64 (6115). doi:10.1063/1.342110.
  3. Christensen, Morten Jagd (April 1997). Epitaxy, Thin films and Superlattices. ISBN 8755022987.
  4. Udo W. Pohl (11 January 2013). Epitaxy of Semiconductors: Introduction to Physical Principles. Springer Science & Business Media. pp. 4–6. ISBN 978-3-642-32970-8.
  5. M. Schreck et al., Appl. Phys. Lett. 78, 192 (2001); doi:10.1063/1.1337648
  6. Tang, Shujie; Wang, Haomin; Wang, Huishan (2015). "Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride". Nature Communications. 6 (6499): 6499. arXiv:1503.02806. Bibcode:2015NatCo...6E6499T. doi:10.1038/ncomms7499. PMC 4382696. PMID 25757864.
  7. F. Francis, Lorraine (2016). Materials Processing. pp. 513–588. ISBN 978-0-12-385132-1.
  8. Chen, Lingxiu; He, Li; Wang, Huishan (2017). "Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches". Nature Communications. 8 (2017): 14703. arXiv:1703.03145. Bibcode:2017NatCo...814703C. doi:10.1038/ncomms14703. PMC 5347129. PMID 28276532.
  9. Chen, Lingxiu; Wang, Haomin; Tang, Shujie (2017). "Edge control of graphene domains grown on hexagonal boron nitride". Nanoscale. 9 (32): 1–6. arXiv:1706.01655. Bibcode:2017arXiv170601655C. doi:10.1039/C7NR02578E. PMID 28580985. S2CID 11602229.
  10. 10.0 10.1 Brune, H. (2009-04-14). "Growth Modes". Encyclopedia of Materials: Science and Technology, Sect. 1.9, Physical Properties of Thin Films and Artificial Multilayers. Retrieved 2022-05-03.
  11. Morgan, D. V.; Board, K. (1991). An Introduction To Semiconductor Microtechnology (2nd ed.). Chichester, West Sussex, England: John Wiley & Sons. p. 23. ISBN 978-0471924784.
  12. A. Y. Cho, "Growth of III\–V semiconductors by molecular beam epitaxy and their properties," Thin Solid Films, vol. 100, pp. 291–317, 1983.
  13. Cheng, K. Y. (November 1997). "Molecular beam epitaxy technology of III-V compound semiconductors for optoelectronic applications". Proceedings of the IEEE. 85 (11): 1694–1714. doi:10.1109/5.649646. ISSN 0018-9219.
  14. Tsang, W.T. (1989). "From chemical vapor epitaxy to chemical beam epitaxy". Journal of Crystal Growth. Elsevier BV. 95 (1–4): 121–131. doi:10.1016/0022-0248(89)90364-3. ISSN 0022-0248.
  15. Capper, Peter; Mauk, Michael (2007). Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (in English). John Wiley & Sons. pp. 134–135. ISBN 9780470319499. Retrieved 3 October 2017.
  16. 16.0 16.1 Farrow, R. F. C.; Parkin, S. S. P.; Dobson, P. J.; Neave, J. H.; Arrott, A. S. (2013). Thin Film Growth Techniques for Low-Dimensional Structures (in English). Springer Science & Business Media. pp. 174–176. ISBN 9781468491456. Retrieved 3 October 2017.
  17. Christensen, Arnfinn. "Speedy production of silicon for solar cells". sciencenordic.com (in English). ScienceNordic. Retrieved 3 October 2017.
  18. Luque, A.; Sala, G.; Palz, Willeke; Santos, G. dos; Helm, P. (2012). Tenth E.C. Photovoltaic Solar Energy Conference: Proceedings of the International Conference, held at Lisbon, Portugal, 8–12 April 1991 (in English). Springer. p. 694. ISBN 9789401136228. Retrieved 3 October 2017.
  19. Katterloher, Reinhard O.; Jakob, Gerd; Konuma, Mitsuharu; Krabbe, Alfred; Haegel, Nancy M.; Samperi, S. A.; Beeman, Jeffrey W.; Haller, Eugene E. (8 February 2002). "Liquid phase epitaxy centrifuge for growth of ultrapure gallium arsenide for far-infrared photoconductors". Infrared Spaceborne Remote Sensing IX. 4486: 200–209. Bibcode:2002SPIE.4486..200K. doi:10.1117/12.455132. S2CID 137003113.
  20. Pauleau, Y. (2012). Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies (in English). Springer Science & Business Media. p. 45. ISBN 9789401003537. Retrieved 3 October 2017.
  21. Custer, J.S.; Polman, A.; Pinxteren, H. M. (15 March 1994). "Erbium in crystal silicon: Segregation and trapping during solid phase epitaxy of amorphous silicon". Journal of Applied Physics. 75 (6): 2809. Bibcode:1994JAP....75.2809C. doi:10.1063/1.356173.
  22. 22.0 22.1 22.2 22.3 22.4 22.5 Rakovan, John (2006). "Epitaxy". Rocks & Minerals. Informa UK Limited. 81 (4): 317–320. doi:10.3200/rmin.81.4.317-320. ISSN 0035-7529.
  23. 23.0 23.1 White, John S.; Richards, R. Peter (2010-02-17). "Let's Get It Right: Epitaxy—A Simple Concept?". Rocks & Minerals. Informa UK Limited. 85 (2): 173–176. doi:10.1080/00357521003591165. ISSN 0035-7529.
  24. Acta Crystallographica Section A Crystal Physics, Diffraction, Theoretical and General Crystallography Volume 33, Part 4 (July 1977)
  25. "FMF - Friends of Minerals Forum, discussion and message board :: Index". www.mineral-forum.com/message-board/.
  26. 26.0 26.1 Nesse, William (2000). Introduction to Mineralogy. Oxford University Press. Page 79
  27. Klein, Cornelis; Hurlbut, Cornelius Searle; Dana, James Dwight (1993). Manual of mineralogy. Wiley. ISBN 978-0-471-57452-1.
  28. "Shannon Radii". abulafia.mt.ic.ac.uk.
  29. Waldmann, T. (2011). "Growth of an oligopyridine adlayer on Ag(100) – A scanning tunnelling microscopy study". Physical Chemistry Chemical Physics. 13 (46): 20724–8. Bibcode:2011PCCP...1320724W. doi:10.1039/C1CP22546D. PMID 21952443.
  30. Waldmann, T. (2012). "The role of surface defects in large organic molecule adsorption: substrate configuration effects". Physical Chemistry Chemical Physics. 14 (30): 10726–31. Bibcode:2012PCCP...1410726W. doi:10.1039/C2CP40800G. PMID 22751288.


ग्रन्थसूची


बाहरी कड़ियाँ