तुल्यकालिक मोटर

From Vigyanwiki
एनालॉग घड़ियों में उपयोग किए जाने वाले लघु तुल्‍यकालिक मोटर।घूर्णक स्थायी चुंबक से बना है।
एक माइक्रोवेव ओवन से इंटीग्रल स्टेपडाउन गियर के साथ छोटे तुल्यकालिक मोटर

'तुल्‍यकालिक विद्युत मोटर' एक प्रत्यावर्ती धारा (AC) विद्युत मोटर है, जिसमें स्थिर अवस्था में[1] छड़ घूर्णन को आपूर्ति धारा की आवृत्ति के साथ समकालिक किया जाता है, घूर्णन की अवधि प्रत्यावर्ती धारा (AC) चक्रों की एक अभिन्न संख्या के बराबर रहती है। तुल्‍यकालिक मोटर्स में मोटर के स्थिरक पर बहुस्तरीय प्रत्यावर्ती धारा (AC) विद्युत चुम्बक होते हैं, जो एक चुंबकीय क्षेत्र बनाते हैं जो रेखीय धारा के दोलनों के साथ समय पर घूमता है। स्थायी चुम्बकों या विद्युत चुम्बकों (इलेक्ट्रोमैग्नेट्स) वाला घूर्णक स्थिरक क्षेत्र के साथ समान गति से घूमता है और परिणामस्वरूप, किसी भी प्रत्यावर्ती धारा (AC) मोटर का दूसरा तुल्यकालित घूर्णन चुंबक क्षेत्र प्रदान करता है। एक तुल्‍यकालिक मोटर को युग्म निवेश कहा जाता है, यदि इसे घूर्णक और स्थिरक दोनों पर स्वतंत्र रूप से उत्साहित बहुस्तरीय प्रत्यावर्ती धारा (AC) विद्युत चुम्बक के साथ आपूर्ति की जाती है।[2]

तुल्‍यकालिक मोटर और इंडक्शन मोटर, AC मोटर्स का सबसे व्यापक रूप से इस्तेमाल किया जाने वाला प्रकार है। दो प्रकारों के बीच का अंतर यह है कि तुल्‍यकालिक मोटर रेखा आवृत्ति पर अवरोध की गई दर पर घूमती है, क्योंकि यह घूर्णक के चुंबकीय क्षेत्र का उत्पादन करने के लिए धारा के प्रेरण पर निर्भर नहीं करती है। इसके विपरीत, प्रेरण मोटर्स को स्खलन की आवश्यकता होती है, घुमावदार घूर्णक में धारा को प्रेरित करने के लिए घूर्णक को AC विकल्पों की तुलना में थोड़ा धीमा घूमना चाहिए। छोटे तुल्‍यकालिक मोटर्स का उपयोग समय के अनुप्रयोगों में किया जाता है। जैसे कि तुल्‍यकालिक घड़ी, घड़ी उपकरणों में, टेप रिकॉर्डर और यथार्थ सहायक-यंत्र, जिसमें मोटर को यथार्थ गति से काम करना चाहिए, गति यथार्थता विद्युत रेखा आवृत्ति की होती है, जिसे बड़े आपस में जुड़ी ग्रिड प्रणाली में सावधानीपूर्वक नियंत्रित किया जाता है।

तुल्‍यकालिक मोटर्स उच्च शक्ति वाले औद्योगिक आकारों में स्व-उत्तेजित उप-आंशिक अश्वशक्ति आकारों[1] में उपलब्ध हैं।[3] भिन्नात्मक अश्वशक्ति सीमा में, अधिकांश तुल्‍यकालिक मोटर्स का उपयोग किया जाता है जहां यथार्थ स्थिर गति की आवश्यकता होती है। इन मशीनों का उपयोग आमतौर पर सादृश्य विद्युत घड़ियों, घड़ियों और अन्य उपकरणों में किया जाता है, जहां यथार्थ समय की आवश्यकता होती है। उच्च शक्ति वाले औद्योगिक आकारों में, तुल्यकालिक मोटर्स दो महत्वपूर्ण कार्य करते हैं। सबसे पहले, यह AC ऊर्जा को कार्य में बदलने का एक अत्यधिक कुशल साधन है। दूसरा, यह अग्रणी या एकता शक्ति कारक पर काम कर सकता है और इस प्रकार शक्ति-कारक सुधार प्रदान करता है।

प्रकार

तुल्‍यकालिक मोटर्स तुल्‍यकालिक मशीनों की अधिक सामान्य श्रेणी के अंतर्गत आती हैं जिसमें तुल्‍यकालिक जनरेटर भी शामिल है। यदि फील्ड पोल "परिणामी वायु-अंतर प्रवाह से प्रमुख प्रस्तावक की आगे की गति से संचालित होते हैं" तो जनरेटर गतिविधि देखी जाएगी। यदि फील्ड पोल "शाफ्ट लोड को पीछे हटने वाले बलाघूर्ण द्वारा परिणामी वायु-अंतर प्रवाह को पीछे खींचते हैं" तो मोटर क्रिया देखी जाएगी।[1]

घूर्णक को कैसे चुम्बकित किया जाता है, इसके आधार पर दो प्रमुख प्रकार के तुल्‍यकालिक मोटर्स होते हैं: १) गैर-उत्साही और २) प्रत्यक्ष-धारा उत्साही [4]

गैर-उत्साही मोटर्स

सिंगल-फेज 60; Hz 1800 &; rpm तुल्‍यकालिक मोटर फॉर Teletype मशीन, गैर-उत्तेजित घूर्णक प्रकार, 1930 से 1955 तक निर्मित

गैर-उत्साही मोटर में घूर्णक इस्पात का बना होता है। तुल्यकालिक गति से यह स्थिरक के घूर्णन चुंबकीय क्षेत्र के साथ चरण में घूमता है, इसलिए इसमें लगभग स्थिर चुंबकीय क्षेत्र होता है। बाहरी स्थिरक क्षेत्र, घूर्णक को चुंबकित करता है और चालू करने के लिए आवश्यक चुंबकीय ध्रुवों को प्रेरित करता है। घूर्णक उच्च प्रतिरोध वाले इस्पात जैसे कोबाल्ट इस्पात से बना होता है। इन स्थायी चुम्बकों का निर्माण अनिच्छा और हिस्टैरिसीस रचना में किया जाता है।[5]

प्रतिष्टम्भ मोटर्स

इनमें नुकीले (मुख्य) दांतेदार ध्रुवों के साथ घूर्णक के साथ ठोस इस्पात की ढलाई होती है। आघूर्ण बल को कम करने और सभी ध्रुवों को एक साथ संरेखित करने से रोकने के लिए आमतौर पर स्थिरक ध्रुवों की तुलना में कम घूर्णक होते हैं- ऐसी स्थिति जो आघूर्ण बल उत्पन्न नहीं कर सकती है।[3][6] चुंबकीय परिपथ में हवा के अंतराल का आकार और इस प्रकार प्रतिष्टंभ न्यूनतम होता है जब ध्रुवों को स्थिरक के (घूर्णन) चुंबकीय क्षेत्र के साथ संरेखित किया जाता है, और उनके बीच के कोण के साथ बढ़ता है। इस प्रकार समकालिक गति से घूमने वाला घूर्णक स्थिरक क्षेत्र में "अवरोधित" होता है। यह मोटर शुरू नहीं हो सकती है, इसलिए घूर्णक ध्रुव में आमतौर पर एक गिलहरी-पिंजरे की घुमावदार होती है, जो तुल्यकालिक गति से नीचे आघूर्ण बल प्रदान करती है। मशीन एक प्रेरण मोटर के रूप में शुरू होती है जब तक कि घूर्णक "अंदर खींचता है" होने पर तुल्यकालिक गति तक नहीं पहुंच जाता है और घूर्णन स्थिरक क्षेत्र में रुक जाता है।[7]

प्रतिष्टम्भ मोटर संरचाना में श्रेणी नर्धारण होती है जो भिन्नात्मक अश्वशक्ति (कुछ वाट) से लेकर लगभग 22 किलोवाट तक होती है। बहुत छोटे प्रतिष्टम्भ मोटर्स में कम आघूर्ण बल होता है और आमतौर पर उपकरण अनुप्रयोगों के लिए उपयोग किया जाता है। मध्यम आघूर्ण बल, बहु-अश्वशक्ति मोटर्स दांतेदार घूर्णक के साथ गिलहरी पिंजरे के निर्माण का उपयोग करते हैं। जब एक समायोज्य आवृत्ति बिजली की आपूर्ति के साथ प्रयोग किया जाता है, तो चालन प्रणाली में सभी मोटरों को ठीक उसी गति से नियंत्रित किया जा सकता है। बिजली की आपूर्ति की आवृत्ति मोटर की परिचालन गति को निर्धारित करती है।

हिस्टैरिसीस मोटर्स

इनमें एक ठोस चिकना बेलनाकार घूर्णक होता है, जो चुंबकीय रूप से "कठोर" कोबाल्ट इस्पात के उच्च दबाव से बना होता है। [6] उनकी सामग्री में एक विस्तृत हिस्टैरिसीस लूप (उच्च सुसंगतता) होता है, जिसका अर्थ है कि एक बार किसी दिए गए दिशा में चुम्बकित हो जाने पर, चुंबकीयकरण को उलटने के लिए इसे एक बड़े उत्क्रम चुंबकीय क्षेत्र की आवश्यकता होती है। घूर्णन स्थिरक क्षेत्र घूर्णक के प्रत्येक छोटे आयतन को उलटे चुंबकीय क्षेत्र का अनुभव कराता है। हिस्टैरिसीस के कारण, चुंबकीयकरण चरण अनुप्रयुक्त क्षेत्र के चरण से पिछड़ जाता है। इसका परिणाम यह होता है कि घूर्णक में प्रेरित चुंबकीय क्षेत्र की धुरी एक स्थिर कोण से स्थिरक क्षेत्र की धुरी से पीछे रह जाती है, जिससे घूर्णक स्थिरक क्षेत्र के साथ "पकड़" जाता है, जिससे आघूर्ण बल पैदा होता है। जब तक रोटर तुल्यकालिक गति से नीचे है, घूर्णक का प्रत्येक कण "स्लिप" आवृत्ति पर एक उल्टे चुंबकीय क्षेत्र का अनुभव करता है जो इसे अपने हिस्टैरिसीस लूप के चारों ओर चलाता है, जिससे घूर्णक क्षेत्र पिछड़ जाता है और आघूर्ण बल बनाता है। घूर्णक में 2-ध्रुव कम प्रतिष्टंभ छड़ संरचना है।[6] जैसे ही घूर्णक तुल्‍यकालिक गति तक पहुंचता है और फिसलना शून्य हो जाता है, यह स्थिरक क्षेत्र के साथ चुंबकीय और संरेखित होता है, जिससे घूर्णक घूर्णन स्थिरक क्षेत्र में "बंद " हो जाता है।

हिस्टैरिसीस मोटर का एक बड़ा फायदा यह है कि चूंकि अंतराल कोण गति से स्वतंत्र होता है, इसलिए यह चालू होने से तुल्‍यकालिक गति तक लगातार आघूर्ण बल विकसित करता है। इसलिए, यह स्व-चलित है और इसे शुरू करने के लिए अधिष्ठापन घुमावदार की आवश्यकता नहीं होती है, हालांकि कई संरचनाओं में स्टार्ट-अप पर अतिरिक्त आघूर्ण बल प्रदान करने के लिए घूर्णक में एक गिलहरी-पिंजरे की प्रवाहकीय घुमावदार संरचना होती है।

स्थायी-चुंबक मोटर्स

एक स्थायी चुंबक तुल्यकालिक मोटर (पीएमएसएम) एक स्थिर चुंबकीय क्षेत्र बनाने के लिए एक इस्पात घूर्णक में अंतर्निहित एक स्थायी चुंबक का उपयोग करता है। स्थिरक एक घुमावदार घूर्णन चुंबकीय क्षेत्र (एक अतुल्यकालिक मोटर के रूप में) का उत्पादन करने के लिए एक प्रत्यावर्ती धारा (AC) आपूर्ति से जुड़ा है। तुल्यकालिक गति से घूर्णक ध्रुव घूर्णन चुंबकीय क्षेत्र में अवरोधित हो जाते हैं। स्थायी चुंबक तुल्यकालिक मोटर्स ब्रशलेस एकदिश धारा (DC) मोटर्स के समान होती हैं। इन मोटरों में नियोडिमियम मैग्नेट सबसे अधिक इस्तेमाल किया जाने वाला चुंबक है। हालांकि, पिछले कुछ वर्षों में, नियोडिमियम चुम्बक की कीमतों में तेजी से उतार-चढ़ाव के कारण, बहुत सारे शोध विकल्प के रूप में फेराइट चुंबक की तलाश कर रहे हैं।[8] वर्तमान में उपलब्ध फेराइट चुम्बक की अंतर्निहित विशेषताओं के कारण, इन मशीनों के चुंबकीय परिपथ की संरचना को चुंबकीय प्रवाह को केंद्रित करने में सक्षम होना चाहिए, बोले जाने वाले प्रकार घूर्णक का उपयोग होने वाली सबसे आम रणनीतियों में से एक है।[9] वर्तमान में, फेराइट चुम्बक का उपयोग करने वाली नई मशीनों में नियोडिमियम चुम्बक का उपयोग करने वाली मशीनों की तुलना में कम बिजली घनत्व और आघूर्ण बल घनत्व होता है।[9]

स्थायी चुंबक मोटर्स का उपयोग 2000 से गियरलेस एलेवेटर मोटर्स के रूप में किया जाता रहा है।[10]

अधिकांश पीएमएसएम को शुरू करने के लिए एक चर-आवृत्ति की आवश्यकता होती है[11][12][13][14][15] हालांकि, कुछ शुरू करने के लिए घूर्णक में एक गिलहरी पिंजरे को शामिल करते हैं - इसे लाइन-प्रारम्भी या स्वयं-प्रारम्भी पीएमएसएम के रूप में जाना जाता है।[16] इन्हें आमतौर पर प्रवर्तन मोटर्स (स्खलन की कमी के कारण) के लिए उच्च-दक्षता वाले प्रतिस्थापन के रूप में उपयोग किया जाता है, लेकिन यह भी सुनिश्चित करने के लिए कि तुल्यकालिक गति तक पहुँच गया है और यह सुनिश्चित करने के लिए कि प्रणाली शुरू नहीं हुई है। तरंग के दौरान आघूर्ण बल का सामना किया जा सकता है, उसे आवेदन के लिए सावधानीपूर्वक निर्दिष्ट करने की आवश्यकता होती है।।

स्थायी चुंबक तुल्‍यकालिक मोटर्स को मुख्य रूप से प्रत्यक्ष आघूर्ण बल नियंत्रण [17] और क्षेत्र उन्मुख नियंत्रण का उपयोग करके नियंत्रित किया जाता है।Cite error: Invalid <ref> tag; invalid names, e.g. too many इन मुद्दों से निपटने के लिए हाल ही में भविष्य कहने वाला नियंत्रण और तंत्रिका तंत्र नियंत्रक विकसित किए गए हैं। [18][19]

एकदिश धारा (DC)-उत्साही मोटर्स

डीसी-एक्सक्लूस्ड मोटर, 1917. एक्सिटर को मशीन के पीछे स्पष्ट रूप से देखा गया है।

आमतौर पर बड़े आकार (लगभग 1 अश्व शक्ति  या 1 किलोवाट से बड़े) में बने इन मोटरों को उत्तेजना के लिए घूर्णक को आपूर्ति की जाने वाली प्रत्यक्ष धारा (डीसी) की आवश्यकता होती है। यह सबसे सीधे स्खलन के छल्ले के माध्यम से आपूर्ति की जाती है, लेकिन एक ब्रश रहित एसी प्रेरण और सुधारक व्यवस्था का भी उपयोग किया जा सकता है। [20] प्रत्यक्ष धारा (डीसी) की आपूर्ति एक अलग डीसी (DC) स्रोत से या सीधे मोटर छड़ से जुड़े डीसी (DC) जनरेटर से की जा सकती है।

नियंत्रण तकनीक

एक स्थायी चुंबक तुल्‍यकालिक मोटर और प्रतिष्टम्भ मोटर को संचालन के लिए एक नियंत्रण प्रणाली की आवश्यकता होती है ( VFD या सर्वो ड्राइव)।

पीएमएसएम के लिए बड़ी संख्या में नियंत्रण विधियां हैं, जिन्हें इलेक्ट्रिक मोटर के निर्माण और दायरे के आधार पर चुना जाता है।

नियंत्रण विधियों को विभाजित किया जा सकता है[21]

ज्यावक्रीय(sinusoidal)

  • अदिश
  • सदिश

समलम्बाकार

  • खुला परिपथ
  • बंद परिपथ (हॉल सेंसर के साथ और उसके बिना))

तुल्‍यकालिक गति

एक तुल्‍यकालिक मोटर की तुल्‍यकालिक गति दि गयी है[22]
rpm, द्वारा:

और rad · s - १, द्वारा:

जहाँ:

  • एसी आपूर्ति धारा की Hz में आवृत्ति है ,
  • चुंबकीय ध्रुवों की संख्या है।
  • ध्रुव जोड़े की संख्या है, .

उदाहरण

एक सिंगल-फेज, 4-पोल (2-पोल-पेयर) तुल्‍यकालिक मोटर 50Hz एनबीएसपी की एसी आपूर्ति आवृत्ति पर काम कर रहा है; ध्रुव-जोड़े(पोल-पेयर) की संख्या 2 है, इसलिए तुल्यकालिक गति है:

एक तीन-चरण, 12-पोल (6-पोल-पेयर) तुल्‍यकालिक मोटर 60Hz की एक एसी आपूर्ति आवृत्ति पर काम कर रहा है। ध्रुव-जोड़े(पोल-पेयर) की संख्या 6 है, इसलिए तुल्यकालिक गति है:

चुंबकीय ध्रुवों की संख्या,, प्रति चरण कॉइल (कुण्डली )समूहों की संख्या के बराबर है। 3-चरण मोटर में प्रति चरण कॉइल समूहों की संख्या निर्धारित करने के लिए, कॉइल की संख्या की गणना करें, चरणों की संख्या से विभाजित करें, जो कि 3 है। कॉइल स्थिरक कोर में कई स्लॉट लगा सकते हैं, जिससे उन्हें गिनने के लिए थकाऊ हो जाता है । 3-चरण मोटर के लिए, यदि आप कुल 12 कॉइल समूहों की गिनती करते हैं, तो इसमें 4 चुंबकीय ध्रुव हैं। 12-पोल 3-चरण मशीन के लिए, 36 कॉइल होंगे। घूर्णक में चुंबकीय ध्रुवों की संख्या स्थिरक में चुंबकीय ध्रुवों की संख्या के बराबर है।

निर्माण

एक बड़े पानी के पंप का घूर्णक।स्लिप रिंग्स को घूर्णक ड्रम के नीचे देखा जा सकता है।
एक बड़े पानी के पंप की स्थिरक घुमावदार

एक तुल्यकालिक मोटर के प्रमुख घटक स्थिरक और घूर्णक हैं[23] तुल्‍यकालिक मोटर के स्थिरक और इंडक्शन मोटर के स्थिरक निर्माण में समान हैं।[24] अपवाद के रूप में कुंडलित घूर्णक तुल्यकालिक डबल फीडेड इलेक्ट्रिक मशीन के साथ, स्थिरक फ्रेम में रैपर प्लेट होती है[25] परिधिगत पसलियों और कीबार को आवरण प्लेट से जोड़ा जाता है[25] मशीन का भार वहन करने के लिए, फ्रेम माउंट और फुटिंग्स 'की आवश्यकता है[25] जब डीसी उत्तेजना द्वारा फील्ड वाइंडिंग उत्तेजित होती है उत्तेजना की आपूर्ति से जुड़ने के लिए ब्रश और स्लिप रिंग्स की आवश्यकता होती है[26] फील्ड वाइंडिंग भी ब्रशलेस एक्साइटर द्वारा उत्साहित हो सकता है[27] बेलनाकार, गोल रोटार, (जिसे गैर साल्टिएंट पोल घूर्णक के रूप में भी जाना जाता है) का उपयोग छह डंडे तक किया जाता है।कुछ मशीनों में या जब बड़ी संख्या में डंडे की आवश्यकता होती है, तो एक मुख्य ध्रुव घूर्णक का उपयोग किया जाता है[28][29] तुल्‍यकालिक मोटर का निर्माण एक तुल्यकालिक अल्टरनेटर के समान है[30] अधिकांश तुल्यकालिक मोटर्स निर्माण स्थिर आर्मेचर और घूर्णन क्षेत्र घुमावदार का उपयोग करते हैं।डीसी मोटर प्रकार की तुलना में एक लाभ के रूप में इस प्रकार का निर्माण जहां उपयोग किया गया आर्मेचर घूर्णन प्रकार का है।

संक्रिया/ संचालन

घूर्णन चुंबकीय क्षेत्र स्थिरक वाइंडिंग के तीन चरणों के चुंबकीय क्षेत्र वैक्टर के योग से बनता है।

एक तुल्यकालिक मोटर का संचालन स्थिरक और घूर्णक के चुंबकीय क्षेत्रों की परस्पर क्रिया के कारण होता है। इसकी स्थिरक वाइंडिंग, जिसमें 3 फेज वाइंडिंग होती है, को 3 फेज की आपूर्ति प्रदान की जाती है, और घूर्णक को डीसी आपूर्ति प्रदान की जाती है। 3 चरण धाराओं को ले जाने वाली 3 चरण स्थिरक घुमावदार 3 चरण घूर्णन चुंबकीय प्रवाह (और इसलिए एक घूर्णन चुंबकीय क्षेत्र) उत्पन्न करती है। घूर्णक घूर्णन चुंबकीय क्षेत्र के साथ लॉक हो जाता है और इसके साथ घूमता है। एक बार जब घूर्णक क्षेत्र घूर्णन चुंबकीय क्षेत्र के साथ लॉक हो जाता है, तो मोटर को सिंक्रोनाइज़ेशन में कहा जाता है। एक सिंगल फेज (या सिंगल फेज से व्युत्पन्न दो फेज) स्थिरक वाइंडिंग संभव है, लेकिन इस मामले में रोटेशन की दिशा को परिभाषित नहीं किया गया है और मशीन किसी भी दिशा में शुरू हो सकती है जब तक कि प्रारंभिक व्यवस्था द्वारा ऐसा करने से रोका न जाए।[31]

एक बार मोटर चालू हो जाने पर, मोटर की गति केवल आपूर्ति आवृत्ति पर निर्भर करती है। जब ब्रेकडाउन लोड से अधिक मोटर लोड बढ़ जाता है, तो मोटर सिंक्रोनाइज़ेशन से बाहर हो जाता है और फील्ड वाइंडिंग अब घूमने वाले चुंबकीय क्षेत्र का अनुसरण नहीं करता है। चूंकि मोटर सिंक्रोनाइज़ेशन से बाहर होने पर (सिंक्रोनस) आघूर्ण बल का उत्पादन नहीं कर सकता है, व्यावहारिक सिंक्रोनस मोटर्स में ऑपरेशन को स्थिर करने और शुरू करने की सुविधा के लिए एक आंशिक या पूर्ण गिलहरी-पिंजरा डैम्पर (एमोरटिस्यूर) घुमावदार होता है। क्योंकि यह वाइंडिंग एक समान इंडक्शन मोटर की तुलना में छोटा है और लंबे ऑपरेशन पर ज़्यादा गरम हो सकता है, और क्योंकि घूर्णक उत्तेजना वाइंडिंग में बड़े स्लिप-फ़्रीक्वेंसी वोल्टेज प्रेरित होते हैं, सिंक्रोनस मोटर प्रोटेक्शन डिवाइस इस स्थिति को समझते हैं और बिजली की आपूर्ति को बाधित करते हैं (चरण से बाहर) सुरक्षा)।[31]

शुरुआती तरीके

एक निश्चित आकार के ऊपर, तुल्‍यकालिक मोटर्स स्व-शुरुआत करने वाली मोटर्स नहीं हैं।यह संपत्ति घूर्णक की जड़ता के कारण है;यह तुरंत स्थिरक के चुंबकीय क्षेत्र के रोटेशन/घूर्णन आवर्तन का पालन नहीं कर सकता है।चूंकि एक तुल्‍यकालिक मोटर गतिरोध में कोई अंतर्निहित औसत आघूर्ण बल नहीं पैदा करता है, इसलिए यह कुछ पूरक तंत्र के बिना तुल्‍यकालिक गति में तेजी नहीं ला सकता है। [3]

वाणिज्यिक बिजली आवृत्ति पर काम करने वाले बड़े मोटर्स में एक गिलहरी-केज इंडक्शन वाइंडिंग शामिल है जो त्वरण के लिए पर्याप्त आघूर्ण बल प्रदान करता है और जो ऑपरेशन में मोटर गति में दोलनों को नम करने का भी कार्य करता है[3] एक बार घूर्णक तुल्यकालिक गति के निकट हो जाता है, फील्ड वाइंडिंग उत्तेजित हो जाती है, और मोटर सिंक्रनाइज़ेशन में खींचता है।बहुत बड़े मोटर प्रणालियों में एक "टट्टू" मोटर शामिल हो सकता है जो लोड लागू होने से पहले अनलोडेड तुल्‍यकालिक मशीन को तेज करता है[32][33] इलेक्ट्रॉनिक रूप से नियंत्रित होने वाले मोटर्स को स्थिरक करंट की आवृत्ति को बदलकर शून्य गति से तेज किया जा सकता है। [34]

बहुत छोटे तुल्यकालिक मोटर्स का उपयोग आमतौर पर लाइन-संचालित इलेक्ट्रिक मैकेनिकल घड़ियों या टाइमर में किया जाता है जो सही गति से गियर तंत्र को चलाने के लिए पावर लाइन आवृत्ति का उपयोग करते हैं।इस तरह के छोटे तुल्‍यकालिक मोटर्स सहायता के बिना शुरू करने में सक्षम हैं यदि घूर्णक के जड़ता का क्षण और इसके यांत्रिक भार पर्याप्त रूप से छोटा है [क्योंकि मोटर] को एक त्वरित आधे चक्र के दौरान स्लिप स्पीड से तुल्‍यकालिक गति तक तेज किया जाएगा। प्रतिष्टम्भ आघूर्ण बल।[3] छायांकित-ध्रुव तुल्‍यकालिक मोटर (शेडेड-पोल सिंक्रोनस मोटर) देखें कि लगातार शुरुआती दिशा कैसे प्राप्त की जाती है।

विभिन्न मोटर शुरुआती तरीकों को संबोधित करने के लिए परिचालन अर्थशास्त्र एक महत्वपूर्ण पैरामीटर है[35] तदनुसार, घूर्णक का उत्तेजना मोटर शुरुआती मुद्दे को हल करने का एक संभावित तरीका है[36] इसके अलावा, बड़ी तुल्‍यकालिक मशीनों के लिए आधुनिक प्रस्तावित शुरुआती तरीकों में स्टार्टअप के दौरान घूर्णक ध्रुव के दोहरावदार ध्रुवीयता उलटा शामिल है। [37]

अनुप्रयोग, विशेष गुण और लाभ

तुल्‍यकालिक संधारित्र के रूप में उपयोग

एक तुल्यकालिक मशीन का वी-वक्र

एक तुल्यकालिक मोटर के उत्तेजना को अलग करके, इसे पष्चगामी(लैगिंग), अग्रणी(लीडिंग) और एकक शक्ति गुणक(यूनिटी पावर फैक्टर) कारक में संचालित करने के लिए बनाया जा सकता है।उत्तेजना जिस पर पावर फैक्टर इकाई है, जिसे सामान्य उत्तेजना वोल्टेज 'कहा जाता है[38] इस उत्तेजना में धारा का परिमाण न्यूनतम है[38] सामान्य उत्तेजना से अधिक उत्तेजना वोल्टेज को उत्तेजना वोल्टेज कहा जाता है, उत्तेजना वोल्टेज सामान्य उत्तेजना से कम उत्तेजना के तहत कहा जाता है[38] जब मोटर अति उत्तेजित हो, बैक ईएमएफ मोटर टर्मिनल वोल्टेज से अधिक होगा।यह आर्मेचर रिएक्शन के कारण एक विचुंबकीय(डेमैग्नेटाइजिंग) प्रभाव का कारण बनता है[39]

एक तुल्यकालिक मशीन का V वक्र क्षेत्र धारा के एक फलन के रूप में आर्मेचर करंट को दर्शाता है।बढ़ते क्षेत्र के साथ धारा आर्मेचर करंट पहले कम हो जाता है, फिर न्यूनतम तक पहुंच जाता है, फिर बढ़ जाता है।न्यूनतम बिंदु वह बिंदु भी है जिस पर बिजली कारक इकाई है[40] स्पष्ट करें कि कहाँ अग्रणी, पीएफ प्राप्त करना

बिजली कारक को चुनिंदा रूप से नियंत्रित करने की इस क्षमता का पावर सिस्टम के पावर फैक्टर सुधार के लिए शोषण किया जा सकता है, जिससे मोटर जुड़ा हुआ है।चूंकि किसी भी महत्वपूर्ण आकार के अधिकांश पावर सिस्टम में नेट लैगिंग पावर फैक्टर होता है, इसलिए ओवरएक्साइटेड तुल्‍यकालिक मोटर्स की उपस्थिति सिस्टम के नेट पावर फैक्टर को इकाई के करीब ले जाती है, जिससे दक्षता में सुधार होता है।इस तरह के पावर-फैक्टर सुधार आमतौर पर यांत्रिक कार्य प्रदान करने के लिए सिस्टम में पहले से मौजूद मोटर्स का एक साइड इफेक्ट होता है, हालांकि मोटर्स को केवल पावर-फैक्टर सुधार प्रदान करने के लिए यांत्रिक लोड के बिना चलाया जा सकता है।कारखानों जैसे बड़े औद्योगिक संयंत्रों में तुल्‍यकालिक मोटर्स और अन्य के बीच बातचीत, लैगिंग, लोड संयंत्र के विद्युत डिजाइन में एक स्पष्ट विचार हो सकता है

स्थिर अवस्था स्थायित्व सीमा

जहां ,

आघूर्ण बल है
आघूर्ण बल कोण है
अधिकतम आघूर्ण बल है

यहाँ ,

जब लोड लागू किया जाता है, तो टोक़ कोण बढ़ता है।जब = 90° आघूर्ण बल अधिकतम होगा।यदि लोड को आगे लागू किया जाता है तो मोटर अपने तुल्यकालन/सिंक्रोनिज्म को खो देगी, क्योंकि मोटर आघूर्ण बल लोड आघूर्ण बल से कम होगा[41][42] अधिकतम लोड टोक़ जो अपने सिंक्रोनिज्म को खोने के बिना एक मोटर पर लागू किया जा सकता है, को एक तुल्‍यकालिक मोटर की स्थिर अवस्था स्थायित्व सीमा कहा जाता है[41]

अन्य

तुल्‍यकालिक मोटर्स यथार्थ गति या स्थिति नियंत्रण की आवश्यकता वाले अनुप्रयोगों में विशेष रूप से उपयोगी हैं:

  • गति मोटर के ऑपरेटिंग रेंज पर भार से स्वतंत्र है।
  • ओपन लूप कंट्रोल (जैसे स्टेपर मोटर्स ) का उपयोग करके गति और स्थिति को यथार्थ रूप से नियंत्रित किया जा सकता है।
  • कम-शक्ति वाले अनुप्रयोगों में पोजिशनिंग मशीन, जहां उच्च परिशुद्धता की आवश्यकता होती है, और रोबोट एक्ट्यूएटर शामिल हैं।
  • जब स्थिरक और घूर्णक वाइंडिंग दोनों पर डीसी करंट लगाया जाता है तो वे अपनी स्थिति बनाए रखेंगे।
  • एक सिंक्रोनस मोटर द्वारा संचालित घड़ी सिद्धांत रूप में उतनी ही यथार्थ होती है जितनी कि उसके शक्ति स्रोत की लाइन आवृत्ति। (यद्यपि किसी भी दिए गए कई घंटों में छोटी फ़्रीक्वेंसी ड्रिफ्ट होती है, ग्रिड ऑपरेटर्स बाद की अवधियों में क्षतिपूर्ति करने के लिए सक्रिय रूप से लाइन फ़्रीक्वेंसी को समायोजित करते हैं, जिससे मोटर चालित घड़ियों को यथार्थ रखा जाता है; देखें उपयोगिता आवृत्ति#स्थिरता । )
  • रिकॉर्ड प्लेयर टर्नटेबल्स
  • कम गति वाले अनुप्रयोगों (जैसे बॉल मिल्स ) में दक्षता में वृद्धि।

उपप्रकार

  • एसी पॉलीपेज़ तुल्‍यकालिक मोटर्स]
  • स्टेपर मोटर (तुल्‍यकालिक हो सकता है या नहीं)
  • तुल्‍यकालिक ब्रशलेस घाव-घूर्णक डबल-फेड इलेक्ट्रिक मशीन

यह सभी देखें

  • क्लॉक ड्राइव (Clock drive)
  • डबल-फेड इलेक्ट्रिक मशीन (Doubly fed electric machine)
  • शॉर्ट सर्किट अनुपात (Short circuit ratio)

संदर्भ

  1. 1.0 1.1 1.2 Fitzgerald, A. E.; Charles Kingsley Jr.; Alexander Kusko (1972). "Chapter 6, Synchronous machines, steady state". Electric Machinery, 3rd Ed. USA: McGraw-Hill. pp. 283–330. Library of Congress Catalog No. 70-137126.
  2. https://en.engineering-solutions.ru/motorcontrol/pmsm/
  3. 3.0 3.1 3.2 3.3 3.4 Fitzgerald, A. E.; Charles Kingsley Jr.; Alexander Kusko (1971). "Chapter 11, section 11.2 Starting and Running Performance of Single-phase Induction and Synchronous Motors, Self-starting Reluctance Motors". Electric Machinery, 3rd Ed. USA: McGraw-Hill. pp. 536–538. Library of Congress Catalog No. 70-137126.
  4. James G Stallcup, स्टालकप के जनरेटर, ट्रांसफार्मर, मोटर और कंप्रेसर , पृष्ठ 15-13, जोन्स और बार्टलेट, 2012 ISBN 1-4496-9519-1
  5. William Yeadon (एड।), हैंडबुक ऑफ स्मॉल इलेक्ट्रिक मोटर्स , मैकग्रा-हिल 2001 ISBN 0-07-072332-X, अध्याय 12 "सिंक्रोनस मशीनें
  6. 6.0 6.1 6.2 Gottlieb, Irving M. (1997). Practical electric motor handbook, 2nd Ed. USA: Newnes. pp. 73–76. ISBN 978-0-7506-3638-4.
  7. Michael A. Laughton (2003), "19.2.5 Reluctance motors", Electrical Engineer's Reference Book, Newnes, p. 19/8, ISBN 978-0-7506-4637-6
  8. Eriksson, S; Eklund, P (2020-11-26). "Effect of magnetic properties on performance of electrical machines with ferrite magnets". Journal of Physics D: Applied Physics. 54 (5): 054001. doi:10.1088/1361-6463/abbfc5. ISSN 0022-3727. S2CID 225152358.
  9. 9.0 9.1 Luk, Patrick Chi-Kwong; Abdulrahem, Hayder A.; Xia, Bing (November 2020). "Low-cost high-performance ferrite permanent magnet machines in EV applications: A Comprehensive Review". ETransportation. 6: 100080. doi:10.1016/j.etran.2020.100080. ISSN 2590-1168. S2CID 224968436.
  10. Mehri, Darius (18 September 2000). "Belts Lift Performance". DesignNews.com. Archived from the original on 29 June 2013. Retrieved 10 May 2016.
  11. R. Islam; I. Husain; A. Fardoun; K. McLaughlin. "Permanent-Magnet Synchronous Motor Magnet Designs With Skewing for Torque Ripple and Cogging Torque Reduction". Industry Applications, IEEE Transactions on. 2009. doi:10.1109/TIA.2008.2009653
  12. Ki-Chan Kim; Seung-Bin Lim; Dae-Hyun Koo; Ju Lee. The Shape Design of Permanent Magnet for Permanent Magnet Synchronous Motor Considering Partial Demagnetization". Magnetics, IEEE Transactions on. 2006. doi:10.1109/TMAG.2006.879077
  13. P. Pillay; R. Krishnan. "Application characteristics of permanent magnet synchronous and brushless DC motors for servo drives". Industry Applications, IEEE Transactions on. 1991. doi:10.1109/28.90357 quote: "The permanent magnet synchronous motor (PMSM) and the brushless DC motor (BDCM) have many similarities; they both have permanent magnets on the rotor and require alternating stator currents to produce constant torque."
  14. Y. Honda; T. Nakamura; T. Higaki; Y. Takeda. "Motor design considerations and test results of an interior permanent magnet synchronous motor for electric vehicles". Industry Applications Conference, 1997. Thirty-Second IAS Annual Meeting, IAS '97., Conference Record of the 1997 IEEE. 1997. doi:10.1109/IAS.1997.643011
  15. M.A. Rahman; Ping Zhou. "Analysis of brushless permanent magnet synchronous motors". Industrial Electronics, IEEE Transactions on. 1996. doi:10.1109/41.491349
  16. Hassanpour Isfahani, Arash; Vaez-Zadeh, Sadegh (Nov 2009). "Line Start Permanent Magnet Synchronous Motors: Challenges and Opportunities". Energy. 34 (11): 1755–1763. doi:10.1016/j.energy.2009.04.022.
  17. Suman, K.; Suneeta, K.; Sasikala, M. (2020-09-09). Direct Torque Controlled induction motor drive with space vector modulation fed with three-level inverter. pp. 1–6. doi:10.1109/PEDES.2012.6484405. ISBN 978-1-4673-4508-8. S2CID 25556839. Retrieved 2020-09-23. {{cite book}}: |website= ignored (help)
  18. Cite error: Invalid <ref> tag; no text was provided for refs named IEEE Conference Publication 2020
  19. Kumar, Rajesh; Gupta, R. A.; Bansal, Ajay Kr. (2020-09-09). Identification and Control of PMSM Using Artificial Neural Network. pp. 30–35. doi:10.1109/ISIE.2007.4374567. ISBN 978-1-4244-0754-5. S2CID 35896251. Retrieved 2020-09-23. {{cite book}}: |website= ignored (help)
  20. H.E. Jordan, Energy-Efficient Electric Motors and Their Applications, page 104, Springer, 1994 ISBN 0-306-44698-7
  21. "Permanent Magnet Synchronous Motor". en.engineering-solutions.ru. Retrieved 2019-07-02.
  22. "Motor speed". Electrician's toolbox etc. Archived from the original on 1999-05-08.
  23. "Electrical machine". University of Alberta. Archived from the original on 2013-02-19. Retrieved 2013-01-09.
  24. Finney, David (1988). Variable Frequency Ac Motor Drive System. B (1991 reprint ed.). Peter Peregrinus, Ltd. p. 33. ISBN 978-0-86341-114-4.
  25. 25.0 25.1 25.2 Isidor Kerszenbaum, Geoff Klempner (2011-09-20). Handbook of Large Turbo-Generator Operation and Maintenance (Second ed.). Wiley. ISBN 9781118210406.
  26. Gerald B. Kliman, Hamid A. Toliyat (2018-10-03). Handbook of Electric Motors (Second ed.). p. 302. ISBN 9781420030389.
  27. Jordan, Howard E. (1994-08-31). Energy-Efficient Electric Motors and Their Applications. B (Second ed.). Plenum press. p. 104. ISBN 978-0-306-44698-6.
  28. Theraja, B.L. (2005). Electrical technology. II (2010 reprint ed.). S. Chand. p. 1404. ISBN 978-81-219-2437-5.
  29. Isidor Kerszenbaum, Geoff Klempner (2011-09-20). Handbook of Large Turbo-Generator Operation and Maintenance (Second ed.). Wiley. ISBN 9781118210406.
  30. Theraja, B.L. (2005). Electrical technology. II (2010 reprint ed.). S. Chand. p. 1490. ISBN 978-81-219-2437-5.
  31. 31.0 31.1 IEEE Standard 141-1993 औद्योगिक संयंत्रों के लिए विद्युत शक्ति वितरण के लिए अनुशंसित अभ्यास पृष्ठ 227-23
  32. Jerry C. Whitaker, एसी पावर सिस्टम्स हैंडबुक , पेज 192, सीआरसी प्रेस, 2007 ISBN 0-8493-4034-9
  33. LeDoux, Kurt; Visser, Paul W.; Hulin, J. Dwight; Nguyen, Hien (May 2015). "Starting Large Synchronous Motors in Weak Power Systems". IEEE Transactions on Industry Applications (in English). 51 (3): 2676–2682. doi:10.1109/tia.2014.2373820. ISSN 0093-9994.
  34. David Finney, वैरिएबल फ़्रीक्वेंसी एसी मोटर ड्राइव सिस्टम , पेज 32, IEE, 1988 ISBN 0-86341-114-2
  35. Nevelsteen, J.; Aragon, H. (1989). "Starting of large motors-methods and economics". IEEE Transactions on Industry Applications (in English). 25 (6): 1012–1018. doi:10.1109/28.44236. ISSN 0093-9994.
  36. Schaefer, R.C. (1999). "Excitation control of the synchronous motor". IEEE Transactions on Industry Applications. 35 (3): 694–702. doi:10.1109/28.767025. ISSN 0093-9994.
  37. Perez-Loya, J. J.; Abrahamsson, C.J.D.; Evestedt, Fredrik; Lundin, Urban (2017). "Demonstration of synchronous motor start by rotor polarity inversion". IEEE Transactions on Industrial Electronics (in English). 65 (10): 8271–8273. doi:10.1109/tie.2017.2784342. ISSN 0278-0046. S2CID 46936078.
  38. 38.0 38.1 38.2 Bhattacharya, S. K. (2008-08-27). Electrical Machines (third ed.). Tata - McGraw Hill. p. 481. ISBN 9780070669215. OCLC 808866911.
  39. Kosow, Irving L. (September 2007). Electric Machinery And Transformers (second ed.). Pearson Education. p. 230. ISBN 9788131711279. OCLC 222453.
  40. Theraja, B L; Theraja, A K. Electrical technology. II (2010 reprint ed.). S Chand. p. 1524.
  41. 41.0 41.1 Dubey, G K. Fundamentals of electrical drives. Narosa publishing chennai. p. 254.
  42. Pillai, S K. A First Course On Electrical Drives (second ed.). New age international. p. 25.

बाहरी संबंध