शॉक हीरा
शॉक हीरे (जिसे मच हीरे या थ्रस्ट हीरे के रूप में भी जाना जाता है) स्थायी लहर पैटर्न का गठन है जो एयरोस्पेस प्रोपल्शन प्रणाली के पराध्वनिक निकास पंख में दिखाई देता है, जैसे कि सुपरसोनिक जेट इंजिन, राकेट, रैमजेट, या "स्क्रैमजेट", जब वातावरण में इसे संचालित किया जाता है। हीरे वास्तव में एक जटिल प्रवाह क्षेत्र हैं जो स्थानीय घनत्व और दबाव में अचानक परिवर्तन से दिखाई देते हैं क्योंकि निकास स्थायी शॉक तरंगों और प्रांटल-मेयर विस्तार प्रशंसकों की एक श्रृंखला से गुजरता है। मच हीरे का नाम भौतिक विज्ञानी अर्नस्ट मच के नाम पर रखा गया है, जिन्होंने सबसे पहले उनका वर्णन किया था।[1]: 48
तंत्र
शॉक हीरे तब बनते हैं जब प्रोपेलिंग नोजल से सुपरसोनिक निकास थोड़ा अधिक विस्तारित होता है, जिसका अर्थ है कि स्थैतिक दबाव नोजल से निकलने वाली गैसों के द्रव गतिकी में स्थैतिक दबाव परिवेशी वायु दबाव से कम होता है। उच्च परिवेशी दबाव प्रवाह को संकुचित करता है, और चूंकि निकास गैस प्रवाह में परिणामी दबाव में वृद्धि रूद्धोष्म प्रक्रिया है, वेग में कमी के कारण इसका स्थिर तापमान पर्याप्त मात्रा में बढ़ जाता है।[2] निकास सामान्यतः कम ऊंचाई पर अधिक विस्तारित होता है, जहां हवा का दबाव अधिक होता है।
जैसे ही प्रवाह नोजल से बाहर निकलता है, परिवेशी वायु दाब प्रवाह को संकुचित कर देगा।[2] बाहरी संपीड़न प्रवाह के कोण पर झुकाव वाली तिरछी शॉक तरंगों के कारण होता है। संपीडित प्रवाह को प्रांटल-मेयर विस्तार प्रशंसकों द्वारा वैकल्पिक रूप से विस्तारित किया जाता है, और प्रत्येक हीरा विस्तार प्रशंसक के साथ एक तिरछे झटके की जोड़ी से बनता है। जब संपीड़ित प्रवाह केंद्र रेखा के समानांतर हो जाता है, तो प्रवाह के लंबवत तिरछी शॉक वेव बनता है, जिसे सामान्य शॉक वेव या मच डिस्क कहा जाता है। यह पहले शॉक हीरा का पता लगाता है, और इसके और नोजल के बीच की जगह को साइलेंस का क्षेत्र कहा जाता है।[3] नोजल से पहले झटके वाले हीरे की दूरी का अनुमान लगाया जा सकता है
जैसे ही निकास सामान्य शॉक वेव से गुजरता है, इसका तापमान बढ़ जाता है, अतिरिक्त ईंधन को प्रज्वलित करता है और चमक उत्पन्न करता है जिससे शॉक हीरा दिखाई देता है।[2] प्रबुद्ध क्षेत्र या तो डिस्क या हीरे (आकार) के रूप में दिखाई देते हैं, उन्हें अपना नाम देते हैं।
अंततः प्रवाह पर्याप्त फैलता है जिससे इसका दबाव फिर से परिवेश से नीचे हो, जिस बिंदु पर विस्तार प्रशंसक संपर्क विच्छेदन (प्रवाह के बाहरी किनारे) से प्रतिबिंबित होता है। परावर्तित तरंगें, जिन्हें संपीड़न पंखा कहा जाता है, प्रवाह को संकुचित करने का कारण बनती हैं।[2] यदि संपीड़न पंखा पर्याप्त ठोस है, तो एक और तिरछी शॉक वेव बनेगी, जिससे दूसरी मच डिस्क और शॉक हीरा का निर्माण होगा। यदि गैसें आदर्श और घर्षण रहित होतीं तो डिस्क और हीरे का पैटर्न अनिश्चित काल तक दोहराता रहता;[2] चूंकि, संपर्क विच्छेदन पर अशांत अपरूपण तरंग पैटर्न को दूरी के साथ फैलाने का कारण बनता है।[4]
हीरे के पैटर्न समान रूप से तब बन सकते हैं जब उच्च ऊंचाई पर कम वायुमंडलीय दबाव में नोजल का विस्तार कम होता है (परिवेश से अधिक निकास दबाव)। इस स्थिति में, विस्तार प्रशंसक पहले बनता है, उसके बाद तिरछा झटका लगता है।[2]
वैकल्पिक स्रोत
शॉक हीरे सामान्यतः जेट और रॉकेट प्रणोदन से जुड़े होते हैं, लेकिन वे अन्य प्रणालियों में बन सकते हैं।
प्राकृतिक गैस पाइपलाइन विस्फोट
शॉक हीरे को गैस पाइपलाइन ब्लोडाउन के समय देखा जा सकता है क्योंकि गैस उच्च दबाव में होती है और अत्यधिक गति से ब्लोडाउन वाल्व से बाहर निकलती है।
आर्टिलरी
जब तोपखाने के टुकड़े दागे जाते हैं, तो गैस तोप के थूथन से सुपरसोनिक गति से बाहर निकलती है और झटके वाले हीरे की श्रृंखला का उत्पादन करती है। हीरे उज्ज्वल थूथन फ्लैश का कारण बनते हैं जो दुश्मन को बंदूक की जगह के स्थान को उजागर कर सकता है। यह पाया गया कि जब प्रवाह दबाव और वायुमंडलीय दबाव के बीच का अनुपात समीप होता है, जिसे एक फ़्लैश दबाने वाले यंत्र के साथ प्राप्त किया जा सकता है, तो झटके वाले हीरे बहुत कम हो जाते हैं। थूथन के अंत में थूथन ब्रेक जोड़ना दबावों को संतुलित करता है और शॉक हीरे को रोकता है।[1]: 41
रेडियो जेट
कुछ रेडियो जेट, प्लाज़्मा के शक्तिशाली जेट जो कि कैसर और रेडियो आकाशगंगाओं से निकलते हैं, नियमित रूप से बढ़े हुए रेडियो उत्सर्जन के अंतराल पर पाए जाते हैं।[1]: 68 अंतरिक्ष में गैस के पतले वातावरण के माध्यम से जेट सुपरसोनिक गति से यात्रा करते हैं,[1]: 51 इसलिए यह अनुमान लगाया गया है कि ये गांठें शॉक हीरा हैं।
यह भी देखें
- प्लम (हाइड्रोडायनामिक्स)
- रॉकेट इंजन नोजल
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Michael L. Norman; Karl-Heinz A. Winkler (Jul 1985). "Supersonic Jets". Los Alamos Science. 12: 38–71.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Scott, Jeff (17 April 2005). "Shock Diamonds and Mach Disks". Aerospaceweb.org. Retrieved 6 November 2011.
- ↑ 3.0 3.1 Niessen, Wilfried M. A. (1999). Liquid chromatography-mass spectrometry. Vol. 79. CRC Press. p. 84. ISBN 978-0-8247-1936-4.
- ↑ "Exhaust Gases' Diamond Pattern". Florida International University. 12 March 2004. Archived from the original on 7 December 2011. Retrieved 6 November 2011.
बाहरी कड़ियाँ
- "Methane blast" - shock diamonds forming in NASA's methane engine built by XCOR Aerospace, NASA website, 4 May 2007
- "Shock Diamonds and Mach Disks" - This link has useful diagrams. Aerospaceweb.org is a non-profit site operated by engineers and scientists in the aerospace field.