वीडियो कैमरा ट्यूब

From Vigyanwiki
Revision as of 16:21, 30 January 2023 by alpha>Neeraja
विडिकॉन ट्यूब (23 inch (17 mm) दायरे में)
व्लादिमीर के. ज़्वोरकिन के साथ 1954 के प्रायोगिक वीडियो कैमरा ट्यूबों की किस्म का प्रदर्शन, जिन्होंने आइकोनोस्कोप का आविष्कार किया

1980 के दशक में चार्ज-युग्मित डिवाइस (सीसीडी) इमेज सेंसर की प्रारंभ से पहले, वीडियो कैमरा ट्यूब कैथोड रे ट्यूब पर आधारित उपकरण थे, जिनका उपयोग टेलीविजन कैमरा में टेलीविजन छवियों को पकड़ने के लिए किया जाता था।[1][2][3] 1930 के दशक की प्रारंभ से और 1990 के दशक के अंत तक कई अलग-अलग प्रकार की नलियों का उपयोग किया गया था।

इन ट्यूबों में, कैथोड किरणों को लक्ष्य पर केंद्रित प्रसारित करने के लिए दृश्य की छवि पर स्कैन किया गया था। इसने करंट उत्पन्न किया जो स्कैन बिंदु पर लक्ष्य छवि की चमक पर निर्भर था। लक्ष्य के आकार की तुलना में हड़ताली किरण का आकार छोटा था, जिससे एनटीएससी प्रारूप में प्रति चित्र 483 क्षैतिज स्कैन लाइन,PAL में 576 लाइनें,[4] और एकाधिक उप-निक्विस्ट नमूनाकरण एन्कोडिंग में 1035 लाइनें।

कैथोड रे ट्यूब

कोई भी वैक्यूम ट्यूब जो इलेक्ट्रॉनों के केंद्रित बीम का उपयोग करके संचालित होती है, जिसे मूल रूप से कैथोड रे कहा जाता है, कैथोड रे ट्यूब (सीआरटी) के रूप में जाना जाता है। इन्हें सामान्यतः पुराने (यानी,फ्लैट पैनल डिस्प्ले) टेलीविजन रिसीवर और कंप्यूटर डिस्प्ले में उपयोग किए जाने वाले डिस्प्ले डिवाइस के रूप में देखा जाता है। इस आलेख में वर्णित कैमरा पिकअप ट्यूब भी सीआरटी हैं,लेकिन वे कोई छवि प्रदर्शित नहीं करते हैं।[5]

प्रारंभिक शोध

जून 1908 में, वैज्ञानिक प्रकृति (पत्रिका) ने पत्र प्रकाशित किया जिसमें राजसी समुदाय ( यूके) के साथी एलन आर्चीबाल्ड कैंपबेल-स्विंटन ने चर्चा की कि कैसे कैथोड रे ट्यूब (या ब्रौन ट्यूब) का उपयोग करके पूरी तरह से इलेक्ट्रॉनिक टेलीविजन प्रणाली को साकार किया जा सकता है।,उनके आविष्कारक, कार्ल फर्डिनेंड ब्रौन के बाद इमेजिंग और डिस्प्ले डिवाइस दोनों के रूप में।Cite error: Closing </ref> missing for <ref> tag 1906 में जर्मनों प्रोफेसर मैक्स डाइकमैन द्वारा कैथोड रे ट्यूब को प्रदर्शित करने वाले उपकरण के रूप में सफलतापूर्वक प्रदर्शित किया गया था; उनके प्रयोगात्मक परिणाम 1909 में वैज्ञानिक अमेरिकी पत्रिका द्वारा प्रकाशित किए गए थे।

Max Dieckmann (1909-07-24). "टेलीविजन की समस्या, एक आंशिक समाधान". Scientific American Supplement. 68: 61–62. doi:10.1038/scientificamerican07241909-61supp.

कैंपबेल-स्विंटन ने बाद में नवंबर 1911 में रॉन्टगन सोसाइटी को दिए गए अध्यक्षीय भाषण में अपनी दृष्टि पर विस्तार किया। प्रस्तावित ट्रांसमिटिंग डिवाइस में फोटोइलेक्ट्रिक स्क्रीन पृथक रूबिडियम क्यूब्स का मोज़ेक था। रेफरी नाम = स्विंटन-रॉन्टगन 1 >

Albert Abramson (1955). इलेक्ट्रॉनिक मोशन पिक्चर्स. University of California Press. p. 31.[6] पूरी तरह से इलेक्ट्रॉनिक टेलीविजन प्रणाली के लिए उनकी अवधारणा को बाद में लोकप्रिय पत्रिका इलेक्ट्रिकल एक्सपेरिमेंट के अगस्त 1915 के अंक में ह्यूगो गर्न्सबैक और एच। विनफील्ड सेकोर द्वारा कैंपबेल-स्विंटन इलेक्ट्रॉनिक स्कैनिंग सिस्टम के रूप में लोकप्रिय किया गया था। [7][8] और 1921 की पुस्तक द इलेक्ट्रिकल ट्रांसमिशन ऑफ फोटोग्राफ्स में मार्कस जे. मार्टिन द्वारा। रेफरी नाम = स्विंटन-मार्टिन >

Marcus J. Martin (1921). तस्वीरों का विद्युत संचरण. Sir Issac Pitman & sons. pp. 102–106.[9]

अक्टूबर 1926 में प्रकाशित नेचर (जर्नल) को लिखे पत्र में, कैंपबेल-स्विंटन ने जीएम मिनचिन और जेसीएम स्टैंटन के साथ किए गए कुछ असफल प्रयोगों के परिणामों की भी घोषणा की। उन्होंने सेलेनियम-लेपित धातु प्लेट पर छवि प्रस्तुत करके विद्युत संकेत उत्पन्न करने का प्रयास किया था जिसे कैथोड रे बीम द्वारा साथ स्कैन किया गया था।[10] ये प्रयोग मार्च 1914 से पहले किए गए थे, जब मिनचिन की मृत्यु हो गई थी। [11] लेकिन बाद में उन्हें 1937 में मैं के एच. मिलर और जे.डब्ल्यू. स्ट्रेंज द्वारा दो अलग-अलग टीमों द्वारा दोहराया गया,[12] और आरसीए से एच.आईम्स और ए. रोज द्वारा।[13] दोनों टीमें मूल कैंपबेल-स्विंटन की सेलेनियम-लेपित प्लेट के साथ बहुत कम छवियों को प्रसारित करने में सफल रहीं, लेकिन धातु की प्लेट को जिंक सल्फाइड या सेलेनाइड से ढकने पर बहुत बेहतर छवियां प्राप्त हुईं,[12] या एल्यूमीनियम या जिरकोनियम ऑक्साइड के साथ सीज़ियम के साथ इलाज किया जाता है। [13] ये प्रयोग भविष्य के विडिकॉन का आधार बनेंगे। अगस्त 1921 में फ्रांस में एडवर्ड-गुस्ताव शुल्त्स द्वारा दायर पेटेंट आवेदन में सीआरटी इमेजिंग डिवाइस का विवरण भी दिखाई दिया,और 1922 में प्रकाशित हुआ।[14] चूंकि कुछ साल बाद तक काम करने वाले उपकरण का प्रदर्शन नहीं किया गया था।[13]


छवि चीड़फाड़

1931 से फ़ार्न्सवर्थ इमेज डिसेक्टर ट्यूब

इमेज डिसेक्टर कैमरा ट्यूब है जो फोटोकैथोड उत्सर्जन (इलेक्ट्रॉन) से दृश्य इलेक्ट्रॉन छवि बनाता है जो स्कैनिंग एपर्चर से एनोड तक जाता है, जो इलेक्ट्रॉन डिटेक्टर के रूप में कार्य करता है।[15][16] इस तरह के उपकरण को डिजाइन करने वालों में सबसे पहले जर्मनी के आविष्कारक मैक्स डाइकमैन और रुडोल्फ नरक थे,[17][18] जिन्होंने टेलीविज़न के लिए अपने 1925 के पेटेंट आवेदन फोटोइलेक्ट्रिक इमेज डिसेक्टर ट्यूब का शीर्षक दिया था।[19] यह शब्द विशेष रूप से विशिष्ट कैमरा ट्यूबों में चुंबकीय ध्यान केंद्रित करने के लिए चुंबकीय क्षेत्रों को नियोजित करने वाली डिसेक्टर ट्यूब पर लागू हो सकता है,[16] डाइकमैन और हेल के डिजाइन में तत्व की कमी है, और अमेरिकी आविष्कारक फिलो फार्न्सवर्थ द्वारा निर्मित प्रारंभिक विदारक ट्यूबों में।[17][20]

डाइकमैन और हेल ने अप्रैल 1925 में जर्मन पेटेंट कार्यालय में अपना आवेदन जमा किया और अक्टूबर 1927 में पेटेंट जारी किया गया।[19] लोकप्रिय पत्रिका डिस्कवरी के वॉल्यूम 8 (सितंबर 1927) में इमेज डिसेक्टर पर उनके प्रयोगों की घोषणा की गई थी [21][22] और लोकप्रिय रेडियो पत्रिका के मई 1928 के अंक में।[23] चूंकि,उन्होंने ऐसी ट्यूब के साथ स्पष्ट और अच्छी तरह से केंद्रित छवि प्रसारित नहीं की।[citation needed]

जनवरी 1927 में, अमेरिकी आविष्कारक और टेलीविज़न अग्रणी फिलो टी. फ़ार्न्सवर्थ ने अपने टेलीविज़न सिस्टम के पेटेंट के लिए आवेदन किया जिसमें प्रकाश के रूपांतरण और विदारक उपकरण सम्मिलित थे। [20] इसकी पहली चलती हुई छवि 7 सितंबर 1927 को सफलतापूर्वक प्रसारित की गई थी,[24]

और 1930 में पेटेंट जारी किया गया था।[20] फ़ार्नस्वर्थ ने जल्दी से उपकरण में सुधार किया,उनमें से निकल से बने इलेक्ट्रॉन गुणक को प्रस्तुत किया [25][26] और विशिष्ट कैमरा ट्यूबों में तेजी से चुंबकीय ध्यान केंद्रित करने के लिए अनुदैर्ध्य चुंबकीय क्षेत्र का उपयोग करना।[27]

सितंबर 1928 की प्रारंभ में बेहतर डिवाइस को प्रेस में प्रदर्शित किया गया था।[17][28][29]

अक्टूबर 1933 में मल्टीपाक्टर की प्रारंभ[30][31] और 1937 में बहु-डाइनोड इलेक्ट्रॉन गुणक[32][33] टेलीविजन के लिए फ़ार्नस्वर्थ के इमेज डिसेक्टर को पूरी तरह से इलेक्ट्रॉनिक इमेजिंग डिवाइस का पहला व्यावहारिक संस्करण बनाया।[34] दुर्भाग्य से, इसकी प्रकाश संवेदनशीलता बहुत कम थी, और इसलिए मुख्य रूप से केवल वहीं उपयोगी थी जहां रोशनी असाधारण रूप से उच्च थी (सामान्यतः 685 कैन्डेला /मीटर से अधिक)[35][36][37] चूंकि, यह औद्योगिक अनुप्रयोगों के लिए आदर्श था, जैसे औद्योगिक भट्टी के उज्ज्वल इंटीरियर की देखरेख करना। उनकी खराब प्रकाश संवेदनशीलता के कारण, फिल्म और अन्य पारदर्शिता को छोड़कर, टेलीविजन प्रसारण में छवि विच्छेदकों का शायद ही कभी उपयोग किया जाता था।[citation needed][38]

अप्रैल 1933 में, फ़ार्नस्वर्थ ने पेटेंट आवेदन भी प्रस्तुत किया, जिसका नाम इमेज डिसेक्टर भी था, लेकिन जिसने वास्तव में कैथोड रे ट्यूब-टाइप कैमरा ट्यूब का विवरण दिया। यह कम-वेग स्कैनिंग बीम के उपयोग का प्रस्ताव करने वाले पहले पेटेंटों में से है और आम जनता को छवि ऑर्थिकॉन ट्यूब बेचने के लिए आरसीए को इसे खरीदना पड़ा।[39] चूंकि, फ़ार्नस्वर्थ ने कभी भी ऐसी ट्यूब के साथ स्पष्ट और अच्छी तरह से केंद्रित छवि प्रसारित नहीं की।[40][41]



ऑपरेशन

इमेज डिसेक्टर का प्रकाशिकी सिस्टम छवि को उच्च वैक्यूम के अंदर माउंट किए गए फोटोकैथोड पर केंद्रित करता है। जैसे ही प्रकाश फोटोकैथोड से टकराता है, प्रकाश की तीव्रता के अनुपात में इलेक्ट्रॉन उत्सर्जित होते हैं ( प्रकाश विद्युत प्रभाव) संपूर्ण इलेक्ट्रॉन छवि को विक्षेपित किया जाता है और स्कैनिंग एपर्चर केवल उन इलेक्ट्रॉनों को अनुमति देता है जो फोटोकैथोड के बहुत छोटे क्षेत्र से किसी भी समय डिटेक्टर द्वारा कब्जा कर लिया जाता है। डिटेक्टर से आउटपुट विद्युत प्रवाह है जिसका परिमाण छवि के संबंधित क्षेत्र की चमक का माप है। इलेक्ट्रॉन छवि आवृत्ति विक्षेपित क्षैतिज और लंबवत (रास्टर स्कैनिंग) है जैसे कि पूरी छवि को प्रति सेकंड कई बार डिटेक्टर द्वारा पढ़ा जाता है, विद्युत संकेत उत्पन्न करता है जिसे वीडियो मॉनिटर ,जैसे कि सीआरटी मॉनिटर, को पुन: प्रस्तुत करने के लिए संप्रेषित किया जा सकता है।[15][16]

छवि चीड़फाड़ की कोई समाई विशेषता नहीं है; फोटोकैथोड द्वारा उत्सर्जित अधिकांश इलेक्ट्रॉनों को स्कैनिंग एपर्चर द्वारा बाहर रखा गया है,[18] और इस प्रकार आइकोनोस्कोप या छवि ऑर्थिकॉन (नीचे देखें) के रूप में फोटो-संवेदनशील लक्ष्य पर संग्रहीत होने के अतिरिक्त बर्बाद हो गया, जो काफी हद तक इसकी कम प्रकाश संवेदनशीलता के लिए जिम्मेदार है।

आइकोनोस्कोप

ज़्वोरकिन आइकोनोस्कोप ट्यूब पकड़े हुए
ज़्वोरकिन के 1931 के पेटेंट से आइकोनोस्कोप का आरेख

आइकोनोस्कोप कैमरा ट्यूब है जो विशेष कैपेसिटेंस प्लेट पर छवि को प्रोजेक्ट करता है जिसमें अलग-अलग सामग्री की पतली परत द्वारा आम प्लेट से अलग विद्युतीय रूप से पृथक फोटोसेंसिटिव ग्रेन्युल का मोज़ेक होता है, जो कुछ हद तक मानव आंख की रेटिना और फोटोरिसेप्टर सेल की व्यवस्था के अनुरूप होता है। प्रत्येक सहज ग्रेन्युल छोटे संधारित्र का गठन करता है जो प्रकाश को मारने के जवाब में विद्युत आवेश को जमा और संग्रहीत करता है। इलेक्ट्रॉन बीम समय-समय पर प्लेट में घूमता है, संग्रहीत छवि को प्रभावी ढंग से स्कैन करता है और बदले में प्रत्येक संधारित्र का निर्वहन करता है जैसे कि प्रत्येक संधारित्र से विद्युत उत्पादन प्रकाश की औसत तीव्रता के समानुपाती होता है जो प्रत्येक निर्वहन घटना के बीच होता है।[42][43]

मैक्सवेल के समीकरणों का अध्ययन करने के बाद हंगरी के इंजीनियर काल्मन तिहानी ने नई अज्ञात भौतिक घटना की खोज की, जिसके कारण इलेक्ट्रॉनिक इमेजिंग उपकरणों के विकास में सफलता मिली। उन्होंने नई घटना को चार्ज-स्टोरेज सिद्धांत का नाम दिया। (अधिक जानकारी:कलमन तिहानयी चार्ज-स्टोरेज और नई भौतिक घटना (1924) चार्ज-स्टोरेज सिद्धांत

1925 की प्रारंभ में हंगेरियन इंजीनियर कलमैन तिहनी द्वारा चार्ज-स्टोरेज तकनीक की प्रारंभ के साथ ट्रांसमिटिंग या कैमरा ट्यूब से कम विद्युत उत्पादन के परिणामस्वरूप प्रकाश के प्रति कम संवेदनशीलता की समस्या का समाधान किया जाएगा।[44] उनका समाधान कैमरा ट्यूब था जो प्रत्येक स्कैनिंग चक्र के समय ट्यूब के भीतर विद्युत आवेशों (फोटोइलेक्ट्रिक प्रभाव) को संचित और संग्रहीत करता था। डिवाइस को पहली बार पेटेंट आवेदन में वर्णित किया गया था जिसे उन्होंने मार्च 1926 में हंगरी में टेलीविजन प्रणाली के लिए दायर किया था जिसे उन्होंने रेडियोस्कोप करार दिया था। रेफरी का नाम = रेडियोस्कोप विरासत/पंजीकृत-विरासत-पृष्ठ-4/कालमन-तिहान्यिस-1926-पेटेंट-आवेदन-रेडियोस्कोप/ कलमन तिहान्यी का 1926 पेटेंट आवेदन 'रेडियोस्कोप'], मेमोरी ऑफ द वर्ल्ड, संयुक्त राष्ट्र शैक्षिक, वैज्ञानिक और सांस्कृतिक संगठन ( यूनेस्को ), 2005 , 2009-01-29 को पुनः प्राप्त किया गया।</ref> 1928 के पेटेंट आवेदन में सम्मिलित और परिशोधन के बाद,[44] 1930 में ग्रेट ब्रिटेन में तिहानी के पेटेंट को शून्य घोषित कर दिया गया था,[45] और इसलिए उन्होंने संयुक्त राज्य अमेरिका में पेटेंट के लिए आवेदन किया। तिहानी का चार्ज स्टोरेज विचार आज भी टेलीविजन के लिए इमेजिंग उपकरणों के डिजाइन में बुनियादी सिद्धांत बना हुआ है।

1923 में, पिट्सबर्ग, पेन्सिलवेनिया में वेस्टिंगहाउस इलेक्ट्रिक कॉर्पोरेशन द्वारा नियोजित होने के समय, रूसी मूल के अमेरिकी इंजीनियर व्लादिमीर के. ज़्वोरकिन ने कंपनी के महाप्रबंधक को पूरी तरह से इलेक्ट्रॉनिक टेलीविजन प्रणाली के लिए परियोजना प्रस्तुत की।[46][47] जुलाई 1925 में, ज़्वोरकिन ने टेलीविज़न सिस्टम नामक पेटेंट आवेदन प्रस्तुत किया जिसमें स्क्रीन (300 जाल) और फोटोइलेक्ट्रिक सामग्री (पोटेशियम हाइड्राइड) के कोलाइडल जमा के बीच अलग-थलग सामग्री (एल्यूमीनियम ऑक्साइड) की पतली परत से निर्मित चार्ज स्टोरेज प्लेट सम्मिलित थी। पृथक ग्लोब्यूल्स की।[48] निम्नलिखित विवरण पृष्ठ 2 में पंक्तियों 1 और 9 के बीच पढ़ा जा सकता है: फोटोइलेक्ट्रिक सामग्री, जैसे पोटेशियम हाइड्राइड, एल्यूमीनियम ऑक्साइड, या अन्य इन्सुलेट माध्यम पर वाष्पित हो जाती है, और पोटेशियम हाइड्राइड के कोलाइडियल जमा के रूप में इलाज किया जाता है मिनट ग्लोब्यूल्स। प्रत्येक ग्लोब्यूल फोटोइलेक्ट्रिक रूप से बहुत सक्रिय है और सभी उद्देश्यों और उद्देश्यों के लिए, मिनट व्यक्तिगत फोटोइलेक्ट्रिक सेल का गठन करता है। इसकी पहली छवि 1925 की गर्मियों के अंत में प्रसारित की गई थी,[49] और 1928 में पेटेंट जारी किया गया था।[48] चूंकि प्रेषित छवि की गुणवत्ता एच.पी को प्रभावित करने में विफल रही। वेस्टिंगहाउस इलेक्ट्रिक (1886) के महाप्रबंधक डेविस और ज़्वोरकिन को कुछ उपयोगी काम करने के लिए कहा गया था। [49] 1923 में ज़्वोरकिन द्वारा टेलीविजन प्रणाली के लिए पेटेंट भी दायर किया गया था, लेकिन यह फाइलिंग निश्चित संदर्भ नहीं है क्योंकि पंद्रह साल बाद पेटेंट जारी करने से पहले व्यापक संशोधन किए गए थे।[39] और फ़ाइल को ही 1931 में दो पेटेंट में विभाजित किया गया था।[50][51]

पहला व्यावहारिक आइकोनोस्कोप 1931 में सैनफोर्ड एस्सिग द्वारा बनाया गया था, जब उन्होंने गलती से चांदी की अभ्रक शीट को ओवन में बहुत देर तक छोड़ दिया था। माइक्रोस्कोप से जांच करने पर, उन्होंने देखा कि चांदी की परत छोटे-छोटे अलग-अलग चांदी के ग्लोब्यूल्स में टूट गई थी।[52] उन्होंने यह भी देखा कि, चांदी की बूंदों के छोटे आयाम क्वांटम लीप द्वारा आइकोनोस्कोप के छवि रिज़ॉल्यूशन को बढ़ाएंगे।[53] अमेरिका के रेडियो निगम (आरसीए) में टेलीविजन विकास के प्रमुख के रूप में, ज़्वोरकिन ने नवंबर 1931 में पेटेंट आवेदन प्रस्तुत किया, और यह 1935 में जारी किया गया था।[43] फिर भी, ज़्वोरकिन की टीम उपकरणों पर काम करने वाला एकमात्र इंजीनियरिंग समूह नहीं था जो चार्ज स्टोरेज प्लेट का उपयोग करता था। 1932 में, इसहाक शॉनबर्ग की देखरेख में ईएमआई इंजीनियरों टेधम और मैकगी ने नए उपकरण के पेटेंट के लिए आवेदन किया, जिसे उन्होंने एमिट्रोन करार दिया। [54] 405-लाइन टेलीविजन प्रणाली | 405-लाइन प्रसारण सेवा जिसमें एमिट्रोन का उपयोग किया गया था, 1936 में एलेक्जेंड्रा पैलेस [55]

जून 1933 में प्रेस कॉन्फ्रेंस में आइकोनोस्कोप को आम जनता के सामने प्रस्तुत किया गया था।[56] और उसी वर्ष सितंबर और अक्टूबर में दो विस्तृत तकनीकी पत्र प्रकाशित किए गए थे।[57][58] फ़ार्नस्वर्थ इमेज डिसेक्टर के विपरीत, ज़्वोरकिन आइकोनोस्कोप बहुत अधिक संवेदनशील था, 4फुट-मोमबत्ती|ft-c (43 lux ) और 20foot-मोमबत्ती|ft-c (215lux) के बीच लक्ष्य पर रोशनी के साथ उपयोगी था। बहुत स्पष्ट छवि का निर्माण करना भी आसान था।[citation needed] आइकोनोस्कोप 1936 से 1946 तक आरसीए प्रसारण द्वारा उपयोग की जाने वाली प्राथमिक कैमरा ट्यूब थी, जब इसे छवि ऑर्थिकॉन ट्यूब द्वारा बदल दिया गया था।[59][60]



सुपर-एमिट्रॉन और इमेज आइकोनोस्कोप

मूल आइकोनोस्कोप में शोर था, संकेत के लिए हस्तक्षेप का उच्च अनुपात था, और अंततः निराशाजनक परिणाम दिए, खासकर जब उच्च परिभाषा यांत्रिक स्कैनिंग सिस्टम की तुलना में उपलब्ध हो रहे थे। [61][62] इसहाक शॉनबर्ग की देखरेख में ईएमआई टीम ने विश्लेषण किया कि कैसे एमिट्रोन (या आइकोनोस्कोप) इलेक्ट्रॉनिक सिग्नल का उत्पादन करता है और निष्कर्ष निकाला है कि इसकी वास्तविक दक्षता सैद्धांतिक अधिकतम का लगभग 5% ही थी। इसका कारण यह है कि चार्ज स्टोरेज प्लेट के मोज़ेक से निकलने वाले द्वितीयक इलेक्ट्रॉन को जब स्कैनिंग बीम स्वीप करता है, तो सकारात्मक रूप से चार्ज किए गए मोज़ेक को वापस आकर्षित किया जा सकता है, इस प्रकार संग्रहीत शुल्कों में से कई को बेकार कर देता है।[63] लुब्सज़िन्स्की, रोड्डा,और मैकगी ने महसूस किया कि सबसे अच्छा समाधान फोटो-उत्सर्जन फ़ंक्शन को चार्ज स्टोरेज से अलग करना था, और इसलिए ज़्वोरकिन को उनके परिणाम बताए।[62][63]

1934 में लुब्सज़िन्स्की, रोड्डा और मैकगी द्वारा विकसित नई वीडियो कैमरा ट्यूब को सुपर-एमिट्रॉन निरंतर दिया गया था। यह ट्यूब इमेज डिसेक्टर और एमिट्रोन का संयोजन है। इसमें कुशल फोटोकैथोड है जो दृश्य प्रकाश को इलेक्ट्रॉन छवि में बदल देता है; बाद वाले को विशेष रूप से द्वितीयक इलेक्ट्रॉनों के उत्सर्जन के लिए तैयार किए गए लक्ष्य की ओर त्वरित किया जाता है। इलेक्ट्रॉन छवि से प्रत्येक व्यक्तिगत इलेक्ट्रॉन लक्ष्य तक पहुँचने के बाद कई माध्यमिक इलेक्ट्रॉनों का उत्पादन करता है, जिससे प्रवर्धन प्रभाव उत्पन्न हो। लक्ष्य विद्युतीय रूप से पृथक धात्विक कणिकाओं की पच्चीकारी से निर्मित होता है, जिसे पृथक सामग्री की पतली परत द्वारा सामान्य प्लेट से अलग किया जाता है, जिससे द्वितीयक उत्सर्जन से उत्पन्न धनात्मक आवेश कणिकाओं में जमा हो जाए। अंत में,इलेक्ट्रॉन बीम समय-समय पर लक्ष्य के पार जाता है, संग्रहीत छवि को प्रभावी ढंग से स्कैन करता है, प्रत्येक ग्रेन्युल को डिस्चार्ज करता है, और आइकोनोस्कोप की तरह इलेक्ट्रॉनिक सिग्नल का उत्पादन करता है।[64][65][66]

सुपर-एमिट्रोन मूल एमिट्रोन और आइकोनोस्कोप ट्यूबों की तुलना में दस से पंद्रह गुना अधिक संवेदनशील था और कुछ मामलों में यह अनुपात काफी अधिक था।[63] 1937 के युद्धविराम दिवस पर, पहली बार बीबीसी द्वारा बाहरी प्रसारण के लिए इसका उपयोग किया गया था, जब आम जनता टेलीविजन सेट में देख सकती थी कि कैसे राजा ने स्मारक पर माल्यार्पण किया। यह पहली बार था कि कोई भी पड़ोसी इमारतों की छत पर लगे कैमरों से सड़क के दृश्य का लाइव प्रसारण कर सकता था।[67]

दूसरी ओर, 1934 में ज़्वोरकिन ने जर्मन लाइसेंसधारी कंपनी टेलीफंकन के साथ कुछ पेटेंट अधिकार साझा किए।[68] सहयोग के परिणामस्वरूप इमेज आइकोनोस्कोप (जर्मनी में सुपरिकोनोस्कोप) का उत्पादन किया गया था। यह ट्यूब अनिवार्य रूप से सुपर-एमिट्रोन के समान है, लेकिन लक्ष्य प्रवाहकीय आधार के शीर्ष पर रखी गई पृथक सामग्री की पतली परत से निर्मित है, धातु के दानों का मोज़ेक गायब है। यूरोप में सुपर-एमिट्रॉन और इमेज आइकोनोस्कोप का उत्पादन और व्यावसायीकरण ज़्वोरकिन और फ़ार्नस्वर्थ के बीच पेटेंट युद्ध से प्रभावित नहीं था, क्योंकि डाइकमैन और हेल की जर्मनी में इमेज डिसेक्टर के आविष्कार के लिए प्राथमिकता थी, जिन्होंने अपने लिचटेलेक्ट्रिशे के लिए पेटेंट आवेदन जमा किया था। 1925 में जर्मनी में फ़र्नसेहर के लिए चित्र बनाएं 1936 से 1960 तक यूरोप में सार्वजनिक प्रसारण के लिए इमेज आइकोनोस्कोप (सुपरिकोनोस्कोप) औद्योगिक मानक बन गया, जब इसे विडिकॉन और प्लंबिकॉन ट्यूबों द्वारा बदल दिया गया। वास्तव में, यह इलेक्ट्रॉनिक ट्यूबों में यूरोपीय परंपरा का प्रतिनिधि था, जो अमेरिकी परंपरा के खिलाफ प्रतिस्पर्धा कर रहा था, जिसका प्रतिनिधित्व इमेज ऑर्थोकॉन ने किया था।[69][70] जर्मन कंपनी हेमैन ने 1936 के बर्लिन ओलंपिक खेलों के लिए सुपरिकोनोस्कोप का उत्पादन किया,[71][72] बाद में हीमैन ने भी 1940 से 1955 तक इसका उत्पादन और व्यवसायीकरण किया,[73] अंत में डच कंपनी फिलिप्स ने 1952 से 1963 तक इमेज आइकोनोस्कोप और मल्टीकॉन का उत्पादन और व्यवसायीकरण किया,[70][74] जब इसे काफी बेहतर वीडियो कैमरा ट्यूब प्लंबिकॉन (1963) से बदल दिया गया।[75][76]


ऑपरेशनफिलिप्स

सुपर-एमिट्रोन इमेज डिसेक्टर और एमिट्रोन का संयोजन है। दृश्य छवि को कुशल सतत-फिल्म अर्धपारदर्शी फोटोकैथोड पर प्रक्षेपित किया जाता है जो दृश्य प्रकाश को प्रकाश-उत्सर्जित इलेक्ट्रॉन छवि में बदल देता है, बाद में विद्युत चुम्बकीय क्षेत्रों के माध्यम से विशेष रूप से तैयार किए गए लक्ष्य की ओर विद्युत चुम्बकीय क्षेत्रों के माध्यम से त्वरित किया जाता है (और चुंबकीय फोकसिंग) द्वितीयक इलेक्ट्रॉनों का उत्सर्जन। इलेक्ट्रॉन छवि से प्रत्येक व्यक्तिगत इलेक्ट्रॉन लक्ष्य तक पहुँचने के बाद कई माध्यमिक इलेक्ट्रॉनों का उत्पादन करता है, जिससे प्रवर्धन प्रभाव उत्पन्न हो, और परिणामी धनात्मक आवेश दृश्य प्रकाश की एकीकृत तीव्रता के समानुपाती हो। लक्ष्य विद्युत रूप से पृथक धातु के दानों के मोज़ेक का निर्माण होता है, जो अलग-थलग सामग्री की पतली परत द्वारा सामान्य प्लेट से अलग होता है, जिससे द्वितीयक उत्सर्जन से उत्पन्न धनात्मक आवेश धातु के दाने और सामान्य प्लेट द्वारा निर्मित संधारित्र में जमा हो जाए। अंत में, इलेक्ट्रॉन बीम समय-समय पर लक्ष्य के पार जाता है, संग्रहीत छवि को प्रभावी ढंग से स्कैन करता है और बदले में प्रत्येक संधारित्र को निर्वहन करता है जैसे कि प्रत्येक संधारित्र से विद्युत उत्पादन प्रत्येक निर्वहन घटना के बीच दृश्य प्रकाश की औसत तीव्रता के समानुपाती होता है (जैसा कि आइकोनोस्कोप में होता है)[64][65][66]

इमेज आइकोनोस्कोप अनिवार्य रूप से सुपर-एमिट्रोन के समान है, लेकिन लक्ष्य प्रवाहकीय आधार के शीर्ष पर रखी गई पृथक सामग्री की पतली परत से बना है, धातु के दानों की पच्चीकारी गायब है। इसलिए, द्वितीयक इलेक्ट्रॉनों को पृथक सामग्री की सतह से उत्सर्जित किया जाता है जब इलेक्ट्रॉन छवि लक्ष्य तक पहुंचती है, और परिणामी सकारात्मक चार्ज पृथक सामग्री की सतह पर सीधे जमा हो जाते हैं।[69]


ऑर्थिकॉन और सीपीएस एमिट्रोन

मूल आइकोनोस्कोप में बहुत शोर था[61] चार्ज स्टोरेज प्लेट के फोटोइलेक्ट्रिक मोज़ेक से निकलने वाले द्वितीयक इलेक्ट्रॉनों के कारण जब स्कैनिंग बीम ने इसे भर दिया। [63] स्पष्ट समाधान मोज़ेक को कम-वेग वाले इलेक्ट्रॉन बीम के साथ स्कैन करना था जो प्लेट के पड़ोस में कम ऊर्जा उत्पन्न करता था जैसे कि कोई माध्यमिक इलेक्ट्रॉन उत्सर्जित नहीं होता था। अर्थात्, छवि को चार्ज स्टोरेज प्लेट के फोटोइलेक्ट्रिक मोज़ेक पर प्रक्षेपित किया जाता है, जिससे क्रमशः फोटोइलेक्ट्रिक प्रभाव | फोटो-उत्सर्जन और समाई के कारण सकारात्मक चार्ज उत्पन्न और संग्रहीत हो। इन संग्रहित आवेशों को फिर धीरे-धीरे कम-वेग इलेक्ट्रॉन स्कैनिंग बीम द्वारा छुट्टी दे दी जाती है, जिससे द्वितीयक इलेक्ट्रॉनों के उत्सर्जन को रोका जा सकता है।[77][78] स्कैनिंग बीम में सभी इलेक्ट्रॉन मोज़ेक में अवशोषित नहीं हो सकते हैं, क्योंकि संग्रहीत सकारात्मक चार्ज दृश्य प्रकाश की एकीकृत तीव्रता के समानुपाती होते हैं। फिर शेष इलेक्ट्रॉनों को एनोड में वापस विक्षेपित कर दिया जाता है ,[38][42] विशेष नियंत्रण ग्रिड द्वारा कब्जा कर लिया गया,[79][80][81] या इलेक्ट्रॉन गुणक में वापस विक्षेपित।[82]

कम-वेग स्कैनिंग बीम ट्यूबों के कई लाभ हैं; नकली संकेतों के निम्न स्तर और प्रकाश को सिग्नल में बदलने की उच्च दक्षता होती है, जिससे सिग्नल आउटपुट अधिकतम होता है। चूंकि, गंभीर समस्याएं भी हैं, क्योंकि इलेक्ट्रॉन बीम छवि की सीमाओं और कोनों को स्कैन करते समय लक्ष्य के समानांतर दिशा में फैलता है और तेज होता है, जिससे यह माध्यमिक इलेक्ट्रॉनों का उत्पादन करे और ऐसी छवि प्राप्त हो जो केंद्र में अच्छी तरह से केंद्रित हो। लेकिन सीमाओं में धुंधला।[41][83] 1929 में चार्ज स्टोरेज प्लेट की क्षमता को स्थिर करने के लिए कम-वेग वाले इलेक्ट्रॉनों के उपयोग का प्रस्ताव देने वाले पहले आविष्कारकों में हेनरीटो थे।[84] लेकिन लुब्सज़िन्स्की और ईएमआई टीम ऐसी ट्यूब के साथ स्पष्ट और अच्छी तरह से केंद्रित छवि प्रसारित करने वाले पहले इंजीनियर थे।[40] [78]

सीपीएस एमिट्रोन टेलीविजन कैमरा

पहली पूरी तरह कार्यात्मक कम-वेग स्कैनिंग बीम ट्यूब, सीपीएस एमिट्रोन, का आविष्कार किया गया था और ईएमआई टीम द्वारा सर इसहाक शॉनबर्ग की देखरेख में प्रदर्शित किया गया था।[85] 1934 में, ईएमआई इंजीनियरों ब्लमलीन और मैक्गी ने टेलीविज़न ट्रांसमिटिंग सिस्टम के लिए पेटेंट के लिए दायर किया, जहां चार्ज स्टोरेज प्लेट को विशेष नियंत्रण ग्रिड की जोड़ी द्वारा परिरक्षित किया गया था, नकारात्मक (या थोड़ा सकारात्मक) ग्रिड प्लेट के बहुत करीब था, और सकारात्मक अधिक दूर रखा गया था।[79][80][81] स्कैनिंग बीम में इलेक्ट्रॉनों का वेग और ऊर्जा ग्रिड की इस जोड़ी द्वारा उत्पन्न विद्युत क्षेत्र को कम करके शून्य कर दिया गया था, और इसलिए कम-वेग स्कैनिंग बीम ट्यूब प्राप्त की गई थी।[77][86] ईएमआई टीम ने इन उपकरणों पर काम करना जारी रखा, और लुब्सज़िन्स्की ने 1936 में पता लगाया कि स्पष्ट छवि का उत्पादन किया जा सकता है यदि कम-वेग स्कैनिंग बीम का प्रक्षेपवक्र इसके पड़ोस में चार्ज स्टोरेज प्लेट के लगभग लंबवत (ऑर्थोगोनल) था।[40][87] परिणामी डिवाइस को कैथोड संभावित स्थिर एमिट्रोन, या सीपीएस एमिट्रोन करार दिया गया था।[77][88] सीपीएस एमिट्रोन के औद्योगिक उत्पादन और व्यावसायीकरण को द्वितीय विश्व युद्ध के अंत तक इंतजार करना पड़ा;[86][89] [75][76]

अटलांटिक के दूसरी तरफ, अल्बर्ट रोज़ (भौतिक विज्ञानी) के नेतृत्व में आरसीए टीम ने 1937 में कम-वेग स्कैनिंग बीम डिवाइस पर काम करना प्रारंभ किया, जिसे उन्होंने ऑर्थोकॉन करार दिया।[90] Iams और Rose ने चार्ज स्टोरेज प्लेट के पास विशेष रूप से डिज़ाइन की गई डिफ्लेक्शन प्लेट्स और डिफ्लेक्शन कॉइल्स को स्थापित करके बीम को निर्देशित करने और इसे फोकस में रखने की समस्या को हल किया।

समान अक्षीय चुंबकीय क्षेत्र।[41][82][91] ऑर्थोकॉन 1939 के न्यूयॉर्क वर्ल्ड फेयर में आरसीए के टेलीविजन प्रदर्शन में उपयोग की जाने वाली ट्यूब थी।[90] इसका प्रदर्शन इमेज आइकोनोस्कोप के समान था, [92] लेकिन यह तेज रोशनी की अचानक चमक के तहत भी अस्थिर था, जिससे दृश्य के हिस्से में धीरे-धीरे वाष्पित होने वाली पानी की बड़ी बूंद का आभास होता था।[78]


छवि ऑर्थिकॉन

छवि ऑर्थिकॉन ट्यूब की योजनाबद्ध
File:Image-orthicon-tube.png
1960 के दशक का आरसीए रेडियोट्रॉन इमेज ऑर्थोकॉन रेडियोट्रॉन टीवी कैमरा ट्यूब

1946 से 1968 तक अमेरिकी प्रसारण में इमेज ऑर्थोकॉन (कभी-कभी संक्षिप्त IO) नाम था।[93] इमेज डिसेक्टर और ऑर्थोकॉन प्रौद्योगिकियों के संयोजन ने, इसने संयुक्त राज्य अमेरिका में आइकोनोस्कोप को बदल दिया, जिसे पर्याप्त रूप से काम करने के लिए बहुत अधिक प्रकाश की आवश्यकता थी। [94]

इमेज ऑर्थोकॉन ट्यूब आरसीए में अल्बर्ट रोज, पॉल के. वीमर और हेरोल्ड बी. लॉ द्वारा विकसित किया गया था। इसने टेलीविजन क्षेत्र में काफी प्रगति का प्रतिनिधित्व किया, और आगे के विकास कार्य के बाद, आरसीए ने 1939 और 1940 के बीच मूल मॉडल बनाए।[95] राष्ट्रीय रक्षा अनुसंधान समिति ने आरसीए के साथ अनुबंध किया जहां एनडीआरसी ने इसके आगे के विकास के लिए भुगतान किया। 1943 में आरसीए द्वारा अधिक संवेदनशील छवि ऑर्थिकॉन ट्यूब के विकास पर, आरसीए ने यूनाइटेड स्टेट्स नेवी यू.एस. के साथ उत्पादन अनुबंध में प्रवेश किया। नौसेना, पहली ट्यूब जनवरी 1944 में वितरित की जा रही थी।[96] आरसीए ने 1946 की दूसरी तिमाही में नागरिक उपयोग के लिए छवि ऑर्थिकों का उत्पादन प्रारंभ किया।[60][97]

जबकि इकोनोस्कोप और इंटरमीडिएट ऑर्थोकॉन ने वीडियो जानकारी पढ़ने के लिए छोटे लेकिन असतत प्रकाश संवेदनशील संग्राहकों और पृथक सिग्नल प्लेट के बीच समाई का उपयोग किया, छवि ऑर्थिकॉन ने निरंतर इलेक्ट्रॉनिक रूप से चार्ज संग्राहक से प्रत्यक्ष चार्ज रीडिंग को नियोजित किया। परिणामी संकेत लक्ष्य के अन्य भागों से अधिकांश बाहरी सिग्नल क्रॉसस्टॉक के प्रति प्रतिरक्षित था,और अत्यंत विस्तृत चित्र प्राप्त कर सकता था। उदाहरण के लिए, नासा द्वारा अपोलो/सैटर्न रॉकेटों को कक्षा के पास कैप्चर करने के लिए अभी भी छवि ऑर्थिकॉन कैमरों का उपयोग किया जा रहा था, चूंकि टेलीविजन नेटवर्क ने कैमरों को चरणबद्ध कर दिया था। केवल वे ही पर्याप्त विवरण प्रदान कर सकते थे।[98][failed verification]

अधिक आदेशित प्रकाश-संवेदनशील क्षेत्र और ट्यूब के आधार पर इलेक्ट्रॉन गुणक की उपस्थिति के कारण छवि ऑर्थोकॉन कैमरा कैंडललाइट द्वारा टेलीविजन चित्र ले सकता है, जो उच्च दक्षता वाले एम्पलीफायर के रूप में संचालित होता है। इसमें मानव आंखों के समान लघुगणक मापक प्रकाश संवेदनशीलता वक्र भी है। चूंकि, यह तेज रोशनी में लेंस के भड़कने की प्रवृत्ति रखता है, जिससे वस्तु के चारों ओर गहरा प्रभामंडल दिखाई देता है; इस विसंगति को प्रसारण उद्योग में प्रस्फुटन (सीसीडी) के रूप में संदर्भित किया गया था जब छवि ऑर्थिकॉन ट्यूब संचालन में थे।[99] प्रारंभिक रंगीन टेलीविजन कैमरों में छवि ऑर्थिकॉन का बड़े पैमाने पर उपयोग किया गया था, जहां ट्यूब की बढ़ी हुई संवेदनशीलता कैमरे के बहुत अक्षम, डाइक्रोइक प्रिज्म बीम-विभाजन ऑप्टिकल सिस्टम को दूर करने के लिए आवश्यक थी।[99][100]

छवि ऑर्थिकॉन ट्यूब बिंदु पर थी जिसे बोलचाल की भाषा में इम्मी कहा जाता था। एकेडमी ऑफ टेलीविज़न आर्ट्स एंड साइंसेज के तत्कालीन अध्यक्ष हैरी लुबके ने इस उपनाम के नाम पर अपना पुरस्कार रखने का फैसला किया। चूंकि प्रतिमा महिला थी, यह एमी पुरस्कार में भाषा का नारीकरण था।[101]


ऑपरेशन

छवि ऑर्थिकॉन में तीन भाग होते हैं: छवि संग्रह (लक्ष्य) के साथ फोटोकैथोड, स्कैनर जो इस छवि (इलेक्ट्रॉन गन ) को पढ़ता है,और मल्टीस्टेज इलेक्ट्रॉन गुणक।[102]

छवि स्टोर में, प्रकाश फोटोकैथोड पर पड़ता है जो बहुत ही नकारात्मक क्षमता (लगभग -600 वी) पर प्रकाश संवेदनशील प्लेट है, और इलेक्ट्रॉन छवि (छवि डिसेक्टर से उधार लिया गया सिद्धांत) में परिवर्तित हो जाती है। यह इलेक्ट्रॉन वर्षा तब ग्राउंड पोटेंशियल (0 V) पर लक्ष्य ( बहुत पतली कांच की प्लेट जो सेमी-आइसोलेटर के रूप में काम करती है) की ओर त्वरित होती है, और बहुत ही महीन तार की जाली (लगभग 200 तार प्रति सेमी) से होकर गुजरती है, बहुत पास सेंटीमीटर के कुछ सौवें हिस्से और लक्ष्य के समानांतर, थोड़ा सकारात्मक वोल्टेज (लगभग +2 वी) पर स्क्रीन ग्रिड के रूप में कार्य करता है। जब छवि इलेक्ट्रॉन लक्ष्य तक पहुँच जाते हैं, तो वे द्वितीयक उत्सर्जन के प्रभाव से इलेक्ट्रॉनों के छींटे उत्पन्न करते हैं। औसतन, प्रत्येक छवि इलेक्ट्रॉन कई स्प्लैश इलेक्ट्रॉनों को बाहर निकालता है (इस प्रकार द्वितीयक उत्सर्जन द्वारा प्रवर्धन जोड़ता है), और इन अतिरिक्त इलेक्ट्रॉनों को धनात्मक जाल द्वारा लक्ष्य से इलेक्ट्रॉनों को प्रभावी रूप से हटा दिया जाता है और घटना प्रकाश के संबंध में उस पर सकारात्मक आवेश उत्पन्न करता है। फोटोकैथोड। परिणाम स्वरुप सकारात्मक चार्ज में चित्रित छवि है, जिसमें सबसे चमकीले हिस्से में सबसे बड़ा सकारात्मक चार्ज होता है।[103]

उच्च सकारात्मक वोल्टेज (लगभग +1500 V) पर गन के चारों ओर इलेक्ट्रॉन गन (कैथोड किरण) का तीव्र केंद्रित बीम ग्राउंड पोटेंशियल पर उत्पन्न होता है और एनोड (इलेक्ट्रॉन गुणक का पहला डायनोड) द्वारा त्वरित होता है। बार जब यह इलेक्ट्रॉन गन से बाहर निकल जाता है, तो इसकी जड़ता बीम को डायनोड से दूर लक्ष्य के पीछे की ओर ले जाती है। इस बिंदु पर इलेक्ट्रॉनों की गति कम हो जाती है और क्षैतिज और ऊर्ध्वाधर विक्षेपन कॉइल द्वारा विक्षेपित हो जाते हैं, लक्ष्य को प्रभावी ढंग से स्कैन करते हैं। विशिष्ट कैमरा ट्यूबों में चुंबकीय ध्यान केंद्रित करने के लिए धन्यवाद, यह विक्षेपण सीधी रेखा में नहीं है, इस प्रकार जब इलेक्ट्रॉन लक्ष्य तक पहुँचते हैं तो वे बग़ल में घटक से बचने के लिए लंबवत रूप से ऐसा करते हैं। लक्ष्य छोटे धनात्मक आवेश के साथ लगभग जमीनी क्षमता पर है, इस प्रकार जब इलेक्ट्रॉन कम गति से लक्ष्य तक पहुँचते हैं तो वे अधिक इलेक्ट्रॉनों को निकाले बिना अवशोषित हो जाते हैं। यह धनात्मक आवेश में ऋणात्मक आवेश जोड़ता है जब तक कि स्कैन किया जा रहा क्षेत्र कुछ थ्रेशोल्ड ऋणात्मक आवेश तक नहीं पहुँच जाता है, जिस बिंदु पर स्कैनिंग इलेक्ट्रॉन अवशोषित होने के अतिरिक्त नकारात्मक क्षमता से परिलक्षित होते हैं (इस प्रक्रिया में लक्ष्य अगले स्कैन के लिए आवश्यक इलेक्ट्रॉनों को पुनः प्राप्त करता है)। ये परावर्तित इलेक्ट्रॉन कैथोड रे ट्यूब में इलेक्ट्रॉन गन के आसपास के इलेक्ट्रॉन गुणक के पहले डायनोड की ओर लौटते हैं जो उच्च क्षमता पर होता है। परावर्तित इलेक्ट्रॉनों की संख्या लक्ष्य के मूल सकारात्मक चार्ज का रैखिक माप है, जो बदले में चमक का उपाय है।[104]


डार्क हैलो

File:John Glynn TV.jpg
1962 में जॉन ग्लेन के पारा-एटलस 6 के उत्थापन के टेलीविजन में उज्ज्वल रॉकेट लौ के चारों ओर गहरा प्रभामंडल

ऑर्थोकॉन-कैप्चर की गई छवि (जिसे ब्लूमिंग के रूप में भी जाना जाता है) में उज्ज्वल वस्तुओं के चारों ओर रहस्यमय डार्क ऑर्थोकॉन हेलो इस तथ्य पर आधारित है कि आईओ फोटो इलेक्ट्रॉनों के उत्सर्जन पर निर्भर करता है, लेकिन डिवाइस की तुलना में बहुत उज्ज्वल रोशनी स्थानीय रूप से उनमें से अधिक का उत्पादन कर सकती है। कैप्चर की गई छवि पर बहुत उज्ज्वल बिंदु पर, इलेक्ट्रॉनों का बड़ा प्रसार सहज प्लेट से निकल जाता है। इतने सारे निकाले जा सकते हैं कि संग्रह जाल पर संबंधित बिंदु अब उन्हें सोख नहीं सकता है, और इस प्रकार वे लक्ष्य पर आस-पास के स्थानों पर वापस गिर जाते हैं, जैसे कि चट्टान में पानी फेंका जाता है। चूंकि परिणामी स्पलैश इलेक्ट्रॉनों में आगे के इलेक्ट्रॉनों को बाहर निकालने के लिए पर्याप्त ऊर्जा नहीं होती है, जहां वे उतरते हैं, वे इसके अतिरिक्त उस क्षेत्र में निर्मित किसी भी सकारात्मक चार्ज को बेकार कर देंगे। चूंकि गहरे रंग की छवियां लक्ष्य पर कम सकारात्मक चार्ज उत्पन्न करती हैं, स्पलैश द्वारा जमा किए गए अतिरिक्त इलेक्ट्रॉनों को स्कैनिंग इलेक्ट्रॉन बीम द्वारा अंधेरे क्षेत्र के रूप में पढ़ा जाएगा।[citation needed]

यह प्रभाव वास्तव में ट्यूब निर्माताओं द्वारा निश्चित सीमा तक विकसित किया गया था, अनशार्प मास्किंग के रूप में | अंधेरे प्रभामंडल की छोटी, सावधानीपूर्वक नियंत्रित मात्रा में विपरीत प्रभाव के कारण दृश्य छवि को कुरकुरे करने का प्रभाव होता है। (अर्थात्, जितना वास्तव में है उससे कहीं अधिक तेजी से केंद्रित होने का भ्रम देना)। बाद के विडिकॉन ट्यूब और उसके वंशज (नीचे देखें) इस प्रभाव को प्रदर्शित नहीं करते हैं, और इसलिए प्रसारण उद्देश्यों के लिए इसका उपयोग नहीं किया जा सकता जब तक कि विशेष विवरण सुधार सर्किटरी विकसित नहीं की जा सकती।[105]


विडिकॉन

वीडियोकॉन ट्यूब वीडियो कैमरा ट्यूब डिज़ाइन है जिसमें लक्ष्य सामग्री फोटोकंडक्टर है। विडिकॉन को 1950 के दशक में आरसीए में पी के वीमर ,एस वी फोर्ग्यू और आर आर गुडरिक द्वारा संरचनात्मक और विद्युत रूप से जटिल छवि ऑर्थोकॉन के सरल विकल्प के रूप में विकसित किया गया था।[citation needed] जबकि उपयोग किया गया प्रारंभिक फोटोकॉन्डक्टर सेलेनियम था, सिलिकॉन डायोड सरणियों सहित अन्य लक्ष्यों का उपयोग किया गया है।[106]

File:Vidicon.png
विडिकॉन ट्यूब की योजनाबद्ध।

विडिकॉन स्टोरेज-टाइप कैमरा ट्यूब है जिसमें चार्ज-डेंसिटी पैटर्न फोटोकंडक्टर सतह पर इमेज्ड सीन रेडिएशन द्वारा बनता है, जिसे बाद में कम-वेग वाले इलेक्ट्रॉन के बीम द्वारा स्कैन किया जाता है। वीडियो एम्पलीफायर के साथ उतार-चढ़ाव वाले वोल्टेज का उपयोग इमेज किए जा रहे दृश्य को पुन: प्रस्तुत करने के लिए किया जा सकता है। छवि द्वारा निर्मित विद्युत आवेश फेस प्लेट में तब तक बना रहेगा जब तक कि इसे स्कैन नहीं किया जाता है या जब तक आवेश समाप्त नहीं हो जाता। लक्ष्य के रूप में ट्राइग्लिसिन सल्फेट (टीजीएस) जैसे पय्रोइलेक्ट्रिक सामग्री का उपयोग करके, अवरक्त स्पेक्ट्रम के व्यापक हिस्से पर संवेदनशील विडिकॉन[107] संभव है। यह तकनीक आधुनिक माइक्रोबोलोमीटर तकनीक का अग्रदूत थी, और मुख्य रूप से अग्निशमन थर्मल कैमरों में उपयोग की जाती थी।[108]

बृहस्पति के लिए गैलीलियो (अंतरिक्ष यान) जांच के डिजाइन और निर्माण से पहले, 1970 के दशक के अंत से 1980 के दशक की प्रारंभमें नासा ने रिमोट सेंसिंग क्षमता से लैस लगभग सभी मानव रहित गहरे अंतरिक्ष जांचों पर विडिकॉन कैमरों का उपयोग किया।[109] प्रत्येक अंतरिक्ष यान के बीम विडिकॉन लौटें (आरबीवी) इमेजिंग सिस्टम के हिस्से के रूप में, 1972 में लॉन्च किए गए पहले तीन लैंडसैट पृथ्वी इमेजिंग उपग्रहों पर विडिकॉन ट्यूब का भी उपयोग किया गया था।[110][111][112] यूविकॉन ,UV-वैरिएंट विडिकॉन का उपयोग नासा द्वारा UV कर्तव्यों के लिए भी किया गया था।[113]

1970 और 1980 के दशक में विडिकॉन ट्यूब लोकप्रिय थे, जिसके बाद चार्ज-युग्मित डिवाइस (सीसीडी) और फिर सीएमओएस सेंसर के साथ ठोस-राज्य इलेक्ट्रॉनिक्स |सॉलिड-स्टेट इमेज सेंसर द्वारा उन्हें अप्रचलित कर दिया गया।

सभी विडिकॉन और इसी तरह की ट्यूब इमेज लैग से ग्रस्त हैं, जिन्हें घोस्टिंग, स्मियरिंग, बर्न-इन, कॉमेट टेल्स, लूमा ट्रेल्स और ल्यूमिनेंस ब्लूमिंग के रूप में जाना जाता है। छवि अंतराल ध्यान देने योग्य (सामान्यतः सफेद या रंगीन) ट्रेल्स के रूप में दिखाई देता है जो चमकदार वस्तु (जैसे प्रकाश या प्रतिबिंब) के बाद दिखाई देता है, निशान छोड़ता है जो अंततः छवि में फीका पड़ जाता है। पगडंडी स्वयं चलती नहीं है, बल्कि समय बीतने के साथ-साथ उत्तरोत्तर लुप्त होती जाती है, इसलिए जिन क्षेत्रों को उजागर किया गया था, वे पहले उन क्षेत्रों से पहले फीके हो गए थे जो बाद में फीके हो गए थे। इसे न तो टाला जा सकता है और न ही समाप्त किया जा सकता है, क्योंकि यह प्रौद्योगिकी में निहित है। विडिकॉन द्वारा उत्पन्न छवि किस सीमा तक प्रभावित होती है, यह विडिकॉन पर उपयोग की जाने वाली लक्ष्य सामग्री के गुणों पर निर्भर करेगा, और लक्ष्य सामग्री की क्षमता (भंडारण प्रभाव के रूप में जाना जाता है) के साथ-साथ इलेक्ट्रॉन बीम के प्रतिरोध का उपयोग किया जाता है। लक्ष्य स्कैन करें। लक्ष्य की धारिता जितनी अधिक होगी, वह उतना ही अधिक आवेश धारण कर सकता है और पगडंडी को गायब होने में उतना ही अधिक समय लगेगा। लक्ष्य पर शेष आवेश अंतत: समाप्त हो जाते हैं जिससे निशान गायब हो जाता है।[114]

आरसीएविडिकॉन कैमरा ट्यूब से इलेक्ट्रॉन गन।

प्लंबिकॉन (1963)

प्लंबिकॉन 1963 से फिलिप्सका पंजीकृत ट्रेडमार्क है, इसके लेड (II) ऑक्साइड (PbO) लक्ष्य विडिकॉन के लिए।[115] प्रसारण कैमरा अनुप्रयोगों में अधिकांशतः उपयोग किया जाता है, इन ट्यूबों में कम आउटपुट होता है, लेकिन उच्च सिग्नल-टू-शोर अनुपात होता है। छवि ऑर्थिकॉन की तुलना में उनके पास उत्कृष्ट संकल्प है, लेकिन आईओ ट्यूबों के कृत्रिम रूप से तेज किनारों की कमी है, जो देखने वाले कुछ दर्शकों को उन्हें नरम समझने का कारण बनता है। सीबीएस लैब्स ने प्लंबिकॉन जनित छवियों के किनारों को तेज करने के लिए पहले आउटबोर्ड एज एन्हांसमेंट सर्किट का आविष्कार किया।Cite error: Closing </ref> missing for <ref> tag फिलिप्स को प्लंबिकॉन के लिए 1966 का टेक्नोलॉजी एंड इंजीनियरिंग एमी अवार्ड मिला। Cite error: Closing </ref> missing for <ref> tag

2016 तक,नररगंसेट इमेजिंग प्लंबिकॉन्स बनाने वाली अंतिम कंपनी थी, जो रोड आइलैंड, यूएसए में निर्मित फिलिप्स कारखानों का उपयोग कर रही थी। जबकि अभी भी फिलिप्स का हिस्सा है, कंपनी ने EEV's (अंग्रेजी इलेक्ट्रिक वाल्व ) लेड ऑक्साइड कैमरा ट्यूब व्यवसाय खरीदा, और लेड-ऑक्साइड ट्यूब उत्पादन में एकाधिकार प्राप्त किया।[116][117][118]


सैटिकॉन (1973)

सैटिकॉन 1973 से हिताची लिमिटेड का पंजीकृत ट्रेडमार्क है, जिसे थॉमसन एसए और सोनी द्वारा भी निर्मित किया गया है। इसे हिताची और एनएचके साइंस एंड टेक्नोलॉजी रिसर्च लेबोरेटरीज (एनएचके जापान ब्रॉडकास्टिंग कॉर्पोरेशन है) के संयुक्त प्रयास से विकसित किया गया था। इसकी सतह में आर्सेनिक की ट्रेस मात्रा के साथ सेलेनियम होता है और सिग्नल को और अधिक स्थिर बनाने के लिए टेल्यूरियम (SeAsTe) मिलाया जाता है। नाम में सैट (एसईएएसटीई) से लिया गया है।[119] सैटिकॉन ट्यूबों में औसत प्रकाश संवेदनशीलता 64 फिल्म गति एएसए के बराबर होती है।[120] पारंपरिक सैटिकॉन्स की तुलना में प्रकाश संवेदनशीलता को 10 गुना तक बढ़ाने के लिए उच्च-लाभ हिमस्खलन अनाकार फोटोकंडक्टर (हार्प) का उपयोग किया जा सकता है।[121] सोनी एचडीवीएस सिस्टम के लिए सैटिकॉन बनाए गए थे, जिसका उपयोग एनालॉग हाई-डेफिनिशन टेलीविजन सिस्टम का उत्पादन करने के लिए किया जाता था। मल्टीपल सब-निक्विस्ट सैंपलिंग एन्कोडिंग का उपयोग करके एनालॉग हाई-डेफिनिशन टेलीविजन।[120]


पासकॉन (1972)

मूल रूप से तोशीबा द्वारा 1972 में चेल्निकॉन के रूप में विकसित किया गया, पासकॉन 1977 से हेमैन जीएमबीएच का पंजीकृत ट्रेडमार्क है। इसकी सतह में कैडमियम सेलेनाइड (सीडीएसओ) होता है।. इसकी व्यापक प्रतिक्रिया के कारण, इसे पैन्क्रोमैटिक सेलेनियम विडिकॉन के रूप में लेबल किया जाता है, इसलिए संक्षिप्त नाम 'पेसेकॉन' है।[119][122][123]


न्यूविकॉन (1973)

न्यूविकॉन 1973 से पैनासोनिक कॉर्पोरेशन का पंजीकृत ट्रेडमार्क है। [124] न्यूविकॉन ट्यूबों को उच्च प्रकाश संवेदनशीलता की विशेषता थी। इसकी सतह में जिंक सेलेनाइड (ZnSe) और कैडमियम जिंक टेल्यूराइड (ZnCdTe) का संयोजन होता है।[119]


ट्रिनिकॉन (1971)

ट्रिनिकॉन 1971 से सोनी का पंजीकृत ट्रेडमार्क है।[125] यह स्कैन को संबंधित लाल, हरे और नीले खंडों में विभाजित करने के लिए विडिकॉन इमेजिंग ट्यूब के फेसप्लेट पर लंबवत धारीदार आरजीबी रंग फ़िल्टर का उपयोग करता है। प्रत्येक रंग के लिए ट्यूबके अतिरिक्त कैमरे में केवल ट्यूब का उपयोग किया गया था, जैसा कि टेलीविजन प्रसारण में उपयोग किए जाने वाले रंगीन कैमरों के लिए मानक था। इसका उपयोग ज्यादातर लो-एंड उपभोक्ता कैमरों में किया जाता है, जैसे कि एचवीसी-2200 और एचवीसी-2400 मॉडल, चूंकि सोनी ने 1980 के दशक में कुछ मध्यम लागत वाले प्रस्तुत कैमरों में भी इसका उपयोग किया था, जैसे कि डीएक्ससी-1800 और बीवीपी-1 मॉडल।[126]

यद्यपि लक्ष्य पर रंग पट्टी फिल्टर का उपयोग करने का विचार नया नहीं था, प्राथमिक आरजीबी रंगों का उपयोग करने के लिए ट्रिनिकॉन एकमात्र ट्यूब था। यह पता लगाने के लिए कि स्ट्राइप फिल्टर के सापेक्ष स्कैनिंग इलेक्ट्रॉन बीम कहां था, लक्ष्य में गाढ़ने के अतिरिक्त इलेक्ट्रोड की आवश्यकता थी। पिछले रंग धारी प्रणालियों ने रंगों का उपयोग किया था जहां रंग सर्किटरी संकेतों के सापेक्ष आयामों से रंगों को शुद्ध रूप से अलग करने में सक्षम थी। परिणामस्वरूप, ट्रिनिकॉन ने ऑपरेशन की बड़ी गतिशील रेंज प्रदर्शित की।

सोनी ने बाद में सैटिकॉन ट्यूब को ट्रिनिकॉन के आरजीबी कलर फिल्टर के साथ जोड़ दिया, जिससे लो-लाइट सेंसिटिविटी और बेहतर कलर मिलता है। इस प्रकार की ट्यूब को एसएमएफ ट्रिनिकॉन ट्यूब या सैटिकॉन मिक्स्ड फील्ड के रूप में जाना जाता था। एसएमएफ ट्रिनिकॉन ट्यूबों का उपयोग एचवीसी-2800 और एचवीसी-2500 उपभोक्ता कैमरों के साथ-साथ पहले बीटा मूवी कैमकोर्डर में किया गया था।

लाइट बायसिंग

विडिकॉन को छोड़कर सभी विडिकॉन प्रकार के ट्यूब संवेदनशीलता और कंट्रास्ट को बेहतर बनाने के लिए प्रकाश बायसिंग तकनीक का उपयोग करने में सक्षम थे। इन ट्यूबों में सहज लक्ष्य इस सीमा से ग्रस्त थे कि किसी भी वीडियो आउटपुट के परिणाम से पहले प्रकाश स्तर को विशेष स्तर तक बढ़ना पड़ता था। लाइट बायसिंग ऐसी विधि थी जिससे सहज लक्ष्य को प्रकाश स्रोत से पर्याप्त रूप से प्रकाशित किया गया था कि कोई प्रशंसनीय आउटपुट प्राप्त नहीं हुआ था, लेकिन ऐसा था कि दृश्य से प्रकाश स्तर में सामान्य वृद्धि स्पष्ट आउटपुट प्रदान करने के लिए पर्याप्त थी। प्रकाश या तो लक्ष्य के चारों ओर लगे प्रदीपक से आता है, या ट्यूब के आधार पर प्रकाश स्रोत से अधिक प्रस्तुत कैमरों में और प्रकाश पाइपिंग द्वारा लक्ष्य को निर्देशित किया जाता है। तकनीक बेसलाइन विडिकॉन ट्यूब के साथ काम नहीं करेगी क्योंकि यह इस सीमा से ग्रस्त थी कि चूंकि लक्ष्य मूल रूप से इन्सुलेटर था, निरंतर कम रोशनी के स्तर ने चार्ज बनाया जो खुद को फॉगिंग (फोटोग्राफी) के रूप में प्रकट करेगा। अन्य प्रकारों में अर्धचालक लक्ष्य थे जिनमें यह समस्या नहीं थी।

रंगीन कैमरे

प्रारंभिक रंगीन कैमरों ने अलग-अलग लाल, हरे और नीले छवि ट्यूबों का उपयोग करने की स्पष्ट तकनीक का उपयोग किया, जो आज भी 3CCD ठोस राज्य कैमरों के साथ प्रयोग में तकनीक है। रंगीन कैमरे का निर्माण करना भी संभव था जो एकल छवि ट्यूब का उपयोग करता था। तकनीक का वर्णन पहले ही किया जा चुका है (ट्रिनिकॉन ऊपर)। अधिक सामान्य तकनीक और ट्यूब निर्माण के दृष्टिकोण से सरल रंग धारीदार फिल्टर के साथ सहज लक्ष्य को ओवरले करना था जिसमें हरे, सियान और स्पष्ट फिल्टर (अर्थात हरा; हरा और नीला; और हरा, नीला) की ऊर्ध्वाधर धारियों का अच्छा पैटर्न होता है। और लाल लक्ष्य भर में दोहराता है। इस व्यवस्था का लाभ यह था कि वस्तुतः हर रंग के लिए, हरे घटक का वीडियो स्तर हमेशा सियान से कम होता था, और इसी तरह सियान हमेशा सफेद रंग से कम होता था। इस प्रकार ट्यूब में किसी भी संदर्भ इलेक्ट्रोड के बिना योगदान करने वाली छवियों को अलग किया जा सकता है। यदि तीन स्तर समान थे, तो दृश्य का वह भाग हरा था। इस पद्धति को इस हानि का सामना करना पड़ा कि तीन फिल्टर के तहत प्रकाश का स्तर लगभग अलग होना निश्चित था, जिसमें हरे रंग का फिल्टर उपलब्ध प्रकाश के तिहाई से अधिक नहीं था। इस योजना पर विविधताएं उपस्थित हैं, जिनमें से मुख्य दो फिल्टर का उपयोग रंग पट्टियों के साथ किया जाता है, जैसे कि रंग लक्ष्य को ढंकते हुए लंबवत उन्मुख लोजेंज आकार बनाते हैं। चूंकि रंग निकालने की विधि समान है।

फ़ील्ड-अनुक्रमिक रंग प्रणाली

1930 और 1940 के दशक के समय, क्षेत्र-अनुक्रमिक रंग प्रणालियां विकसित की गईं, जो कैमरे की छवि ट्यूब और टेलीविजन रिसीवर पर सिंक्रनाइज़ मोटर-चालित रंग-फ़िल्टर डिस्क का उपयोग करती थीं। प्रत्येक डिस्क में लाल, नीले और हरे रंग के पारदर्शी रंग फिल्टर होते हैं। कैमरे में, डिस्क ऑप्टिकल पथ में थी, और रिसीवर में, यह सीआरटी के सामने थी। डिस्क रोटेशन को वर्टिकल स्कैनिंग के साथ सिंक्रोनाइज़ किया गया था जिससे अनुक्रम में प्रत्येक वर्टिकल स्कैन अलग प्राथमिक रंग के लिए हो। इस पद्धति ने रंगीन छवियों को उत्पन्न करने और प्रदर्शित करने के लिए नियमित काले और सफेद छवि ट्यूबों और सीआरटी की अनुमति दी। सीबीएस के लिए पीटर कार्ल गोल्डमार्क द्वारा विकसित क्षेत्र-अनुक्रमिक प्रणाली को 4 सितंबर, 1940 को प्रेस में प्रदर्शित किया गया था।[127] और पहली बार 12 जनवरी, 1950 को सामान्य जनता को दिखाया गया था।[128] गुइलेर्मो गोंजालेज केमरेना ने स्वतंत्र रूप से 1940 के दशक की प्रारंभ में मैक्सिको में क्षेत्र-अनुक्रमिक रंग डिस्क प्रणाली विकसित की, जिसके लिए उन्होंने 19 अगस्त 1940 को मैक्सिको में और 1941 में अमेरिका में पेटेंट का अनुरोध किया।[129] गोंजालेज केमरेना ने मैक्सिकन बाजार के लिए अपनी प्रयोगशाला गोन-कैम में अपनी रंगीन टेलीविजन प्रणाली का निर्माण किया और इसे शिकागो के कोलंबिया कॉलेज को निर्यात किया, जिसने इसे दुनिया की सबसे अच्छी प्रणाली माना।[130][131]


कैमरा ट्यूबों में चुंबकीय ध्यान केंद्रित करना

1896 में ए ए कैंपबेल-स्विंटन द्वारा चुंबकीय फ़ोकसिंग के रूप में जानी जाने वाली घटना की खोज की गई थी,

उन्होंने पाया कि अक्षीय कुंडल द्वारा उत्पन्न अनुदैर्ध्य चुंबकीय क्षेत्र इलेक्ट्रॉन बीम पर ध्यान केंद्रित कर सकता है।[132]

चूंकि ऑप्टिकल प्रारूप का आकार सेंसर के किसी भी भौतिक पैरामीटर से कोई संबंध नहीं रखता है, इसके उपयोग का अर्थ है कि लेंस जिसका उपयोग चार तिहाई इंच कैमरा ट्यूब के साथ किया गया होगा (कहते हैं) ठोस के साथ उपयोग किए जाने पर मोटे तौर पर समान कोण देगा। -स्टेट सेंसर इंच के चार तिहाई के ऑप्टिकल प्रारूप के साथ।

उपयोग और गिरावट

वीडियोट्यूब तकनीक का जीवनकाल 90 के दशक तक पहुंच गया, जब उच्च परिभाषा, 1035-लाइन वीडियोट्यूब का उपयोग प्रारंभिक मल्टीपल सब-न्याक्विस्ट सैंपलिंग एन्कोडिंग एचडी ब्रॉडकास्टिंग सिस्टम में किया गया था। जबकि इस एप्लिकेशन के लिए सीसीडी का परीक्षण किया गया था, 1993 तक ब्रॉडकास्टरों ने अवांछित दुष्प्रभावों के साथ छवि गुणवत्ता से समझौता किए बिना आवश्यक उच्च रिज़ॉल्यूशन प्राप्त करने वाले स्थितियों के कारण अभी भी उन्हें अपर्याप्त पाया।[133]

आधुनिक चार्ज-युग्मित डिवाइस (सीसीडी) और सक्रिय पिक्सेल सेंसर | सीएमओएस-आधारित सेंसर अपने ट्यूब समकक्षों पर कई लाभ प्रदान करते हैं। इनमें छवि अंतराल की कमी, उच्च समग्र चित्र गुणवत्ता, उच्च प्रकाश संवेदनशीलता और गतिशील रेंज, अच्छा सिग्नल-टू-शोर अनुपात और महत्वपूर्ण रूप से उच्च विश्वसनीयता और असभ्यता सम्मिलित हैं। अन्य लाभों में इलेक्ट्रॉन बीम और निर्वात नली के लिए आवश्यक संबंधित उच्च और निम्न-वोल्टेज बिजली आपूर्ति का उन्मूलन, फ़ोकसिंग कॉइल के लिए ड्राइव सर्किटरी का उन्मूलन, कोई वार्म-अप समय और काफी कम समग्र बिजली की खपत सम्मिलित है। इन फायदों के अतिरिक्त, टेलीविजन और वीडियो कैमरों में सॉलिड-स्टेट सेंसर की स्वीकृति और समावेश तत्काल नहीं था। सेंसर पिक्चर ट्यूब की तुलना में कम रिज़ॉल्यूशन और प्रदर्शन के थे, और प्रारंभ में उन्हें उपभोक्ता-ग्रेड वीडियो रिकॉर्डिंग उपकरण में बदल दिया गया था।[133]

इसके अतिरिक्त, वीडियो ट्यूब गुणवत्ता के उच्च स्तर तक पहुंच गए थे और नेटवर्क और उत्पादन संस्थाओं के लिए मानक जारी करने वाले उपकरण थे। उन संस्थाओं का न केवल ट्यूब कैमरों में, बल्कि ट्यूब-व्युत्पन्न वीडियो को सही ढंग से संसाधित करने के लिए आवश्यक सहायक उपकरणों में भी पर्याप्त निवेश था। सॉलिड-स्टेट इलेक्ट्रॉनिक्स में स्विच-ओवर | सॉलिड-स्टेट इमेज सेंसर ने उस उपकरण (और इसके पीछे के निवेश) को अप्रचलित कर दिया और ठोस-राज्य सेंसर के साथ अच्छी तरह से काम करने के लिए अनुकूलित नए उपकरण की आवश्यकता थी, जैसे पुराने उपकरण को अनुकूलित किया गया था ट्यूब-सोर्सेड वीडियो।

यह भी देखें

संदर्भ

  1. "1980 के दशक". www.digicamhistory.com.
  2. "1984_1985". www.digicamhistory.com.
  3. "आरसीए टीवी उपकरण संग्रह". www.oldradio.com.
  4. NTSC#Lines and refresh rate
  5. कैथोड रे ट्यूब। विज्ञान और प्रौद्योगिकी के मैकग्रा-हिल संक्षिप्त विश्वकोश। थर्ड एड., सिबिल पी. पार्कर, एड., मैकग्रा-हिल, इंक., 1992, पीपी. 332-333।
  6. Alexander B. Magoun (2007). Television: the life story of a technology. Greenwood Publishing Group. p. 12. ISBN 978-0-313-33128-2. rubidium cubes.
  7. H. Winfield Secor (August 1915). "Television, or the projection of pictures over a wire" (PDF). The Electrical Experimenter. III–28 (4): 131–132.
  8. Bairdtelevision. "एलन आर्काइवल्ड कैंपबेल-स्विंटन (1863-1930)". Biography. Retrieved 2010-05-10.
  9. Hugo Gernsback and H. Winfield Secor (July 1928). "Vacuum cameras to speed up television and Campbell Swinton television system" (PDF). Television. I (2): 25–28.
  10. Campbell-Swinton, A. A. (1926-10-23). "इलेक्ट्रिक टेलीविजन (सार)". Nature. 118 (2973): 590. Bibcode:1926Natur.118..590S. doi:10.1038/118590a0. S2CID 4081053. </रेफरी><ref name="Burns-Swinton">Burns, R. W. (1998). टेलीविजन: प्रारंभिक वर्षों का एक अंतर्राष्ट्रीय इतिहास. The Institute of Electrical Engineers in association with The Science Museum. p. 123. ISBN 978-0-85296-914-4.
  11. "Prof. G. M. Minchin, F.R.S." Nature. 93 (2318): 115–116. 1914-04-02. Bibcode:1914Natur..93..115R. doi:10.1038/093115a0.
  12. 12.0 12.1 Miller, H. & Strange. J. W. (1938-05-02). "The electrical reproduction of images by the photoconductive effect". Proceedings of the Physical Society. 50 (3): 374–384. Bibcode:1938PPS....50..374M. doi:10.1088/0959-5309/50/3/307.
  13. 13.0 13.1 13.2 Iams, H. & Rose, A. (August 1937). "Television Pickup Tubes with Cathode-Ray Beam Scanning". Proceedings of the Institute of Radio Engineers. 25 (8): 1048–1070. doi:10.1109/JRPROC.1937.228423. S2CID 51668505.
  14. Schoultz, Edvard-Gustav; (filed 1921, patented 1922). "Procédé et appareillage pour la transmission des images mobiles à distance". Patent No. FR 539,613. Office National de la Propriété industrielle. Retrieved 2009-07-28.
  15. 15.0 15.1 Horowitz, Paul and Winfield Hill, The Art of Electronics, Second Edition, Cambridge University Press, 1989, pp. 1000-1001. ISBN 0-521-37095-7.
  16. 16.0 16.1 16.2 Jack, Keith & Vladimir Tsatsulin (2002). वीडियो और टेलीविजन प्रौद्योगिकी का शब्दकोश. Gulf Professional Publishing. p. 148. ISBN 978-1-878707-99-4.
  17. 17.0 17.1 17.2 Burns, R. W. (1998). टेलीविजन: प्रारंभिक वर्षों का एक अंतर्राष्ट्रीय इतिहास. The Institute of Electrical Engineers in association with The Science Museum. pp. 358–361. ISBN 978-0-85296-914-4.
  18. 18.0 18.1 Webb, Richard C. (2005). टेली-विज़नरीज़: द पीपल बिहाइंड द इन्वेंशन ऑफ़ टेलीविज़न. John Wiley and Sons. p. 30. ISBN 978-0-471-71156-8.
  19. 19.0 19.1 DE 450187, Dieckmann, Max & Rudolf Hell, "Lichtelektrische Bildzerlegerröehre für Fernseher", published 1927-10-03, issued 1927-09-15 
  20. 20.0 20.1 20.2 Farnsworth, Philo T. (1930) [1927]. "Television System". Patent No. 1,773,980. United States Patent Office. Retrieved 2009-07-28.
  21. Brittain, B. J. (September 1928). "Television on the Continent". Discovery: A Monthly Popular Journal of Knowledge. John Murray. 8 (September): 283–285.
  22. Hartley, John (1999). टेलीविजन के उपयोग. Routledge. p. 72. ISBN 978-0-415-08509-0.
  23. Postman, Neil (1999-03-29). "Philo Farnsworth". The TIME 100: Scientists & Thinkers. TIME.com. Archived from the original on May 31, 2000. Retrieved 2009-07-28.
  24. Farnsworth, Philo T. (1934) [1928]. "Photoelectric Apparatus". Patent No. 1,970,036. United States Patent Office. Retrieved 2010-01-15.
  25. Farnsworth, Philo T. (1939) [1928]. "Television Method". Patent No. 2,168,768. United States Patent Office. Retrieved 2010-01-15.
  26. Farnsworth, Philo T. (1935) [1928]. "Electrical Discharge Apparatus". Patent No. 1,986,330. United States Patent Office. Retrieved 2009-07-29.
  27. Farnsworth, Elma, Distant Vision: Romance and Discovery on an Invisible Frontier, Salt Lake City, PemberlyKent, 1989, pp. 108-109.
  28. "फिलो टेलर फ़ार्नस्वर्थ (1906-1971)". The Virtual Museum of the City of San Francisco. Archived from the original on June 22, 2011. Retrieved 2009-07-15.
  29. Farnsworth, Philo T. "Electron Multiplying Device". Patent No. 2,071,515. filed 1933, patented 1937. United States Patent Office. Retrieved 2010-02-22.
  30. Farnsworth, Philo T. "Multipactor Phase Control". Patent No. 2,071,517. filed 1935, patented 1937. United States Patent Office. Retrieved 2010-02-22.
  31. Farnsworth, Philo T. "Two-stage Electron Multiplier". Patent No. 2,161,620. filed 1937, patented 1939. United States Patent Office. Retrieved 2010-02-22.
  32. Gardner, Bernard C. "Image Analyzing and Dissecting Tube". Patent No. 2,200,166. filed 1937, patented 1940. United States Patent Office. Retrieved 2010-02-22.
  33. Abramson, Albert (1987), The History of Television, 1880 to 1941. Jefferson, NC: Albert Abramson. p. 159. ISBN 0-89950-284-9.
  34. ITT Industrial Laboratories. (December 1964). "Vidissector - Image Dissector, page 1". Tentative Data-sheet. ITT. Archived from the original on 2010-09-15. Retrieved 2010-02-22.
  35. ITT Industrial Laboratories. (December 1964). "Vidissector - Image Dissector, page 2". Tentative Data-sheet. ITT. Archived from the original on 2010-09-15. Retrieved 2010-02-22.
  36. ITT Industrial Laboratories. (December 1964). "Vidissector - Image Dissector, page 3". Tentative Data-sheet. ITT. Archived from the original on 2010-09-15. Retrieved 2010-02-22.
  37. 38.0 38.1 Farnsworth, Philo T. "Image Dissector". Patent No. 2,087,683. filed 1933, patented 1937, reissued 1940. United States Patent Office. Archived from the original on 2011-07-22. Retrieved 2010-01-10.
  38. 39.0 39.1 Schatzkin, Paul. "The Farnsworth Chronicles, Who Invented What -- and When??". Retrieved 2010-01-10.
  39. 40.0 40.1 40.2 Abramson, Albert (1995). ज़्वोरकिन, टेलीविजन के अग्रणी. University of Illinois Press. p. 282. ISBN 978-0-252-02104-6. Retrieved 2010-01-18.
  40. 41.0 41.1 41.2 Rose, Albert & Iams, Harley A. (September 1939). "Television Pickup Tubes Using Low-Velocity Electron-Beam Scanning". Proceedings of the IRE. Proceedings of the IRE, volume 27, issue 9. 27 (9): 547–555. doi:10.1109/JRPROC.1939.228710. S2CID 51670303.
  41. 42.0 42.1 Tihanyi, Kalman. "Television Apparatus". Patent No. 2,158,259. filed in Germany 1928, filed in USA 1929, patented 1939. United States Patent Office. Archived from the original on 2011-07-22. Retrieved 2010-01-10.
  42. 43.0 43.1 Zworykin, V. K. "Method of and Apparatus for Producing Images of Objects". Patent No. 2,021,907. filed 1931, patented 1935. United States Patent Office. Retrieved 2010-01-10.
  43. 44.0 44.1 Kálmán Tihanyi (1897-1947), IEC Techline[permanent dead link], इंटरनेशनल इलेक्ट्रोटेक्निकल कमीशन (IEC), 2009-07-15।
  44. Tihanyi, Koloman, Improvements in television apparatus. European Patent Office, Patent No. GB313456. Convention date UK application: 1928-06-11, declared void and published: 1930-11-11, retrieved: 2013-04-25.
  45. Magoun, Alexander B.; Cody, George (2006). व्लादिमीर कोसमस ज़ूरिकिन. The National Academies Press. doi:10.17226/11807. ISBN 978-0-309-10389-3. Retrieved January 25, 2018.
  46. Encyclopædia Britannica (ed.). "व्लादिमीर ज़्वोरकिन - अमेरिकी इंजीनियर और आविष्कारक". Retrieved January 25, 2018.
  47. 48.0 48.1 Zworykin, V. K. "Television System". Patent No. 1,691,324. filed 1925, patented 1928. United States Patent Office. Retrieved 2010-01-10.
  48. 49.0 49.1 Burns, R. W. (1998). टेलीविजन: प्रारंभिक वर्षों का एक अंतर्राष्ट्रीय इतिहास. The Institute of Electrical Engineers in association with The Science Museum. p. 383. ISBN 978-0-85296-914-4. Retrieved 2010-01-10.
  49. Zworykin, Vladimir K. "Television System". Patent No. 2,022,450. filed 1923, issued 1935. United States Patent Office. Retrieved 2010-01-10.
  50. Zworykin, Vladimir K. "Television System". Patent No. 2,141,059. filed 1923, issued 1938. United States Patent Office. Retrieved 2010-01-10.
  51. Burns, R. W. (2004). संचार: प्रारंभिक वर्षों का एक अंतरराष्ट्रीय इतिहास. The Institute of Electrical Engineers. p. 534. ISBN 978-0-86341-327-8.
  52. Webb, Richard C. (2005). Tele-visionaries: the People Behind the Invention of Television. John Wiley and Sons. p. 34. ISBN 978-0-471-71156-8.
  53. EMI LTD; Tedham, William F. & McGee, James D. "Improvements in or relating to cathode ray tubes and the like". Patent No. GB 406,353. filed May 1932, patented 1934. United Kingdom Intellectual Property Office. Retrieved 2010-02-22.
  54. Tedham, William F. & McGee, James D. "Cathode Ray Tube". Patent No. 2,077,422. filed in Great Britain 1932, filed in USA 1933, patented 1937. United States Patent Office. Retrieved 2010-01-10.
  55. Lawrence, Williams L. (June 27, 1933). Human-like eye made by engineers to televise images. 'Iconoscope' converts scenes into electrical energy for radio transmission. Fast as a movie camera. Three million tiny photo cells 'memorize', then pass out pictures. Step to home television. Developed in ten years' work by Dr. V.K. Zworykin, who describes it at Chicago. ISBN 978-0-8240-7782-2. Retrieved 2010-01-10. {{cite book}}: |work= ignored (help)
  56. Zworykin, V. K. (September 1933). The Iconoscope, America's latest television favourite. Wireless World, number 33. p. 197. ISBN 978-0-8240-7782-2. Retrieved 2010-01-12.
  57. Zworykin, V. K. (October 1933). Television with cathode ray tubes. Journal of the IEE, number 73. pp. 437–451. ISBN 978-0-8240-7782-2.
  58. "R.C.A. Officials Continue to Be Vague Concerning Future of Television". The Washington Post. 1936-11-15. p. B2.
  59. 60.0 60.1 Abramson, Albert (2003). The history of television, 1942 to 2000. McFarland. p. 18. ISBN 978-0-7864-1220-4. Retrieved 2010-01-10.
  60. 61.0 61.1 Winston, Brian (1986). गलतफहमी मीडिया. Harvard University Press. pp. 60–61. ISBN 978-0-674-57663-6. Retrieved 2010-03-09.
  61. 62.0 62.1 Winston, Brian (1998). मीडिया प्रौद्योगिकी और समाज। एक इतिहास: टेलीग्राफ से इंटरनेट तक. Routledge. p. 105. ISBN 978-0-415-14230-4. Retrieved 2013-02-09.
  62. 63.0 63.1 63.2 63.3 Alexander, Robert Charles (2000). The inventor of stereo: the life and works of Alan Dower Blumlein. Focal Press. pp. 217–219. ISBN 978-0-240-51628-8. Retrieved 2010-01-10.
  63. 64.0 64.1 Lubszynski, Hans Gerhard & Rodda, Sydney. "Improvements in or relating to television". Patent No. GB 442,666. filed May 1934, patented February 1936. United Kingdom Intellectual Property Office. Retrieved 2010-01-15.
  64. 65.0 65.1 Lubszynski, Hans Gerhard & Rodda, Sydney. "Improvements in and relating to television". Patent No. GB 455,085. filed February 1935, patented October 1936. United Kingdom Intellectual Property Office. Retrieved 2010-01-15.
  65. 66.0 66.1 EMI LTD and Lubszynski; Hans Gerhard. "Improvements in or relating to television". Patent No. GB 475,928. filed May 1936, patented November 1937. United Kingdom Intellectual Property Office. Retrieved 2010-01-15.
  66. Howett, Dicky (2006). Television Innovations: 50 Technological Developments. Kelly Publications. p. 114. ISBN 978-1-903-05322-5. Retrieved 2013-10-10.
  67. Inglis, Andrew F. (1990). ट्यूब के पीछे: प्रसारण प्रौद्योगिकी और व्यवसाय का इतिहास. Focal Press. p. 172. ISBN 978-0-240-80043-1. Retrieved 2010-01-15.
  68. 69.0 69.1 de Vries, M. J.; de Vries, Marc; Cross, Nigel & Grant, Donald P. (1993). डिजाइन पद्धति और विज्ञान के साथ संबंध, न्यूमेरो 71 डे नाटो एएसआई श्रृंखला. Springer. p. 222. ISBN 978-0-7923-2191-0. Retrieved 2010-01-15.
  69. 70.0 70.1 Smith, Harry (July 1953). "Multicon - A new TV camera tube" (PDF). newspaper article. Early Television Foundation and Museum. Archived (PDF) from the original on 2013-05-12. Retrieved 2013-03-12.
  70. Gittel, Joachim (2008-10-11). "Spezialröhren". photographic album. Jogis Röhrenbude. Retrieved 2010-01-15.
  71. Early Television Museum. "TV Camera Tubes, German "Super Iconoscope" (1936)". photographic album. Early Television Foundation and Museum. Archived from the original on 2011-06-17. Retrieved 2010-01-15.
  72. Gittel, Joachim (2008-10-11). "FAR-Röhren der Firma Heimann". photographic album. Jogis Röhrenbude. Retrieved 2010-01-15.
  73. Philips (1952–1958). "5854, Image Iconoscope, Philips". electronic tube handbook (PDF). Philips. Archived (PDF) from the original on 2006-09-03. Retrieved 2010-01-15.
  74. 75.0 75.1 E.F. de Haan (1962-12-05). "The "Plumbicon", a new television camera tube" (PDF). Philips Technical Review. 24 (2): 57–58.
  75. 76.0 76.1 E.F. de Haan, A. van der Drift, and P.P.M. Schampers (1964-07-07). "The "Plumbicon", a new television camera tube" (PDF). Philips Technical Review. 25 (6/7): 133–151.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  76. 77.0 77.1 77.2 Burns, R. W. (2000). The life and times of A D Blumlein. IET. p. 181. ISBN 978-0-85296-773-7. Retrieved 2010-03-05.
  77. 78.0 78.1 78.2 Webb, Richard C. (2005). Tele-visionaries: the People Behind the Invention of Television. John Wiley and Sons. p. 65. ISBN 978-0-471-71156-8.
  78. 79.0 79.1 Blumlein, Alan Dower & McGee, James Dwyer. "Improvements in or relating to television transmitting systems". Patent No. GB 446,661. filed August 1934, patented May 1936. United Kingdom Intellectual Property Office. Retrieved 2010-03-09.
  79. 80.0 80.1 McGee, James Dwyer. "Improvements in or relating to television transmitting systems". Patent No. GB 446,664. filed September 1934, patented May 1936. United Kingdom Intellectual Property Office. Retrieved 2010-03-09.
  80. 81.0 81.1 Blumlein, Alan Dower & McGee, James Dwyer. "Television Transmitting System". Patent No. 2,182,578. filed in Great Britain August 1934, filed in USA August 1935, patented December 1939. United States Patent Office. Retrieved 2010-03-09.
  81. 82.0 82.1 Iams, Harley A. "Television Transmitting Tube". Patent No. 2,288,402. filed January 1941, patented June 1942. United States Patent Office. Retrieved 2010-03-09.
  82. McGee, J.D. (November 1950). "A review of some television pick-up tubes". Proceedings of the IEE - Part III: Radio and Communication Engineering. Proceedings of the IEE - Part III: Radio and Communication Engineering, volume 97, issue 50. 97 (50): 380–381. doi:10.1049/pi-3.1950.0073. Retrieved 2013-02-21.
  83. Henroteau, François Charles Pierre. "Television". Patent No. 1,903,112 A. filed 1929, patented 1933. United States Patent Office. Retrieved 2013-01-15.
  84. "सर इसहाक शॉनबर्ग, ब्रिटिश आविष्कारक". Encyclopaedia Britannica. Retrieved 22 July 2020. पहले हाई-डेफिनिशन टेलीविजन सिस्टम के प्रमुख आविष्कारक
  85. 86.0 86.1 J. D. McGee; W. L. Wilcock, eds. (1960). Advances in Electronics and Electron Physics, Volume XII. Academic Press. p. 204. ISBN 978-0-12-014512-6.
  86. Lubszynski, Hans Gerhard. "Improvements in and relating to television and like systems". Patent No. GB 468,965. filed January 1936, patented July 1937. United Kingdom Intellectual Property Office. Retrieved 2010-03-09.
  87. McLean, T.P. & Schagen P. (1979). Electronic imaging. Academic Press. p. 46 and 53. ISBN 978-0-12-485050-7. Retrieved 2010-03-10.
  88. "EMI 1947 CPS Emitron tube type 5954". Museum of the Broadcast Television Camera. Retrieved 2013-03-27.
  89. 90.0 90.1 "Albert Rose: Biography". IEEE Global History Center.
  90. Rose, Albert. "Television Transmitting Apparatus and Method of Operation". Patent No. 2,407,905. filed 1942, patented 1946. United States Patent Office. Retrieved 2010-01-15.
  91. Marton L., ed. (1948). Advances in Electronics and Electron Physics, Volume 1. Academic Press. p. 153. ISBN 978-0-12-014501-0.
  92. Abramson, Albert, The History of Television, 1942 to 2000, McFarland, 2003, p. 124. ISBN 0-7864-1220-8.
  93. Staff (1997–2000). "टेलीविजन". Microsoft Encarta Online Encyclopedia 2000. Microsoft Corporation. Archived from the original on October 4, 2009. Retrieved 29 June 2012.
  94. Abramson, Albert, The History of Television, 1942 to 2000, McFarland, 2003, pp. 7–8. ISBN 0-7864-1220-8.
  95. Remington Rand Inc., v. U.S., 120 F. Supp. 912, 913 (1944).
  96. aade.com Archived January 29, 2012, at the Wayback Machine RCA 2P23, One of the earliest image orthicons
  97. The University of Alabama Telescopic Tracking of the Apollo Lunar Missions
  98. 99.0 99.1 dtic.mil Westinghouse Non-blooming Image Orthicon.
  99. oai.dtic.mil Archived 2015-02-20 at the Wayback Machine Non-blooming Image Orthicon.
  100. Parker, Sandra (August 12, 2013). "एमी प्रतिमा का इतिहास". Emmys. Academy of Television Arts and Sciences. Retrieved March 14, 2017.
  101. roysvintagevideo.741.com 3" image orthicon camera project
  102. acmi.net.au Archived April 4, 2004, at the Wayback Machine The Image Orthicon (Television Camera) Tube c. 1940 - 1960
  103. fazano.pro.br The Image Converter
  104. morpheustechnology.com Morpheus Technology 4.5.1 Camera Tubes
  105. "आरसीए अल्ट्रिकॉन" (PDF). RCA. Archived (PDF) from the original on 20 September 2021. Retrieved 9 April 2021.
  106. Goss, A. J.; Nixon, R. D.; Watton, R.; Wreathall, W. M. (September 2018). Mollicone, Richard A; Spiro, Irving J (eds.). "पाइरोइलेक्ट्रिक विडिकॉन का उपयोग करके आईआर टेलीविजन में प्रगति". Proceedings of the Society of Photo-Optical Instrumentation Engineers. Infrared Technology X. 510, Infrared Technology X: 154. doi:10.1117/12.945018. S2CID 111164581.
  107. "हेरिटेज टीआईसीएस ईईवी पी4428 और पी4430 कैमरे".
  108. "अंतरिक्ष यान इमेजिंग: III। पीडीएस में पहली यात्रा". The Planetary Society. Retrieved 23 November 2011.
  109. "लैंडसैट 3 रिटर्न बीम विडकॉन (आरबीवी)". NASA Space Science Data Coordinated Archive. Retrieved July 9, 2017.
  110. Irons, James R.; Taylor, Michael P.; Rocchio, Laura. "लैंडसैट1". Landsat Science. NASA. Retrieved March 25, 2016.
  111. United States Geological Survey (August 9, 2006). "लैंडसैट 2 इतिहास". Archived from the original on April 28, 2016. Retrieved January 16, 2007.
  112. National Air and Space Museum. "डिटेक्टर, यूविकॉन, सेलेस्कोप". Smithsonian Institution.
  113. "इमेज लैग". {{cite web}}: Text "ऐसा" ignored (help)
  114. "PLUMBICON ट्रेडमार्क - रजिस्ट्रेशन नंबर 0770662 - सीरियल नंबर 72173123".
  115. Cite error: Invalid <ref> tag; no text was provided for refs named nimaging_history
  116. Cite error: Invalid <ref> tag; no text was provided for refs named nimaging_index
  117. Cite error: Invalid <ref> tag; no text was provided for refs named nimaging_plumbicon
  118. 119.0 119.1 119.2 Dhake, A. M. (1999-05-01). टीवी और वीडियो इंजीनियरिंग (in English). Tata McGraw-Hill Education. ISBN 9780074601051.
  119. 120.0 120.1 Cianci, Philip J. (January 10, 2014). हाई डेफिनिशन टेलीविजन: एचडीटीवी प्रौद्योगिकी का निर्माण, विकास और कार्यान्वयन. McFarland. ISBN 9780786487974 – via Google Books.
  120. Cianci, Philip J. (10 January 2014). हाई डेफिनिशन टेलीविजन: एचडीटीवी प्रौद्योगिकी का निर्माण, विकास और कार्यान्वयन. ISBN 9780786487974.
  121. संयुक्त राज्य अमेरिका के पेटेंट और ट्रेडमार्क कार्यालय का आधिकारिक राजपत्र: पेटेंट (in English). U.S. Department of Commerce, Patent and Trademark Office. 1977.
  122. Csorba, Illes P. (1985). छवि ट्यूब (in English). H.W. Sams. ISBN 9780672220234.
  123. "NEWVICON ट्रेडमार्क - रजिस्ट्रेशन नंबर 1079721 - सीरियल नंबर 73005338".
  124. "ट्रिनिकॉन ट्रेडमार्क - पंजीकरण संख्या 0940875 - क्रम संख्या 72384234".
  125. "Sony DXC-1600", LabGuysWorld.com.
  126. "Color Television Achieves Realism". New York Times. September 5, 1940, p. 18. A color 16 mm film was shown; live pick-ups were first demonstrated to the press in 1941. "Columbia Broadcasting Exhibits Color Television". Wall Street Journal. January 10, 1941, p. 4. "CBS Makes Live Pick-up in Color Television Archived October 14, 2007, at the Wayback Machine", Radio & Television, April 1941.
  127. "Washington Chosen for First Color Showing; From Ages 4 to 90, Audience Amazed", The Washington Post, January 13, 1950, p. B2.
  128. Gonzalez Camarena, Guillermo. "Chromoscopic adapter for television equipment". Patent No. US 2,296,019. filed in Mexico August 19, 1940, filed in USA 1941, patented 1942. United States Patent Office. Retrieved 2017-04-22.
  129. Newcomb, Horace (2004). Encyclopedia of Television, second edition. Vol. 1 A-C. Fitzroy Dearborn. p. 1484. ISBN 1-57958-411-X.
  130. "Historia de la televisión en México". Boletín de la Sociedad Mexicana de Geografía y Estadística. Sociedad Mexicana de Geografía y Estadística. 97–99: 287. 1964.
  131. Campbell-Swinton, A. A. (1896-06-18). "वैक्यूओ में इलेक्ट्रिक डिस्चार्ज पर एक मजबूत चुंबकीय क्षेत्र का प्रभाव". Proceedings of the Royal Society of London. 60 (359–367): 179–182. doi:10.1098/rspl.1896.0032. JSTOR 115833. </ रेफ> जॉन एम्ब्रोस फ्लेमिंग द्वारा इस घटना की तुरंत पुष्टि की गई|जे. ए. फ्लेमिंग और हैंस बुश ने 1926 में पूरी गणितीय व्याख्या की। रेफरी नाम = बुश> Hans Busch (1926-10-18). "अक्षीय रूप से सममित विद्युत चुम्बकीय क्षेत्रों में कैथोड किरणों के पथों की गणना". Annalen der Physik. 386 (25): 974–993. Bibcode:1926AnP...386..974B. doi:10.1002/andp.19263862507. Archived from the original on 2013-01-05.
  132. 133.0 133.1 Nihon Hōsō Kyōkai. Hōsō Gijutsu Kenkyūjo. (1993). हाई डेफिनिशन टेलीविजन: हाई-विजन टेक्नोलॉजी।. Boston, MA: Springer US. pp. 55–60. ISBN 978-1-4684-6538-9. OCLC 852789572.


बाहरी कड़ियाँ