नोड (भौतिकी)

From Vigyanwiki
Revision as of 10:09, 24 December 2022 by alpha>Siddharthverma
एक खड़ी लहर। लाल बिंदु वेव नोड हैं

एक नोड एक स्थायी तरंग के साथ एक बिंदु है जहां तरंग का न्यूनतम आयाम होता है। उदाहरण के लिए, एक वाइब्रेटिंग गिटार स्ट्रिंग में, स्ट्रिंग के सिरे नोड होते हैं। झल्लाहट के माध्यम से अंत नोड की स्थिति को बदलकर, गिटारवादक कंपन स्ट्रिंग की प्रभावी लंबाई को बदलता है और इस प्रकार संगीत की धुन बजती है। एक नोड के विपरीत एक एंटी-नोड है, एक बिंदु जहां खड़ी लहर का आयाम अधिकतम होता है और यह नोड्स के बीच में होते हैं।[1]


स्पष्टीकरण

दो तरंगों के व्यतिकरण का पैटर्न (ऊपर से नीचे की ओर)। बिंदु नोड का प्रतिनिधित्व करता है।

स्थायी तरंगों का परिणाम तब होता है जब एक ही आवृत्ति की दो साइनसोइडल तरंग ट्रेनें एक ही स्थान में विपरीत दिशाओं में चलती हैं और एक दूसरे के साथ हस्तक्षेप (तरंग प्रसार)।[2] वे तब होते हैं जब तरंगें एक सीमा पर परावर्तित होती हैं, जैसे ध्वनि तरंगें दीवार से परावर्तित होती हैं या विद्युत चुम्बकीय तरंगें एक संचरण रेखा के अंत से परावर्तित होती हैं, और विशेष रूप से जब तरंगें अनुनाद पर एक गुंजयमान यंत्र में सीमित होती हैं, तो दो सीमाओं के बीच आगे और पीछे उछलती हैं, जैसे अंग पाइप या गिटार की तार में।

एक स्थायी तरंग में नोड्स समान दूरी वाले अंतराल पर स्थानों की एक श्रृंखला होती है, जहां तरंग आयाम (गति) शून्य होता है (ऊपर एनीमेशन देखें)। इन बिंदुओं पर दो तरंगें विपरीत चरण (तरंगों) से जुड़ती हैं और एक दूसरे को रद्द कर देती हैं। वे आधे तरंग दैर्ध्य (λ/2) के अंतराल पर होते हैं। नोड्स के प्रत्येक जोड़े के बीच मिडवे वे स्थान हैं जहां आयाम अधिकतम है। इन्हें एंटीनोड कहा जाता है। इन बिंदुओं पर दो तरंगें एक ही चरण में जुड़ती हैं और एक दूसरे को सुदृढ़ करती हैं।

ऐसे स्थितियों में जहां दो विपरीत तरंग ट्रेनें समान आयाम नहीं हैं, वे पूरी तरह से रद्द नहीं होती हैं, इसलिए नोड्स पर खड़ी लहर का आयाम शून्य नहीं है बल्कि केवल न्यूनतम है। यह तब होता है जब सीमा पर प्रतिबिंब अपूर्ण होता है। यह एक परिमित स्थायी तरंग अनुपात (एसडब्ल्यूआर) द्वारा इंगित किया जाता है, नोड पर आयाम के एंटीनोड पर तरंग के आयाम का अनुपात।

एक दो आयामी सतह या झिल्ली की अनुनाद में, जैसे ढोल पर चढ़ा हुआ चमड़ा या कंपन धातु प्लेट, नोड्स नोडल रेखाएं बन जाती हैं, सतह पर रेखाएं जहां सतह गतिहीन होती है, सतह को अलग-अलग क्षेत्रों में विभाजित करती है जो विपरीत चरण के साथ कंपन करती है। इन्हें सतह पर बालू छिड़क कर देखा जा सकता है, और इसके परिणामस्वरूप बनने वाली रेखाओं के जटिल पैटर्न को चल्दनी आकृतियाँ कहा जाता है।

संचरण लाइनों में एक वोल्टेज नोड एक विद्युत प्रवाह एंटीनोड होता है, और एक वोल्टेज एंटीनोड एक करंट नोड होता है।

नोड शून्य विस्थापन के बिंदु हैं, न कि वे बिंदु जहां दो घटक तरंगें प्रतिच्छेद करती हैं।

सीमा शर्तें

जहां तरंगों को प्रतिबिंबित करने वाली सीमा के संबंध में नोड्स होते हैं, अंत की स्थिति या सीमा की स्थिति पर निर्भर करता है। हालाँकि कई प्रकार की अंत स्थितियाँ हैं, गुंजयमान यंत्रों के सिरे सामान्यतः दो प्रकारों में से एक होते हैं जो कुल प्रतिबिंब का कारण बनते हैं:

  • फिक्स्ड बाउंड्री: इस प्रकार की बाउंड्री के उदाहरण गिटार स्ट्रिंग के अटैचमेंट पॉइंट हैं, ऑर्गन पाइप या वुडविंड पाइप जैसे खुले पाइप का बंद सिरा, ड्रमहेड की परिधि, ट्रांसमिशन लाइन जिसके अंत में शार्ट सर्किट किया गया है, या लेजर गुहा के सिरों पर लगे दर्पण। इस प्रकार में, लहर के आयाम को सीमा पर शून्य करने के लिए मजबूर किया जाता है, इसलिए सीमा पर एक नोड होता है, और अन्य नोड इसके आधे तरंग दैर्ध्य के गुणकों पर होते हैं:
    0,  λ/2,  λ,  3λ/2,  2λ, ..., nλ/2
  • फ्री बाउंड्री: इस प्रकार के उदाहरण हैं ओपन-एंडेड ऑर्गन या वुडविंड पाइप, सिलाफ़न में वाइब्रेटिंग रेज़ोनेटर बार के सिरे, झंकार या ट्यूनिंग कांटा, एंटीना (रेडियो) के सिरे, या एक खुले अंत के साथ एक संचरण लाइन। इस प्रकार में तरंग के आयाम का व्युत्पन्न (पथरी) (ढलान) (ध्वनि तरंगों में दबाव, विद्युत चुम्बकीय तरंगों में विद्युत प्रवाह) को सीमा पर शून्य करने के लिए मजबूर किया जाता है। तो सीमा पर एक आयाम अधिकतम (एंटीनोड) होता है, पहला नोड अंत से एक चौथाई तरंग दैर्ध्य होता है, और अन्य नोड वहां से आधे तरंग दैर्ध्य अंतराल पर होते हैं:
    λ/4,  3λ/4,  5λ/4,  7λ/4, ..., (2n+1)λ/4


उदाहरण

ध्वनि

एक ध्वनि तरंग में तरंग माध्यम के संपीड़न और विस्तार के वैकल्पिक चक्र होते हैं। संपीड़न के दौरान, माध्यम के अणुओं को एक साथ मजबूर किया जाता है, जिसके परिणामस्वरूप दबाव और घनत्व में वृद्धि होती है। विस्तार के दौरान अणुओं को अलग करने के लिए मजबूर किया जाता है, जिसके परिणामस्वरूप दबाव और घनत्व कम हो जाता है।

निर्दिष्ट लंबाई में नोड्स की संख्या तरंग की आवृत्ति के सीधे आनुपातिक होती है।

कभी-कभी गिटार, वायलिन या अन्य तार वाले वाद्य यंत्रों पर, लयबद्ध्स बनाने के लिए नोड्स का उपयोग किया जाता है। जब एक निश्चित बिंदु पर उंगली को स्ट्रिंग के ऊपर रखा जाता है, लेकिन स्ट्रिंग को फ्रेटबोर्ड तक नीचे नहीं धकेलता है, तो एक तीसरा नोड बनाया जाता है (पुल (साधन) और अखरोट (साधन) के अतिरिक्त) और एक हार्मोनिक बजता है। सामान्य खेल के दौरान जब झल्लाहट का उपयोग किया जाता है, हार्मोनिक्स हमेशा सम्मलित होते हैं, चूंकि वे शांत होते हैं। कृत्रिम नोड विधि के साथ, अधिस्वर जोर से होता है और मौलिक आवृत्ति टोन शांत होता है। यदि उंगली को स्ट्रिंग के मध्य बिंदु पर रखा जाता है, तो पहला ओवरटोन सुनाई देता है, जो मौलिक नोट के ऊपर एक सप्तक है जिसे बजाया जाएगा, यदि हार्मोनिक नहीं बजाया जाता। जब दो अतिरिक्त नोड्स स्ट्रिंग को तिहाई में विभाजित करते हैं, तो यह एक सप्तक और एक पूर्ण पाँचवाँ (बारहवाँ) बनाता है। जब तीन अतिरिक्त नोड स्ट्रिंग को क्वार्टर में विभाजित करते हैं, तो यह एक डबल ऑक्टेव बनाता है। जब चार अतिरिक्त नोड स्ट्रिंग को पांचवें में विभाजित करते हैं, तो यह एक डबल-ऑक्टेव और एक प्रमुख तीसरा (17वां) बनाता है। सप्तक, प्रमुख तीसरा और पूर्ण पाँचवाँ एक प्रमुख राग में सम्मलित तीन नोट हैं।

विशेषता ध्वनि जो श्रोता को किसी विशेष उपकरण की पहचान करने की अनुमति देती है, वह काफी हद तक उपकरण द्वारा बनाए गए हार्मोनिक्स के सापेक्ष परिमाण के कारण होती है।

श्लाडनी प्लेट पर रेत नोड्स को उजागर करती है।

दो या तीन आयामों में तरंगें

हाइड्रोजन तरंग कार्यों पर रेडियल और कोणीय नोड।

दो आयामी स्थायी तरंगों में, नोड्स वक्र होते हैं (प्रायः सीधी रेखाएँ या वृत्त जब सरल ज्यामिति पर प्रदर्शित होते हैं।) उदाहरण के लिए, रेत उन क्षेत्रों को इंगित करने के लिए एक कंपन अर्न्स्ट श्लाडनी के नोड्स के साथ इकट्ठा होती है जहां प्लेट नहीं चल रही है।[3] रसायन विज्ञान में, क्वांटम यांत्रिकी तरंगों, या परमाणु कक्षीय, का उपयोग इलेक्ट्रॉनों के तरंग-सदृश गुणों का वर्णन करने के लिए किया जाता है। इनमें से कई क्वांटम तरंगों में नोड और एंटीनोड भी होते हैं। इन नोड्स और एंटीनोड्स की संख्या और स्थिति एक परमाणु या सहसंयोजक बंधन के कई गुणों को जन्म देती है। परमाणु कक्षकों को रेडियल और कोणीय नोड्स की संख्या के अनुसार वर्गीकृत किया जाता है। हाइड्रोजन परमाणु के लिए एक रेडियल नोड एक क्षेत्र है जो तब होता है जहां परमाणु कक्षीय के लिए तरंग क्रिया शून्य के बराबर होती है, जबकि कोणीय नोड होता है

एक समतल विमान।[4] आण्विक कक्षकों को बंधन चरित्र के अनुसार वर्गीकृत किया जाता है। नाभिक के बीच एक एंटीनोड वाले आणविक ऑर्बिटल्स बहुत स्थिर होते हैं, और बॉन्डिंग ऑर्बिटल्स के रूप में जाने जाते हैं जो बॉन्ड को मजबूत करते हैं। इसके विपरीत, नाभिक के बीच एक नोड वाले आणविक ऑर्बिटल्स इलेक्ट्रोस्टैटिक प्रतिकर्षण के कारण स्थिर नहीं होंगे और उन्हें एंटी-बॉन्डिंग ऑर्बिटल्स के रूप में जाना जाता है जो बंधन को कमजोर करते हैं। एक अन्य ऐसी क्वांटम यांत्रिकी अवधारणा एक बॉक्स में कण है जहां वेवफंक्शन के नोड्स की संख्या क्वांटम ऊर्जा स्थिति को निर्धारित करने में मदद कर सकती है - शून्य नोड जमीनी स्थिति से मेल खाती है, एक नोड पहली उत्तेजित अवस्था से मेल खाती है, आदि। सामान्यतः,[5] यदि कोई आइजेनस्टेट्स को बढ़ती हुई ऊर्जाओं के क्रम में व्यवस्थित करता है, , ईजेनफंक्शन इसी तरह नोड्स की बढ़ती संख्या के क्रम में आते हैं; nवें eigenfunction में n−1 नोड हैं, जिनमें से प्रत्येक के बीच निम्नलिखित eigenफ़ंक्शन में कम से कम एक नोड है।


इस पेज में लापता आंतरिक लिंक की सूची

  • संगीत नोट
  • पर्दों
  • हस्तक्षेप (लहर प्रसार)
  • गूंज
  • मस्त आंकड़े
  • स्थायी लहर अनुपात
  • ध्वनि की तरंग
  • चरण (लहरें)
  • आणविक कक्षीय

संदर्भ

  1. Stanford, A. L.; Tanner, J. M. (2014). Physics for Students of Science and Engineering. Academic Press. p. 561. ISBN 148322029X.
  2. Feynman, Richard P.; Robert Leighton; Matthew Sands (1963). The Feynman Lectures on Physics, Vol.1. USA: Addison-Wesley. pp. ch.49. ISBN 0-201-02011-4.
  3. Comer, J. R., et al. "Chladni plates revisited." American journal of physics 72.10 (2004): 1345-1346.
  4. Supplemental modules (physical and Theoretical Chemistry). Chemistry LibreTexts. (2020, December 13). Retrieved September 13, 2022, from https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)
  5. Albert Messiah, 1966. Quantum Mechanics (Vol. I), English translation from French by G. M. Temmer. North Holland, John Wiley & Sons. Cf. chpt. IV, section III. online Ch 3  §12