बहुचर कलन
बहुभिन्नरूपी कलन (जिसे बहुभिन्नरूपी कलन के रूप में भी जाना जाता है) एक चर (गणित) में कलन का विस्तार है जिसमें कई वास्तविक चरों के कार्य के साथ कलन है: विभेदक कलन और कार्यों का अभिन्न अंग जिसमें केवल एक के अतिरिक्त कई चर प्रयुक्त हैं।[1] बहुभिन्नरूपी कलन को उन्नत कलन का प्राथमिक भाग माना जा सकता है। उन्नत कैलकुलस के लिए, यूक्लिडियन अंतरिक्ष पर कलन देखें। तीन आयामी अंतरिक्ष में कलन के विशेष स्थितियों को अधिकांशतः सदिश कलन कहा जाता है।
विशिष्ट संचालन
सीमाएं और निरंतरता
मल्टीवेरिएबल कैलकुलस में एक फ़ंक्शन की सीमा और निरंतर फ़ंक्शन का अध्ययन एकल-वैरिएबल फ़ंक्शंस द्वारा प्रदर्शित नहीं किए जाने वाले कई प्रतिकूल परिणाम उत्पन्न करता है।[1]: 19–22 उदाहरण के लिए, उनके डोमेन में बिंदुओं के साथ दो वेरिएबल्स के स्केलर फ़ंक्शन हैं जो अलग-अलग रास्तों के साथ संपर्क करने पर अलग-अलग सीमाएँ देते हैं। उदा., समारोह।
फ़ाइल:((x^2)(y))⁄((x^4)+(y^2)).png|thumb|समारोह का प्लॉट f(x, y) = (x²y)/(x4 + y2)बिंदु जब भी शून्य तक पहुंचता है मूल के माध्यम से लाइनों के साथ संपर्क किया जाता है (). हालांकि, जब मूल परवलय के साथ संपर्क किया जाता है , फ़ंक्शन मान की एक सीमा होती है . चूंकि एक ही बिंदु की ओर अलग-अलग रास्ते लेने से अलग-अलग सीमा मूल्य प्राप्त होते हैं, वहां एक सामान्य सीमा मौजूद नहीं होती है।
बहुभिन्नरूपी निरंतरता के लिए प्रत्येक तर्क में निरंतरता पर्याप्त नहीं होना भी निम्न उदाहरण से देखा जा सकता है।[1]: 17–19 विशेष रूप से, वास्तविक-मूल्यवान फ़ंक्शन के लिए दो वास्तविक-मूल्यवान पैरामीटर के साथ, , की निरंतरता में निश्चित के लिए और की निरंतरता में निश्चित के लिए की निरंतरता नहीं दर्शाता है .
विचार करना
यह सत्यापित करना आसान है कि यह फ़ंक्शन सीमा पर और चतुर्भुज के बाहर परिभाषा द्वारा शून्य है . इसके अलावा, निरंतर के लिए परिभाषित कार्य और और द्वारा
- और
निरंतर हैं। विशेष रूप से,
- सबके लिए x और y.
हालाँकि, अनुक्रम (प्राकृतिक के लिए ) में मिलती है , फ़ंक्शन को बंद के रूप में प्रस्तुत करना . के समानांतर नहीं मूल बिंदु की ओर बढ़ रहा है - और -अक्ष इस असंततता को प्रकट करता है।
फ़ंक्शन रचना की निरंतरता
यदि पर निरंतर है और पर निरंतर एकल चर फलन है फिर समग्र कार्य द्वारा परिभाषित पर निरंतर है उदाहरण के लिए, और
निरंतर कार्यों के गुण
यदि और दोनों निरंतर हैं तब
(मैं) पर निरंतर हैं (द्वितीय) पर निरंतर है किसी स्थिरांक के लिए c.
(iii) बिंदु पर निरंतर है (iv) पर निरंतर है यदि (में) पर निरंतर है
आंशिक अंतर
आंशिक व्युत्पन्न उच्च आयामों के व्युत्पन्न की धारणा को सामान्यीकृत करता है। एक बहुभिन्नरूपी फ़ंक्शन का एक आंशिक व्युत्पन्न एक चर के संबंध में एक व्युत्पन्न है जिसमें अन्य सभी चर स्थिर होते हैं।[1]: 26ff व्युत्पन्न के अधिक जटिल भाव बनाने के लिए आंशिक डेरिवेटिव को दिलचस्प तरीके से जोड़ा जा सकता है। वेक्टर कलन में, का ऑपरेटर () आंशिक डेरिवेटिव के संदर्भ में ढाल, विचलन और कर्ल (गणित) की अवधारणाओं को परिभाषित करने के लिए प्रयोग किया जाता है। आंशिक डेरिवेटिव का एक मैट्रिक्स, जेकोबियन मैट्रिक्स और निर्धारक मैट्रिक्स, मनमाना आयाम के दो स्थानों के बीच एक फ़ंक्शन के व्युत्पन्न का प्रतिनिधित्व करने के लिए इस्तेमाल किया जा सकता है। व्युत्पन्न को इस प्रकार एक रैखिक परिवर्तन के रूप में समझा जा सकता है जो फ़ंक्शन के डोमेन में बिंदु से बिंदु तक सीधे भिन्न होता है।
आंशिक अवकलज वाले अवकल समीकरणों को आंशिक अवकल समीकरण या PDE कहते हैं। साधारण अंतर समीकरणों की तुलना में इन समीकरणों को हल करना आम तौर पर अधिक कठिन होता है, जिसमें केवल एक चर के संबंध में डेरिवेटिव होते हैं।[1]: 654ff
एकाधिक एकीकरण
मल्टीपल इंटीग्रल किसी भी संख्या के चर के कार्यों के लिए इंटीग्रल की अवधारणा का विस्तार करता है। विमान और अंतरिक्ष में क्षेत्रों और क्षेत्रों की मात्रा की गणना करने के लिए डबल और ट्रिपल इंटीग्रल का उपयोग किया जा सकता है। फ्यूबिनी की प्रमेय गारंटी देती है कि एक बहु अभिन्न का मूल्यांकन एक दोहराए गए अभिन्न या पुनरावृत्त अभिन्न के रूप में किया जा सकता है जब तक कि एकीकरण के पूरे क्षेत्र में एकीकृत निरंतर हो।[1]: 367ff सतह अभिन्न और रेखा अभिन्न का उपयोग सरफेस (मैथमैटिक्स) और वक्र्स जैसे कर्व्ड विविध पर इंटीग्रेट करने के लिए किया जाता है।
कई आयामों में कलन की मौलिक प्रमेय
एकल-चर कलन में, कलन का मौलिक प्रमेय व्युत्पन्न और अभिन्न के बीच एक कड़ी स्थापित करता है। बहुभिन्नरूपी कलन में व्युत्पन्न और अभिन्न के बीच की कड़ी सदिश कलन के अभिन्न प्रमेयों द्वारा सन्निहित है:[1]: 543ff
- ढाल प्रमेय
- स्टोक्स प्रमेय#विशेष मामले|स्टोक्स प्रमेय
- विचलन प्रमेय
- ग्रीन की प्रमेय।
बहुभिन्नरूपी कैलकुलस के एक और अधिक उन्नत अध्ययन में, यह देखा गया है कि ये चार प्रमेय एक अधिक सामान्य प्रमेय के विशिष्ट अवतार हैं, सामान्यीकृत सामान्यीकृत स्टोक्स प्रमेय | स्टोक्स प्रमेय, जो भिन्नात्मक मैनिफोल्ड पर विभेदक रूपों के एकीकरण पर लागू होता है।[2]
अनुप्रयोग और उपयोग
भौतिक दुनिया में रुचि की कई वस्तुओं का अध्ययन करने के लिए बहुभिन्नरूपी कलन की तकनीकों का उपयोग किया जाता है। विशेष रूप से,
| Type of functions | Applicable techniques | ||
|---|---|---|---|
| Curves | for |
Lengths of curves, line integrals, and curvature. | |
| Surfaces | for |
Areas of surfaces, surface integrals, flux through surfaces, and curvature. | |
| Scalar fields | Maxima and minima, Lagrange multipliers, directional derivatives, level sets. | ||
| Vector fields | Any of the operations of vector calculus including gradient, divergence, and curl. |
बहुभिन्नरूपी कैलकुलस को निर्धारिती प्रणालियों का विश्लेषण करने के लिए लागू किया जा सकता है जिनमें स्वतंत्रता (भौतिकी और रसायन विज्ञान) की कई डिग्री होती हैं। स्वतंत्रता की प्रत्येक डिग्री के अनुरूप स्वतंत्र चर वाले कार्य अधिकांशतः इन प्रणालियों को मॉडल करने के लिए उपयोग किए जाते हैं, और बहुभिन्नरूपी कलन प्रणाली की गतिशीलता को चिह्नित करने के लिए उपकरण प्रदान करता है।
बहुभिन्नरूपी कलन का उपयोग निरंतर समय गतिशील प्रणालियों के इष्टतम नियंत्रण में किया जाता है। अनुभवजन्य डेटा के विभिन्न सेटों के बीच संबंधों का अनुमान लगाने के लिए सूत्र प्राप्त करने के लिए प्रतिगमन विश्लेषण में इसका उपयोग किया जाता है।
बहुभिन्नरूपी कलन का उपयोग प्राकृतिक विज्ञान और सामाजिक विज्ञान और अभियांत्रिकी के कई क्षेत्रों में मॉडल और उच्च-आयामी प्रणालियों का अध्ययन करने के लिए किया जाता है जो नियतात्मक व्यवहार प्रदर्शित करते हैं। अर्थशास्त्र में, उदाहरण के लिए, विभिन्न प्रकार के सामानों पर उपभोक्ता की पसंद, और उपयोग करने के लिए विभिन्न इनपुट और उत्पादन के लिए आउटपुट पर अधिकतम लाभ, बहुभिन्नरूपी कलन के साथ तैयार किए जाते हैं।
गैर-नियतात्मक, या स्टोकेस्टिक प्रक्रिया प्रणालियों का अध्ययन एक अलग तरह के गणित का उपयोग करके किया जा सकता है, जैसे स्टोचैस्टिक कैलकुलस।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Richard Courant; Fritz John (14 December 1999). पथरी और विश्लेषण खंड II/2 का परिचय. Springer Science & Business Media. ISBN 978-3-540-66570-0.
- ↑ Spivak, Michael (1965). कई गुना पर पथरी. New York: W. A. Benjamin, Inc. ISBN 9780805390216.
बाहरी कड़ियाँ
- UC Berkeley video lectures on Multivariable Calculus, Fall 2009, Professor Edward Frenkel
- MIT video lectures on Multivariable Calculus, Fall 2007
- Multivariable Calculus: A free online textbook by George Cain and James Herod
- Multivariable Calculus Online: A free online textbook by Jeff Knisley
- Multivariable Calculus – A Very Quick Review, Prof. Blair Perot, University of Massachusetts Amherst
- Multivariable Calculus, Online text by Dr. Jerry Shurman