विस्फोट
This article needs additional citations for verification. (February 2014) (Learn how and when to remove this template message) |
एक विस्फोट ऊर्जा की चरम बाहरी रिलीज से जुड़ी मात्रा में एक तेजी से विस्तार है, आमतौर पर उच्च तापमान की पीढ़ी और उच्च दबाव वाली गैस ों की रिहाई के साथ।उच्च विस्फोटक ों द्वारा बनाए गए पराध्वनिक विस्फोटों को विस्फोट के रूप में जाना जाता है और सदमे तरंगों के माध्यम से यात्रा करते हैं।WIKT: सबसोनिक विस्फोट कम विस्फोटक ों द्वारा एक धीमी दहन प्रक्रिया के माध्यम से बनाया जाता है जिसे दमक के रूप में जाना जाता है।
कारण
एक बड़े विक्ट के कारण प्रकृति में विस्फोट हो सकते हैं: ऊर्जा का प्रवाह।अधिकांश प्राकृतिक विस्फोट ज्वालामुखी या विभिन्न प्रकार की सुपरनोवा प्रक्रियाओं से उत्पन्न होते हैं।विस्फोटक ज्वालामुखी विस्फोट तब होते हैं जब मेग्मा नीचे से उठता है, इसमें बहुत घुलित गैस होती है।मैग्मा के रूप में दबाव की कमी बढ़ जाती है और गैस को समाधान से बाहर बुलबुला करने का कारण बनता है, जिसके परिणामस्वरूप मात्रा में तेजी से वृद्धि होती है।विस्फोट भी प्रभाव की घटनाओं के परिणामस्वरूप होते हैं और घटनाओं में जैसे जलपर्दी विस्फोट (ज्वालामुखी प्रक्रियाओं के कारण भी)।सुपरनोवा जैसी घटनाओं में ब्रह्मांड में पृथ्वी के बाहर विस्फोट भी हो सकते हैं।विस्फोट अक्सर नीलगिरी के जंगलों में बुशफायर के दौरान होते हैं जहां पेड़ में अस्थिर तेल अचानक दहन करते हैं।[1]
खगोलीय
ब्रह्मांड में सबसे बड़े ज्ञात विस्फोटों में सुपरनोवा हैं, जो कुछ प्रकार के स्टार के जीवन के अंत के बाद होते हैं।सौर फ्लेयर सूर्य पर एक सामान्य, बहुत कम ऊर्जावान विस्फोट का एक उदाहरण है, और संभवतः अधिकांश अन्य सितारों पर भी।सौर भड़कना गतिविधि के लिए ऊर्जा स्रोत सूर्य के प्रवाहकीय प्लाज्मा के रोटेशन के परिणामस्वरूप चुंबकीय क्षेत्र लाइनों की उलझन से आता है।एक अन्य प्रकार का बड़ा खगोलीय विस्फोट तब होता है जब एक बहुत बड़ा उल्कापिंड या एक क्षुद्रग्रह किसी अन्य वस्तु की सतह को प्रभावित करता है, जैसे कि एक ग्रह।उदाहरण के लिए, 1908 के तुंगुस्का एस्सेंट घटना को माना जाता है कि एक उल्का हवा के फटने के परिणामस्वरूप हुआ था।
ब्लैक होल विलय, संभवतः बाइनरी ब्लैक होल सिस्टम को शामिल करने की संभावना है, एक गुरुत्वाकर्षण तरंग के रूप में, एक सेकंड के एक अंश में ब्रह्मांड में ऊर्जा के कई सौर द्रव्यमानों को विकीर्ण करने में सक्षम हैं।यह साधारण ऊर्जा और विनाशकारी बलों को आस -पास की वस्तुओं तक पहुंचाने में सक्षम है, लेकिन अंतरिक्ष की विशालता में, आस -पास की वस्तुएं आमतौर पर दुर्लभ होती हैं।[3] 21 मई 2019 को GW190521 के रूप में जाना जाने वाला गुरुत्वाकर्षण तरंग, लगभग 100 एमएस अवधि के विलय संकेत का उत्पादन किया, इस दौरान यह अनुमान लगाया गया है कि गुरुत्वाकर्षण ऊर्जा के रूप में 9 सौर द्रव्यमानों को दूर करने का अनुमान है।
रासायनिक
सबसे आम कृत्रिम विस्फोटक रासायनिक विस्फोटक हैं, आमतौर पर एक तेजी से और हिंसक ऑक्सीकरण प्रतिक्रिया शामिल होती है जो बड़ी मात्रा में गर्म गैस का उत्पादन करती है।गनपाउडर का आविष्कार करने और उपयोग करने के लिए पहला विस्फोटक था।रासायनिक विस्फोटक प्रौद्योगिकी में अन्य उल्लेखनीय प्रारंभिक विकास 1865 में फ्रेडरिक ऑगस्टस एबेल के नाइट्रोसेलुलोज के विकास और 1866 में अल्फ्रेड नोबेल के बारूद के आविष्कार थे। रासायनिक विस्फोट (दोनों जानबूझकर और आकस्मिक) अक्सर ऑक्सीजन की उपस्थिति में एक इलेक्ट्रिक स्पार्क या फ्लेम द्वारा शुरू किए जाते हैं।ईंधन टैंक, रॉकेट इंजन, आदि में आकस्मिक विस्फोट हो सकते हैं।
विद्युत और चुंबकीय
एक उच्च वर्तमान विद्युत दोष उच्च ऊर्जा विद्युत चाप बनाकर एक 'विद्युत विस्फोट' बना सकता है जो तेजी से धातु और इन्सुलेशन सामग्री को वाष्पित करता है।यह वेल्डिंग की रोशनी खतरा ऊर्जावान स्विचगियर पर काम करने वाले लोगों के लिए एक खतरा है।एक अल्ट्रा-मजबूत इलेक्ट्रोमैग्नेट के भीतर अत्यधिक चुंबकीय दबाव एक चुंबकीय विस्फोट का कारण बन सकता है।
मैकेनिकल और वाष्प
रासायनिक या परमाणु के विपरीत एक भौतिक प्रक्रिया, जैसे कि आंतरिक दबाव के तहत एक सील या आंशिक रूप से सील कंटेनर के फटने को अक्सर विस्फोट के रूप में संदर्भित किया जाता है।उदाहरणों में एक ओवरहीट बॉयलर या बीन्स का एक साधारण टिन कैन शामिल है जो आग में फेंक दिया जाता है।
BLEVE एक प्रकार का यांत्रिक विस्फोट होता है जो तब हो सकता है जब एक दबाव वाले तरल युक्त एक जहाज टूट जाता है, जिससे तरल वाष्पीकरण के रूप में मात्रा में तेजी से वृद्धि होती है।ध्यान दें कि कंटेनर की सामग्री एक बाद के रासायनिक विस्फोट का कारण बन सकती है, जिसके प्रभाव नाटकीय रूप से अधिक गंभीर हो सकते हैं, जैसे कि आग के बीच में एक प्रोपेन टैंक।ऐसे मामले में, यांत्रिक विस्फोट के प्रभावों के लिए जब टैंक विफल हो जाता है, तो जारी किए गए विस्फोट से प्रभाव को जोड़ा जाता है (शुरू में तरल और फिर लगभग तुरंत गैसीयस) एक इग्निशन स्रोत की उपस्थिति में प्रोपेन होता है।इस कारण से, आपातकालीन कार्यकर्ता अक्सर दो घटनाओं के बीच अंतर करते हैं।
परमाणु
तारकीय परमाणु विस्फोट ों के अलावा, एक परमाणु हथियार एक प्रकार का विस्फोटक हथियार है जो अपने विनाशकारी बल को परमाणु विखंडन से या विखंडन और संलयन के संयोजन से प्राप्त करता है।नतीजतन, यहां तक कि एक छोटी उपज वाला परमाणु हथियार भी उपलब्ध सबसे बड़े पारंपरिक विस्फोटकों की तुलना में काफी अधिक शक्तिशाली है, जिसमें एक ही हथियार पूरी तरह से पूरे शहर को पूरी तरह से नष्ट करने में सक्षम है।
गुण
बल
विस्फोटक बल विस्फोटक की सतह के लंबवत दिशा में जारी किया जाता है।यदि विस्फोट के दौरान एक ग्रेनेड मध्य हवा में है, तो विस्फोट की दिशा 360 ° होगी।इसके विपरीत, एक आकार के चार्ज में विस्फोटक बल अधिक स्थानीय विस्फोट का उत्पादन करने के लिए केंद्रित होते हैं;आकार के आरोपों का उपयोग अक्सर सैन्य द्वारा दरवाजों या दीवारों को तोड़ने के लिए किया जाता है।
वेग
प्रतिक्रिया की गति वह है जो एक साधारण दहन प्रतिक्रिया से एक विस्फोटक प्रतिक्रिया को अलग करती है।जब तक प्रतिक्रिया बहुत तेजी से नहीं होती है, तब तक थर्मल रूप से विस्तारित गैसों को मध्यम रूप से मध्यम रूप से विघटित किया जाएगा, जिसमें दबाव में कोई बड़ा अंतर नहीं होगा और कोई विस्फोट नहीं होगा।एक चिमनी में लकड़ी की आग जलती है, उदाहरण के लिए, निश्चित रूप से गर्मी का विकास और गैसों के गठन का विकास होता है, लेकिन न तो अचानक पर्याप्त दबाव अंतर बनाने के लिए तेजी से पर्याप्त रूप से मुक्त किया जाता है और फिर विस्फोट का कारण बनता है।इसकी तुलना एक बैटरी (बिजली) के ऊर्जा निर्वहन के बीच के अंतर से की जा सकती है, जो धीमी है, और एक कैमरा फ्लैश में उस तरह के फ्लैश संधारित्र की, जो एक ही बार में अपनी ऊर्जा जारी करता है।
गर्मी का विकास
बड़ी मात्रा में गर्मी की पीढ़ी सबसे विस्फोटक रासायनिक प्रतिक्रियाओं के साथ होती है।अपवादों को एंट्रोपिक विस्फोट कहा जाता है और इसमें एसीटोन पेरोक्साइड जैसे कार्बनिक पेरोक्साइड शामिल हैं।[4] यह गर्मी की तेजी से मुक्ति है जो उच्च दबावों का विस्तार करने और उत्पन्न करने के लिए अधिकांश विस्फोटक प्रतिक्रियाओं के गैसीय उत्पादों का कारण बनती है।जारी गैस के उच्च दबावों की यह तेजी से पीढ़ी विस्फोट का गठन करती है।अपर्याप्त रैपिडिटी के साथ गर्मी की मुक्ति से विस्फोट नहीं होगा।उदाहरण के लिए, हालांकि कोयले की एक इकाई द्रव्यमान नाइट्रोग्लिसरीन की एक इकाई द्रव्यमान के रूप में पांच गुना अधिक गर्मी पैदा करती है, कोयले को विस्फोटक (कोयला धूल विस्फोट को छोड़कर) के रूप में इस्तेमाल नहीं किया जा सकता है क्योंकि जिस दर पर यह इस गर्मी की उपज देता है वह काफी धीमा है।वास्तव में, एक पदार्थ जो कम तेजी से जलता है (यानी धीमा दहन) वास्तव में एक विस्फोटक की तुलना में अधिक कुल गर्मी विकसित कर सकता है जो तेजी से (यानी तेजी से दहन) को विस्फोट करता है।पूर्व में, धीमी गति से दहन जलते हुए पदार्थ की आंतरिक ऊर्जा (यानी रासायनिक क्षमता ) को अधिक रूप से परिवर्तित करता है, जबकि बाद में, बाद में, तेज दहन (यानी विस्फोट) में अधिक आंतरिक ऊर्जा को परिवेश में काम में परिवर्तित करता है (यानी कम आंतरिक ऊर्जा गर्मी में परिवर्तित);सी.एफ.गर्मी और काम (थर्मोडायनामिक्स) ऊर्जा के बराबर रूप हैं।इस विषय के अधिक गहन उपचार के लिए दहन की गर्मी देखें।
जब उसके घटकों से एक रासायनिक यौगिक बनता है, तो गर्मी या तो अवशोषित हो सकती है या जारी की जा सकती है।परिवर्तन के दौरान अवशोषित या बंद गर्मी की मात्रा को गठन की गर्मी कहा जाता है।विस्फोटक प्रतिक्रियाओं में पाए जाने वाले ठोस और गैसों के लिए संरचनाओं के हीट को 25 & nbsp; ° C और वायुमंडलीय दबाव के तापमान के लिए निर्धारित किया गया है, और आम तौर पर प्रति ग्राम-अणु किलोजल की इकाइयों में दिया जाता है।एक सकारात्मक मूल्य इंगित करता है कि गर्मी अपने तत्वों से यौगिक के गठन के दौरान अवशोषित होती है;इस तरह की प्रतिक्रिया को एंडोथर्मिक प्रतिक्रिया कहा जाता है।विस्फोटक प्रौद्योगिकी में केवल ऐसी सामग्री जो एक्ज़ोथिर्मिक होती है - जिसमें गर्मी की शुद्ध मुक्ति होती है और गठन की नकारात्मक गर्मी होती है - ब्याज की होती है।प्रतिक्रिया गर्मी को या तो निरंतर दबाव या निरंतर मात्रा के आधार पर मापा जाता है।यह प्रतिक्रिया की गर्मी है जिसे विस्फोट की गर्मी के रूप में ठीक से व्यक्त किया जा सकता है।
प्रतिक्रिया की दीक्षा
एक रासायनिक विस्फोटक एक यौगिक या मिश्रण है, जो गर्मी या सदमे के आवेदन पर, अत्यधिक रैपिडिटी के साथ विघटित या पुनर्व्यवस्थित करता है, बहुत गैस और गर्मी की उपज देता है।कई पदार्थों को आमतौर पर वर्गीकृत नहीं किया जाता है क्योंकि विस्फोटक इन चीजों में से एक, या दो भी कर सकते हैं।
विस्फोटक सामग्री के द्रव्यमान के एक छोटे से हिस्से में सदमे, गर्मी, या एक उत्प्रेरक (कुछ विस्फोटक रासायनिक प्रतिक्रियाओं के मामले में) के आवेदन द्वारा शुरू किए जाने में एक प्रतिक्रिया सक्षम होनी चाहिए।एक ऐसी सामग्री जिसमें पहले तीन कारक मौजूद हैं, को विस्फोटक के रूप में स्वीकार नहीं किया जा सकता है जब तक कि जरूरत पड़ने पर प्रतिक्रिया नहीं की जा सकती।
विखंडन
विखंडन एक उच्च विस्फोटक विस्फोट के परिणामस्वरूप कणों का संचय और प्रक्षेपण है।टुकड़े से उत्पन्न हो सकते हैं: एक संरचना के कुछ हिस्सों (जैसे कांच , संरचनात्मक सामग्री के टुकड़े, या छत सामग्री), स्ट्रैट और/या विभिन्न सतह-स्तर ीय भूगर्भिक विशेषताएं (जैसे ढीली रॉक (भूविज्ञान) एस, मिट्टी , या रेत ) का पता चलाविस्फोटक के आसपास के आवरण, और/या किसी भी अन्य ढीले विविध वस्तुओं को विस्फोट से सदमे की लहर से वाष्पीकृत नहीं किया गया।उच्च वेग, कम कोण के टुकड़े अन्य आसपास के उच्च विस्फोटक वस्तुओं को शुरू करने के लिए पर्याप्त ऊर्जा के साथ सैकड़ों मीटर की यात्रा कर सकते हैं, कर्मियों को घायल या मार सकते हैं, और/या वाहनों या संरचनाओं को नुकसान पहुंचाते हैं।
उल्लेखनीय उदाहरण
रासायनिक
- 1626 वांग फैक्ट्री एक्सप्वायल
- 1887 नानाइमो माइन विस्फोट
- 1917 हैलिफ़ैक्स विस्फोट
- 1917 मेसिन की लड़ाई (1917)
- 1921 ओप्पाऊ विस्फोट
- 1944 बॉम्बे विस्फोट
- 1944 पोर्ट शिकागो आपदा
- 1944 राफ फाउल विस्फोट
- 1947 Cádiz विस्फोट
- 1947 टेक्सास सिटी आपदा
- 1960 नेडेलिन तबाही
- 1969 सोवियत एन 1 रॉकेट#लॉन्च इतिहास
- 1974 फ्लिक्सबोरो आपदा
- 1998 पेपकॉन आपदा , हेंडरसन, नेवादा
- 1988 पूले विस्फोट
- 1994 पोर्ट नील उर्वरक संयंत्र विस्फोट
- 2001 AZF (कारखाना)
- 2004 Ryongchon आपदा
- 2005 हर्टफोर्डशायर ऑयल स्टोरेज टर्मिनल फायर
- 2008 गेरडेक विस्फोट
- 2009 कैटोनो ऑयल रिफाइनरी फायर
- 2013 पश्चिम उर्वरक कंपनी विस्फोट
- 2015 तियानजिन विस्फोट
- 2020 बेरूत विस्फोट
परमाणु
ज्वालामुखी
- सेंटोरिनी
- क्राकाटा
- माउंट सेंट हेलेंस
- माउंट टैम्बोरा
- पर्वत पिनाटूबो
- टोबा तबाही सिद्धांत
- येलोस्टोन कैल्डेरा
तारकीय
व्युत्पत्ति
शास्त्रीय लैटिन explōdō मंच से एक बुरे अभिनेता को फुलाने का मतलब है, एक अभिनेता को शोर करके मंच पर चलाने के लिए, ex- ("आउट") + plaudō ("ताली बजाने के लिए; सराहना करने के लिए")।आधुनिक अर्थ बाद में विकसित हुआ:[5]
- शास्त्रीय लैटिन: शोर करकर एक अभिनेता को मंच से बाहर निकालने के लिए इसलिए कि बाहर ड्राइव करना या अस्वीकार करना
अंग्रेजी में:
- लगभग 1538: ताली बजाने से बाहर या बंद ड्राइव करें (मूल रूप से नाटकीय)
- लगभग 1660: हिंसा और अचानक शोर के साथ बाहर ड्राइव करें
- लगभग 1790: एक जोर से शोर के साथ जाओ
- 1882 के आसपास: पहले विनाशकारी बल के साथ फटने के रूप में उपयोग करें
यह भी देखें
- Combustion
- Deflagration
- Detonation
- Dust explosion
- Standards for electrical equipment in potentially explosive environments
- Explosion protection
- Explosive limit
- Fuel tank explosion
- Implosion (mechanical process): opposite of explosion
- Internal combustion engine
- Mushroom cloud
- Piston engine
- Plofkraak
- Total body disruption, a cause of death typically associated with explosion
- Underwater explosion
इस पृष्ठ में गुम आंतरिक लिंक की सूची
- टीएनटी समकक्ष
- शॉक वेव
- युकलिप्टुस
- प्रभाव घटना
- तारा
- उल्का हवा का फट
- सौर फ्लेयर्स
- इलेक्ट्रिक आर्क
- आकार का प्रभार
- उपद्रव विस्फोट
- ज्वलन की ऊष्मा
- रफ फॉल्ड विस्फोट
- ओप्पू विस्फोट
- फ्लेक्सबोरो आपदा
- रियॉन्गचॉन आपदा
- ज़ार बम
संदर्भ
- ↑ Kissane, Karen (2009-05-22). "फायर पावर ने 1500 परमाणु बमों की बराबरी की". The Age. Melbourne. Archived from the original on 2009-05-27.
- ↑ Van Der Sluys, M. V.; Lamers, H. J. G. L. M. (2003). "The dynamics of the nebula M1-67 around the run-away Wolf-Rayet star WR 124". Astronomy and Astrophysics. 398: 181–194. arXiv:astro-ph/0211326. Bibcode:2003A&A...398..181V. doi:10.1051/0004-6361:20021634. S2CID 6142859.
- ↑ Siegel, Ethan (15 February 2020). "एथन से पूछें: क्या गुरुत्वाकर्षण तरंगें कभी पृथ्वी पर नुकसान का कारण बन सकती हैं?एक धमाके से शुरू होता है". Forbes. Retrieved 7 September 2020.
- ↑ Dubnikova, Faina; Kosloff, Ronnie; Almog, Joseph; Zeiri, Yehuda; Boese, Roland; Itzhaky, Harel; Alt, Aaron; Keinan, Ehud (2005-02-01). "Triacetone Triperoxide का अपघटन एक एन्ट्रोपिक विस्फोट है". Journal of the American Chemical Society. 127 (4): 1146–1159. doi:10.1021/ja0464903. PMID 15669854.
- ↑ wikt:explode#Etymology