क्रम
गणित में, अनुक्रम वस्तुओं का एक प्रगणित संग्रह होता है जिसमें दोहराव की अनुमति होती है और क्रम मायने रखता है। एक सेट की तरह, इसमें सदस्य होते हैं (जिन्हें तत्व या पद भी कहा जाता है)। तत्वों की संख्या (संभवतः अनंत) अनुक्रम की लंबाई कहलाती है। एक सेट के विपरीत, एक ही तत्व एक क्रम में विभिन्न स्थितियों में कई बार प्रकट हो सकते हैं, और एक सेट के विपरीत, ऑर्डर मायने रखता है। औपचारिक रूप से, अनुक्रम को प्राकृतिक संख्याओं (अनुक्रम में तत्वों की स्थिति) से प्रत्येक स्थिति में तत्वों के लिए एक फ़ंक्शन के रूप में परिभाषित किया जा सकता है। अनुक्रम की धारणा को एक अनुक्रमित परिवार के लिए सामान्यीकृत किया जा सकता है, जिसे एक इंडेक्स सेट से एक फ़ंक्शन के रूप में परिभाषित किया जाता है जो तत्वों के दूसरे सेट के लिए संख्या नहीं हो सकता है।
उदाहरण के लिए, (M, A, R, Y) अक्षरों का एक क्रम है जिसमें पहले 'M' और आखिरी में 'Y' अक्षर होते हैं। यह क्रम (A, R, M, Y) से अलग है। साथ ही, अनुक्रम (1, 1, 2, 3, 5, 8), जिसमें दो अलग-अलग पदों पर संख्या 1 है, एक वैध अनुक्रम है। अनुक्रम परिमित हो सकते हैं, जैसे कि इन उदाहरणों में, या अनंत, जैसे कि सभी सम धनात्मक पूर्णांकों का क्रम (2, 4, 6, . . . )
अनुक्रम में किसी तत्व की स्थिति उसकी रैंक या अनुक्रमणिका होती है; यह प्राकृतिक संख्या है जिसके लिए तत्व छवि है। संदर्भ या एक विशिष्ट सम्मेलन के आधार पर पहले तत्व में सूचकांक 0 या 1 है।, गणितीय विश्लेषण में, अनुक्रम को अक्सर अक्षरों द्वारा के रूप में निरूपित किया जाता है , तथा , जहां सबस्क्रिप्ट n अनुक्रम के n वें तत्व को संदर्भित करता है; उदाहरण के लिए, फाइबोनैचि अनुक्रम का n वां तत्व आम तौर पर के रूप में दर्शाया जाता है .
कंप्यूटिंग और कंप्यूटर विज्ञान में, परिमित अनुक्रमों को कभी-कभी तार, शब्द या सूचियां कहा जाता है, अलग-अलग नाम आमतौर पर कंप्यूटर मेमोरी में उनका प्रतिनिधित्व करने के विभिन्न तरीकों से संबंधित होते हैं; अनंत अनुक्रमों को धाराएँ कहा जाता है। खाली अनुक्रम ( ) अनुक्रम की अधिकांश धारणाओं में शामिल है, लेकिन संदर्भ के आधार पर इसे बाहर रखा जा सकता है।
उदाहरण और संकेतन
अनुक्रम को एक विशेष क्रम वाले तत्वों की सूची के रूप में माना जा सकता है।।[1][2] अनुक्रमों के अभिसरण गुणों का उपयोग करके कार्यों, रिक्त स्थान और अन्य गणितीय संरचनाओं के अध्ययन के लिए कई गणितीय विषयों में अनुक्रम उपयोगी होते हैं। विशेष रूप से, अनुक्रम श्रृंखला का आधार हैं, जो अंतर समीकरणों और विश्लेषण में महत्वपूर्ण हैं।अनुक्रम भी अपने आप में रुचि रखते हैं, और पैटर्न या पहेली के रूप में अध्ययन किया जा सकता है, जैसा कि अभाज्य संख्याओं के अध्ययन में होता है।
किसी अनुक्रम का प्रतिनिधित्व करने के कई तरीके हैं, जिनमें से कुछ विशिष्ट प्रकार के अनुक्रमों के लिए अधिक उपयोगी हैं। अनुक्रम निर्दिष्ट करने का एक तरीका इसके सभी तत्वों को सूचीबद्ध करना है। उदाहरण के लिए, पहली चार विषम संख्याएँ अनुक्रम बनाती हैं (1, 3, 5, 7)। इस संकेतन का उपयोग अनंत अनुक्रमों के लिए भी किया जाता है। उदाहरण के लिए, धनात्मक विषम पूर्णांकों के अनंत अनुक्रम को (1, 3, 5, 7, ...) के रूप में लिखा जाता है। चूंकि इलिप्सिस के साथ अनुक्रमों को नोट करना अस्पष्टता की ओर जाता है, पारंपरिक अनंत अनुक्रमों के लिए लिस्टिंग सबसे उपयोगी है जिसे उनके पहले कुछ तत्वों द्वारा आसानी से पहचाना जा सकता है। अनुक्रम को निरूपित करने के अन्य तरीकों की चर्चा निम्नलिखित उदाहरणों में की गई है।
उदाहरण
अभाज्य संख्याएँ वे प्राकृत संख्याएँ होती हैं जो 1 से बड़ी होती हैं जिनका कोई भाजक नहीं बल्कि 1 और स्वयं होते हैं। इन्हें उनके प्राकृतिक क्रम में लेने से क्रम (2, 3, 5, 7, 11, 13, 17, ...) प्राप्त होता है। गणित में अभाज्य संख्याओं का व्यापक रूप से उपयोग किया जाता है, विशेष रूप से संख्या सिद्धांत में, जहाँ उनके साथ कई परिणाम जुड़े होते हैं।
फाइबोनैचि संख्याओं में पूर्णांक अनुक्रम होते हैं जिनके तत्व पिछले दो तत्वों का योग होते हैं। पहले दो तत्व या तो 0 और 1 या 1 और 1 हैं ताकि अनुक्रम (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...)[1]
अनुक्रमों के अन्य उदाहरणों में परिमेय संख्याएं, वास्तविक संख्याएं और सम्मिश्र संख्याएं शामिल हैं। अनुक्रम (.9, .99, .999, .9999, ...) उदाहरण के लिए संख्या 1 तक पहुंचता है। वास्तव में, प्रत्येक वास्तविक संख्या को परिमेय संख्याओं के अनुक्रम की सीमा के रूप में लिखा जा सकता है (उदाहरण के लिए इसके दशमलव प्रसार द्वारा)। एक अन्य उदाहरण के रूप में, अनुक्रम की सीमा (3, 3.1, 3.14, π, 3.1415, ...) है, जो बढ़ रही है। एक संबंधित अनुक्रम π के दशमलव अंकों का क्रम है, अर्थात, (3, 1, 4, 1, 5, 9, . . . ) पिछले अनुक्रम के विपरीत, इस अनुक्रम में कोई पैटर्न नहीं है जो निरीक्षण द्वारा आसानी से देखा जा सकता है।
पूर्णांक अनुक्रमों के ऑन-लाइन विश्वकोश में पूर्णांक अनुक्रमों के उदाहरणों की एक बड़ी सूची शामिल है।[3]
अनुक्रमण
अन्य संकेतन उन अनुक्रमों के लिए उपयोगी हो सकते हैं जिनके पैटर्न का आसानी से अनुमान नहीं लगाया जा सकता है या उन अनुक्रमों के लिए जिनका कोई पैटर्न नहीं है जैसे कि π के अंक।ऐसा ही एक संकेतन n के कार्य के रूप में nवें पद की गणना के लिए एक सामान्य सूत्र लिखना है, इसे कोष्ठक में संलग्न करना, और एक सबस्क्रिप्ट भी शामिल है जो n के मानों के सेट को दर्शाता है। उदाहरण के लिए इस अंकन में सम संख्याओं के अनुक्रम को इस प्रकार लिखा जा सकता है , वर्गों का क्रम इस प्रकार लिखा जा सकता है वेरिएबल n को एक इंडेक्स कहा जाता है और मानों का सेट जो इसे ले सकता है उसे इंडेक्स सेट कहा जाता है।
यह अक्सर इस संकेतन को व्यक्तिगत चर के रूप में एक अनुक्रम के तत्वों के इलाज की तकनीक के साथ संयोजित करना उपयोगी होता है।यह अभिव्यक्ति की तरह पैदावार करता है , जो एक अनुक्रम को दर्शाता है जिसका nth तत्व चर द्वारा दिया गया है । उदाहरण के लिए:
विभिन्न चरों का उपयोग करके एक ही समय में एकाधिक अनुक्रमों पर विचार किया जा सकता है। जैसे से भिन्न क्रम हो सकता है . अनुक्रमों के अनुक्रम पर भी विचार किया जा सकता है: एक अनुक्रम को दर्शाता है जिसका m वां पद अनुक्रम है .
अनुक्रम के क्षेत्र को सबस्क्रिप्ट में लिखने का एक विकल्प उन मूल्यों की श्रेणी को इंगित करना है जो सूचकांक अपने उच्चतम और निम्नतम वैध मूल्यों को सूचीबद्ध करके ले सकता है। उदाहरण के लिए, संकेतन वर्गों के दस-अवधि अनुक्रम को दर्शाता है . सीमाएं तथा अनुमति है, लेकिन वे सूचकांक के लिए मान्य मूल्यों का प्रतिनिधित्व नहीं करते हैं, केवल ऐसे मूल्यों का सर्वोच्च या न्यूनतम। उदाहरण के लिए, अनुक्रम अनुक्रम के समान है और इसमें "अनंत पर" एक अतिरिक्त शब्द नहीं है। क्रम एक द्वि-अनंत अनुक्रम है, और इसे इस प्रकार भी लिखा जा सकता है .
ऐसे मामलों में जहां अनुक्रमण संख्याओं के सेट को समझा जाता है, सदस्यता और सुपरस्क्रिप्ट को अक्सर छोड़ दिया जाता है। एक मनमाना अनुक्रम के लिए। अक्सर, सूचकांक k 1 से अनंत तक होता है, जिसे अंतिम माना जाता है वह भिन्न होता है। हालांकि, अनुक्रमों को अक्सर शून्य से शुरू करके अनुक्रमित किया जाता है। जैसे
कुछ मामलों में, अनुक्रम के तत्व स्वाभाविक रूप से पूर्णांकों के अनुक्रम से संबंधित होते हैं जिनके पैटर्न का आसानी से अनुमान लगाया जा सकता है। इन मामलों में, सूचकांक सेट को पहले कुछ सार तत्वों की सूची द्वारा निहित किया जा सकता है। उदाहरण के लिए, विषम संख्याओं के वर्गों के अनुक्रम को निम्नलिखित में से किसी भी तरीके से दर्शाया जा सकता है।
इसके अलावा, सबस्क्रिप्ट और सुपरस्क्रिप्ट को तीसरे, चौथे और पांचवें अंकन में छोड़ा जा सकता है, अगर इंडेक्सिंग सेट को प्राकृतिक संख्या के रूप में समझा जाता है। दूसरी और तीसरी बिंदुओं में एक सुपरिभाषित क्रम होता है , लेकिन यह व्यंजक द्वारा दर्शाए गए अनुक्रम के समान नहीं है।
रिकर्सन द्वारा अनुक्रम को परिभाषित करना
अनुक्रम जिनके तत्व पिछले तत्वों से सीधे तरीके से संबंधित हैं, उन्हें अक्सर रिकर्सन का उपयोग करके परिभाषित किया जाता है। यह तत्वों के अनुक्रमों को उनकी स्थिति के कार्यों के रूप में परिभाषित करने के विपरीत है।
रिकर्सन द्वारा अनुक्रम को परिभाषित करने के लिए, प्रत्येक तत्व को उसके पहले के संदर्भ के साथ बनाने के लिए एक नियम की आवश्यकता होती है, जिसे पुनरावृत्ति संबंध कहा जाता है। इसके अलावा, पर्याप्त प्रारंभिक तत्व प्रदान किए जाने चाहिए ताकि अनुक्रम के सभी बाद के तत्वों की गणना पुनरावृत्ति संबंध के क्रमिक अनुप्रयोगों द्वारा की जा सके।
फाइबोनैचि अनुक्रम एक साधारण उत्कृष्ट उदाहरण है, जिसे पुनरावृत्ति संबंध द्वारा परिभाषित किया गया है।
प्रारंभिक शर्तों के साथ तथा इससे, एक साधारण गणना से पता चलता है कि इस अनुक्रम के पहले दस शब्द 0, 1, 1, 2, 3, 3, 5, 8, 13, 21 और 34 हैं।
एक पुनरावर्तन संबंध द्वारा परिभाषित अनुक्रम का एक जटिल उदाहरण है रिकैमन का अनुक्रम, जिसे पुनरावर्तन संबंध द्वारा परिभाषित किया गया है।
प्रारंभिक अवधि के साथ निरंतर गुणांक के साथ एक रैखिक पुनरावृत्ति फॉर्म का पुनरावृत्ति संबंध है।
जहाँ पे स्थिरांक हैं। इस तरह के अनुक्रम के सामान्य शब्द को n के एक फ़ंक्शन के रूप में व्यक्त करने का एक सामान्य तरीका है। फाइबोनैचि अनुक्रम के मामले में, एक है और परिणामी कार्य n बिनेट के सूत्र द्वारा दिया गया है।
एक होलोनोमिक अनुक्रम एक अनुक्रम है जिसे फॉर्म के पुनरावृत्ति संबंध द्वारा परिभाषित किया गया है।
कहाँ पे में बहुपद हैं n।अधिकांश होलोनोमिक अनुक्रमों के लिए, व्यक्त करने के लिए कोई स्पष्ट सूत्र नहीं है के एक समारोह के रूप में n।फिर भी, गणित के विभिन्न क्षेत्रों में होलोनोमिक अनुक्रम महत्वपूर्ण भूमिका निभाते हैं।उदाहरण के लिए, कई विशेष कार्यों में एक टेलर श्रृंखला होती है जिसका गुणांक का अनुक्रम होलोनोमिक होता है।पुनरावृत्ति संबंध का उपयोग ऐसे विशेष कार्यों के मूल्यों की तेजी से गणना की अनुमति देता है।
सभी अनुक्रम पुनरावर्तन संबंध द्वारा निर्दिष्ट नहीं किए जा सकते हैं। एक उदाहरण उनके प्राकृतिक क्रम में अभाज्य संख्याओं का क्रम है (2, 3, 5, 7, 11, 13, 17, . . . )
औपचारिक परिभाषा और बुनियादी गुण
गणित में अनुक्रमों की कई अलग-अलग धारणाएं हैं, जिनमें से कुछ ( उदाहरण के लिए, सटीक अनुक्रम ) नीचे दी गई परिभाषाओं और नोटेशन में शामिल नहीं हैं।
परिभाषा
इस लेख में, अनुक्रम को औपचारिक रूप से एक फ़ंक्शन के रूप में परिभाषित किया गया है जिसका डोमेन पूर्णांकों का अंतराल है। इस परिभाषा में "अनुक्रम" शब्द के कई अलग-अलग उपयोग शामिल हैं, जिसमें एकतरफा अनंत अनुक्रम, द्वि-अनंत अनुक्रम और परिमित अनुक्रम शामिल हैं (ऐसे अनुक्रमों की परिभाषा के लिए नीचे देखें)। हालांकि, कई लेखक अनुक्रम के डोमेन को प्राकृतिक संख्याओं का सेट होने की आवश्यकता के द्वारा एक संकीर्ण परिभाषा का उपयोग करते हैं। इस संकीर्ण परिभाषा का नुकसान यह है कि यह परिमित अनुक्रमों और द्वि-अनंत अनुक्रमों को नियंत्रित करता है, दोनों को आमतौर पर मानक गणितीय अभ्यास में अनुक्रम कहा जाता है। एक और नुकसान यह है कि, यदि कोई अनुक्रम की पहली शर्तों को हटा देता है, तो किसी को इस परिभाषा को फिट करने के लिए शेष शर्तों को फिर से चलाने की आवश्यकता है। कुछ संदर्भों में, एक्सपोज़िशन को छोटा करने के लिए, अनुक्रम का कोडोमैन संदर्भ द्वारा तय किया जाता है, उदाहरण के लिए इसे वास्तविक संख्याओं के सेट आर होने की आवश्यकता होती है,[4]जटिल संख्याओं का सेट सी,[5] या एक टोपोलॉजिकल स्पेस। [6]यद्यपि अनुक्रम एक प्रकार का फ़ंक्शन है, वे आमतौर पर कार्यों से नोटिस रूप से प्रतिष्ठित होते हैं, जिसमें इनपुट कोष्ठक के बजाय एक सबस्क्रिप्ट के रूप में लिखा जाता है, अर्थात्, an इसके बजाय a(n)। साथ ही शब्दावली अंतर भी हैं: सबसे कम इनपुट (अक्सर 1) पर एक अनुक्रम का मूल्य अनुक्रम का पहला तत्व कहा जाता है, दूसरे सबसे छोटे इनपुट (अक्सर 2) पर मान को दूसरा तत्व, आदि भी कहा जाता है, आदि, भी,जबकि इसके इनपुट से अमूर्त एक फ़ंक्शन आमतौर पर एक ही अक्षर द्वारा निरूपित किया जाता है, उदा। एफ, इसके इनपुट से अमूर्त एक अनुक्रम आमतौर पर एक संकेतन द्वारा लिखा जाता है जैसे , या बस के रूप में यहां A अनुक्रम का डोमेन, या इंडेक्स सेट है।
अनुक्रम और उनकी सीमाएं (नीचे देखें) टोपोलॉजिकल रिक्त स्थान का अध्ययन करने के लिए महत्वपूर्ण अवधारणाएं हैं।अनुक्रमों का एक महत्वपूर्ण सामान्यीकरण नेट्स की अवधारणा है।एक नेट एक (संभवतः बेशुमार) से एक फ़ंक्शन है जो एक टोपोलॉजिकल स्पेस के लिए निर्देशित है।अनुक्रमों के लिए उल्लेखनीय सम्मेलन आम तौर पर नेट्स पर भी लागू होते हैं।
परिमित और अनंत
अनुक्रम की लंबाई को अनुक्रम में शर्तों की संख्या के रूप में परिभाषित किया गया है।
एक परिमित लंबाई n का एक अनुक्रम एक n-tuple भी कहा जाता है। n -tuple।परिमित अनुक्रमों में खाली अनुक्रम & nbsp; (& nbsp;) शामिल हैं, जिनके कोई तत्व नहीं हैं।
आम तौर पर, अनंत अनुक्रम शब्द एक अनुक्रम को संदर्भित करता है जो एक दिशा में अनंत होता है, और दूसरे में परिमित होता है - अनुक्रम का पहला तत्व होता है, लेकिन कोई अंतिम तत्व नहीं होता है।इस तरह के अनुक्रम को 'सिंगली अनंत अनुक्रम' या 'एक-तरफा अनंत अनुक्रम' कहा जाता है जब विघटन आवश्यक होता है।इसके विपरीत, एक अनुक्रम जो दोनों दिशाओं में अनंत है - यानी।इसका न तो पहला और न ही एक अंतिम तत्व है-जिसे 'द्वि-अनंत अनुक्रम', 'टू-वे अनंत अनुक्रम', या 'दोगुना अनंत अनुक्रम' कहा जाता है।सेट में सभी पूर्णांक के सेट 'z' से एक फ़ंक्शन, जैसे कि उदाहरण के लिए सभी पूर्णांक का अनुक्रम (..., −4, −2, 0, 2, 4, 6, 8, ...), द्वि-अनंत है।इस अनुक्रम को निरूपित किया जा सकता है ।
बढ़ाना और घटाना
एक अनुक्रम कहा जाता है कि यदि प्रत्येक शब्द इससे पहले या उसके बराबर या उसके बराबर है, तो एक नीरस रूप से बढ़ रहा है।उदाहरण के लिए, अनुक्रम यदि और केवल अगर और केवल एक मोनोटोनिक रूप से बढ़ रहा हैn+1 an सभी n ∈ 'n' के लिए।यदि प्रत्येक लगातार शब्द पिछले शब्द से (>) से अधिक सख्ती से अधिक है, तो अनुक्रम को 'कड़ाई से मोनोटोनिक रूप से बढ़ते' कहा जाता है।एक अनुक्रम 'मोनोटोनिक रूप से कम हो रहा है' यदि प्रत्येक लगातार शब्द पिछले एक से कम या उसके बराबर है, और यदि प्रत्येक पिछले की तुलना में कड़ाई से कम है, तो 'सख्ती से नीरस रूप से कम हो रहा है।यदि कोई अनुक्रम या तो बढ़ रहा है या घट रहा है, तो इसे 'मोनोटोन' अनुक्रम कहा जाता है।यह एक मोनोटोनिक फ़ंक्शन की अधिक सामान्य धारणा का एक विशेष मामला है।
शब्द 'nondecreasing' और 'noncreasing' का उपयोग अक्सर बढ़ते और घटने के स्थान पर किया जाता है ताकि क्रमशः कड़ाई से बढ़ते और सख्ती से घटने के साथ किसी भी संभावित भ्रम से बचने के लिए क्रमशः घटता हो।
बाउंडेड
यदि वास्तविक संख्याओं का अनुक्रम (ए)n) ऐसा है कि सभी शब्द कुछ वास्तविक संख्या एम से कम हैं, तो अनुक्रम को 'ऊपर से बंधे' कहा जाता है।दूसरे शब्दों में, इसका मतलब यह है कि सभी n के लिए m, a, a मौजूद हैn≤ M. किसी भी ऐसे m को ऊपरी बाउंड कहा जाता है।इसी तरह, अगर, कुछ वास्तविक एम के लिए, एnकुछ n के लिए सभी n के लिए ≥ m, तो अनुक्रम 'नीचे से बंधा हुआ' है और इस तरह के किसी भी m को एक निचला सीमा कहा जाता है।यदि एक अनुक्रम दोनों ऊपर से बंधा हुआ है और नीचे से बंधा हुआ है, तो अनुक्रम को 'बाउंडेड' कहा जाता है।
बाद में
किसी दिए गए अनुक्रम का एक अनुक्रम शेष तत्वों के सापेक्ष पदों को परेशान किए बिना कुछ तत्वों को हटाकर दिए गए अनुक्रम से गठित एक अनुक्रम है।उदाहरण के लिए, सकारात्मक भी पूर्णांक (2, 4, 6, ...) का अनुक्रम सकारात्मक पूर्णांक (1, 2, 3, ...) का एक बाद है।कुछ तत्वों की स्थिति तब बदल जाती है जब अन्य तत्व हटा दिए जाते हैं।हालांकि, सापेक्ष पदों को संरक्षित किया जाता है।
औपचारिक रूप से, अनुक्रम का एक पूर्ववर्ती फॉर्म का कोई अनुक्रम है , कहाँ पे सकारात्मक पूर्णांक का एक कड़ाई से बढ़ता अनुक्रम है।
अन्य प्रकार के अनुक्रम
कुछ अन्य प्रकार के अनुक्रम जिन्हें परिभाषित करना आसान है, उनमें शामिल हैं:
- एक पूर्णांक अनुक्रम एक अनुक्रम है जिसकी शर्तें पूर्णांक हैं।
- एक बहुपद अनुक्रम एक अनुक्रम है जिसकी शर्तें बहुपद हैं।
- एक सकारात्मक पूर्णांक अनुक्रम को कभी -कभी गुणात्मक कहा जाता है, यदि 'nm = an am सभी जोड़े n के लिए, m जैसे कि n और m कोपरीम हैं।[7] अन्य उदाहरणों में, अनुक्रमों को अक्सर गुणात्मक कहा जाता है, यदि एn = ना1 सभी के लिए n।इसके अलावा, एक गुणक फाइबोनैचि अनुक्रम[8] पुनरावर्ती संबंध को संतुष्ट करता हैn = an−1 an−2।
- एक द्विआधारी अनुक्रम एक अनुक्रम है जिसकी शर्तों में दो असतत मूल्यों में से एक है, उदा।आधार 2 मान (0,1,1,0, ...), सिक्के की एक श्रृंखला (सिर/पूंछ) एच, टी, एच, एच, टी, ..., सही या गलत के एक सेट के उत्तरप्रश्न (टी, एफ, टी, टी, ...), और इसी तरह।
सीमा और अभिसरण
एक अनुक्रम की एक महत्वपूर्ण संपत्ति अभिसरण है।यदि कोई अनुक्रम परिवर्तित होता है, तो यह एक विशेष मूल्य में परिवर्तित होता है जिसे सीमा के रूप में जाना जाता है।यदि कोई अनुक्रम कुछ सीमा में परिवर्तित हो जाता है, तो यह 'अभिसरण' है।एक अनुक्रम जो अभिसरण नहीं करता है वह 'डायवर्जेंट' है।
अनौपचारिक रूप से, एक अनुक्रम में एक सीमा होती है यदि अनुक्रम के तत्व कुछ मूल्य के करीब और करीब हो जाते हैं (अनुक्रम की सीमा कहा जाता है), और वे मनमाने ढंग से करीब बने रहते हैं , जिसका अर्थ है कि एक वास्तविक संख्या दी गई है शून्य से अधिक, सभी लेकिन अनुक्रम के तत्वों की एक परिमित संख्या से दूरी है से कम ।
उदाहरण के लिए, अनुक्रम दाईं ओर दिखाया गया मान 0. दूसरी ओर, अनुक्रम। (जो 1, 8, 27, और हेलिप;) से शुरू होता है (जो −1, 1, −1, 1,…) शुरू होता है, दोनों अलग -अलग हैं।
यदि कोई अनुक्रम रूपांतरित होता है, तो वह मूल्य जो रूप में परिवर्तित होता है वह अद्वितीय है।इस मान को अनुक्रम की सीमा कहा जाता है।एक अभिसरण अनुक्रम की सीमा आम तौर पर निरूपित होता है ।यदि एक अलग अनुक्रम है, फिर अभिव्यक्ति अर्थहीन है।
अभिसरण की औपचारिक परिभाषा
वास्तविक संख्याओं का एक अनुक्रम एक वास्तविक संख्या में परिवर्तित होता है अगर, सभी के लिए , एक प्राकृतिक संख्या मौजूद है सभी के लिए ऐसा है अपने पास[4] : यदि वास्तविक संख्याओं के अनुक्रम के बजाय जटिल संख्याओं का एक अनुक्रम है, इस अंतिम सूत्र का उपयोग अभी भी अभिसरण को परिभाषित करने के लिए किया जा सकता है, प्रावधान के साथ जटिल मापांक को दर्शाता है, अर्थात् ।यदि एक मीट्रिक स्थान में बिंदुओं का एक अनुक्रम है, तो सूत्र का उपयोग अभिसरण को परिभाषित करने के लिए किया जा सकता है, यदि अभिव्यक्ति अभिव्यक्ति द्वारा प्रतिस्थापित किया जाता है , जो बीच की दूरी को दर्शाता है तथा ।
अनुप्रयोग और महत्वपूर्ण परिणाम
यदि तथा अभिसरण अनुक्रम हैं, फिर निम्नलिखित सीमाएं मौजूद हैं, और निम्नानुसार गणना की जा सकती है:[4][9]
- सभी वास्तविक संख्याओं के लिए
- , उसे उपलब्ध कराया
- सभी के लिए तथा
इसके अतिरिक्त:
- यदि सभी के लिए कुछ से अधिक , फिर .[lower-alpha 1]
- (थ्योरी निचोड़ें)
अगर ऐसा अनुक्रम है कि सभी के लिए and ,
फिर अभिसरण है, और । - यदि एक अनुक्रम बंधे हुए हैं और एकरसता है तो यह अभिसरण है।
- एक अनुक्रम अभिसरण है यदि और केवल अगर इसके सभी बाद के सभी अभिसरण हैं।
Cauchy अनुक्रम
एक cauchy अनुक्रम एक अनुक्रम है जिसकी शर्तें मनमाने ढंग से एक साथ हो जाती हैं क्योंकि n बहुत बड़ा हो जाता है।एक कॉची अनुक्रम की धारणा मीट्रिक स्थानों में अनुक्रमों के अध्ययन में महत्वपूर्ण है, और, विशेष रूप से, वास्तविक विश्लेषण में।वास्तविक विश्लेषण में एक विशेष रूप से महत्वपूर्ण परिणाम अनुक्रमों के लिए अभिसरण का cauchy लक्षण वर्णन है:
- वास्तविक संख्याओं का एक अनुक्रम अभिसरण (वास्तविक में) है यदि और केवल अगर यह कॉची है।
इसके विपरीत, तर्कसंगत संख्याओं के cauchy अनुक्रम हैं जो तर्कसंगतों में अभिसरण नहीं हैं, उदा।द्वारा परिभाषित अनुक्रम एक्स1 = 1 और एक्सn+1 = xn + 2/xn/2 Cauchy है, लेकिन कोई तर्कसंगत सीमा नहीं है, cf.Cauchy अनुक्रम#काउंटर-उदाहरण: तर्कसंगत संख्याएँ | यहाँ |आम तौर पर, तर्कसंगत संख्याओं का कोई भी अनुक्रम जो एक तर्कहीन संख्या में परिवर्तित होता है, वह है, लेकिन तर्कसंगत संख्या के सेट में अनुक्रम के रूप में व्याख्या किए जाने पर अभिसरण नहीं है।
मीट्रिक रिक्त स्थान जो अनुक्रमों के लिए अभिसरण के कॉची लक्षण वर्णन को संतुष्ट करते हैं, उन्हें पूर्ण मीट्रिक स्थान कहा जाता है और विश्लेषण के लिए विशेष रूप से अच्छे होते हैं।
अनंत सीमाएं
कैलकुलस में, उन अनुक्रमों के लिए संकेतन को परिभाषित करना आम है जो ऊपर चर्चा की गई समझ में अभिसरण नहीं करते हैं, लेकिन जो इसके बजाय मनमाने ढंग से बड़े हो जाते हैं, या बन जाते हैं, या मनमाने ढंग से नकारात्मक रहते हैं।यदि मनमाने ढंग से बड़ा हो जाता है , हम लिखते हैं
इस मामले में हम कहते हैं कि अनुक्रम विचलन करता है, या यह कि यह अनंत में परिवर्तित हो जाता है।इस तरह के अनुक्रम का एक उदाहरण है an = n।
यदि मनमाने ढंग से नकारात्मक हो जाता है (यानी नकारात्मक और परिमाण में बड़ा) के रूप में , हम लिखते हैं
और कहते हैं कि अनुक्रम नकारात्मक अनंतता में बदल जाता है या परिवर्तित हो जाता है।
श्रृंखला
एक श्रृंखला, अनौपचारिक रूप से, एक अनुक्रम की शर्तों का योग है।यही है, यह फॉर्म की अभिव्यक्ति है या , कहाँ पे वास्तविक या जटिल संख्याओं का एक अनुक्रम है।एक श्रृंखला के आंशिक रकम एक परिमित संख्या के साथ अनंत प्रतीक को बदलने के परिणामस्वरूप अभिव्यक्ति हैं, यानी श्रृंखला का आंशिक आंशिक योग संख्या है
आंशिक रूप से स्वयं एक अनुक्रम बनाते हैं , जिसे श्रृंखला के आंशिक रकम का अनुक्रम कहा जाता है ।यदि आंशिक रकम का अनुक्रम अभिसरण करता है, तो हम कहते हैं कि श्रृंखला अभिसरण है, और सीमा है श्रृंखला का मूल्य कहा जाता है।एक ही संकेतन का उपयोग एक श्रृंखला और उसके मूल्य को निरूपित करने के लिए किया जाता है, यानी हम लिखते हैं ।
गणित के अन्य क्षेत्रों में उपयोग करें
टोपोलॉजी
अनुक्रम टोपोलॉजी में एक महत्वपूर्ण भूमिका निभाते हैं, विशेष रूप से मीट्रिक स्थानों के अध्ययन में।उदाहरण के लिए:
- एक मीट्रिक स्थान कॉम्पैक्ट होता है जब यह क्रमिक रूप से कॉम्पैक्ट होता है।
- एक मीट्रिक स्थान से एक अन्य मीट्रिक स्थान तक एक फ़ंक्शन लगातार तब होता है जब यह अभिसरण अनुक्रमों को अभिसरण अनुक्रमों में ले जाता है।
- एक मीट्रिक स्थान एक जुड़ा हुआ स्थान है यदि और केवल अगर, जब भी स्थान को दो सेटों में विभाजित किया जाता है, तो दो सेटों में से एक में एक अनुक्रम होता है जो दूसरे सेट में एक बिंदु पर परिवर्तित होता है।
- एक टोपोलॉजिकल स्पेस बिल्कुल अलग होता है जब बिंदुओं का घना अनुक्रम होता है।
अनुक्रमों को नेट या फिल्टर के लिए सामान्यीकृत किया जा सकता है।ये सामान्यीकरण एक को उपरोक्त सिद्धांतों में से कुछ को मेट्रिक्स के बिना रिक्त स्थान तक बढ़ाने की अनुमति देता है।
उत्पाद टोपोलॉजी
टोपोलॉजिकल रिक्त स्थान के अनुक्रम का टोपोलॉजिकल उत्पाद उन रिक्त स्थान का कार्टेशियन उत्पाद है, जो उत्पाद टोपोलॉजी नामक एक प्राकृतिक टोपोलॉजी से लैस है।
अधिक औपचारिक रूप से, रिक्त स्थान का एक अनुक्रम दिया गया , उत्पाद स्थान
सभी अनुक्रमों के सेट के रूप में परिभाषित किया गया है ऐसा कि प्रत्येक के लिए, का एक तत्व है ।विहित अनुमान नक्शे p हैंi: X & rarr;एक्सiसमीकरण द्वारा परिभाषित ।फिर x पर उत्पाद टोपोलॉजी को सबसे अधिक टोपोलॉजी (यानी सबसे कम खुले सेटों के साथ टोपोलॉजी) के रूप में परिभाषित किया गया है, जिसके लिए सभी अनुमान Piनिरंतर हैं।उत्पाद टोपोलॉजी को कभी -कभी 'टाइकोफ़ टोपोलॉजी' कहा जाता है।
विश्लेषण
विश्लेषण में, जब अनुक्रमों के बारे में बात करते हैं, तो एक आम तौर पर फॉर्म के अनुक्रमों पर विचार करेगा
जो कहना है, प्राकृतिक संख्याओं द्वारा अनुक्रमित तत्वों के अनंत अनुक्रम।
एक अनुक्रम 1 या 0. से अलग एक सूचकांक के साथ शुरू हो सकता है। उदाहरण के लिए, एक्स द्वारा परिभाषित अनुक्रमn= 1/लॉग (n) केवल n of के लिए परिभाषित किया जाएगा। 2. इस तरह के अनंत अनुक्रमों के बारे में बात करते समय, यह आमतौर पर पर्याप्त होता है (और अधिकांश विचारों के लिए बहुत अधिक नहीं बदलता है) यह मानने के लिए कि अनुक्रम के सदस्यों को कम से कम परिभाषित किया गया हैसभी सूचकांक काफी बड़े हैं, अर्थात्, कुछ दिए गए एन से अधिक है।
सबसे प्राथमिक प्रकार के अनुक्रम संख्यात्मक हैं, अर्थात् वास्तविक या जटिल संख्याओं के अनुक्रम।इस प्रकार को कुछ वेक्टर अंतरिक्ष के तत्वों के अनुक्रमों के लिए सामान्यीकृत किया जा सकता है।विश्लेषण में, माना जाता है कि वेक्टर रिक्त स्थान अक्सर फ़ंक्शन स्पेस होते हैं।यहां तक कि आम तौर पर, कोई भी कुछ टोपोलॉजिकल स्पेस में तत्वों के साथ अनुक्रमों का अध्ययन कर सकता है।
अनुक्रम रिक्त स्थान
एक अनुक्रम स्थान एक वेक्टर स्थान है जिसके तत्व वास्तविक या जटिल संख्याओं के अनंत अनुक्रम हैं।समान रूप से, यह एक फ़ंक्शन स्थान है जिसके तत्व प्राकृतिक संख्याओं से फ़ील्ड k तक कार्य करते हैं, जहां k या तो वास्तविक संख्याओं का क्षेत्र है या जटिल संख्याओं का क्षेत्र है।इस तरह के सभी कार्यों के सेट को स्वाभाविक रूप से K में तत्वों के साथ सभी संभावित अनंत अनुक्रमों के सेट के साथ पहचाना जाता है, और फ़ंक्शन और पॉइंटवाइज स्केलर गुणन के पॉइंटवाइज जोड़ के संचालन के तहत एक वेक्टर स्पेस में बदल दिया जा सकता है।सभी अनुक्रम स्थान इस स्थान के रैखिक उप -समूह हैं।अनुक्रम रिक्त स्थान आमतौर पर एक आदर्श, या कम से कम एक टोपोलॉजिकल वेक्टर स्थान की संरचना से सुसज्जित होते हैं।
विश्लेषण में सबसे महत्वपूर्ण अनुक्रम रिक्त स्थान ℓ हैंP स्पेस, P-Power Surmable अनुक्रमों से मिलकर, P-Norm के साथ।ये एल के विशेष मामले हैंपी प्राकृतिक संख्याओं के सेट पर गिनती के उपाय के लिए रिक्त स्थान।अनुक्रमों के अन्य महत्वपूर्ण वर्ग जैसे कि अभिसरण अनुक्रम या अनुक्रम_स्पेस#c, _c0_and_c00 | null अनुक्रम फॉर्म अनुक्रम रिक्त स्थान, क्रमशः c और c को निरूपित किया गया0, सुपर मानदंड के साथ।किसी भी अनुक्रम स्थान को पॉइंटवाइज कन्वर्जेंस की टोपोलॉजी से भी सुसज्जित किया जा सकता है, जिसके तहत यह एक विशेष प्रकार का फ्रैचेट स्पेस बन जाता है जिसे एफके-स्पेस कहा जाता है।
रैखिक बीजगणित
एक क्षेत्र के अनुक्रम को वेक्टर स्थान में वैक्टर के रूप में भी देखा जा सकता है।विशेष रूप से, एफ-मूल्यवान अनुक्रमों (जहां एफ एक क्षेत्र है) का सेट प्राकृतिक संख्याओं के सेट पर एफ-मूल्यवान कार्यों का एक फ़ंक्शन स्पेस (वास्तव में, एक उत्पाद स्थान) है।
सार बीजगणित
सार बीजगणित कई प्रकार के अनुक्रमों को नियोजित करता है, जिसमें गणितीय वस्तुओं जैसे समूहों या छल्ले के अनुक्रम शामिल हैं।
मुफ्त मोनोइड
यदि A एक सेट है, तो मुक्त मोनॉयड A (निरूपित A)*, जिसे क्लेन स्टार भी कहा जाता है) एक मोनॉयड है जिसमें शून्य या अधिक तत्वों के सभी परिमित अनुक्रम (या स्ट्रिंग्स) होते हैं, जिसमें कॉन्टेनेशन के द्विआधारी संचालन के साथ होता है।मुक्त सेमिग्रुप ए+ एक का उप -समूह है* खाली अनुक्रम को छोड़कर सभी तत्वों से युक्त।
सटीक अनुक्रम
समूह सिद्धांत के संदर्भ में, एक अनुक्रम
समूहों और समूह होमोमोर्फिज्म को सटीक कहा जाता है, यदि प्रत्येक समरूपता की छवि (या सीमा) अगले की कर्नेल के बराबर है:
समूहों और समरूपता का अनुक्रम या तो परिमित या अनंत हो सकता है।
कुछ अन्य बीजगणितीय संरचनाओं के लिए एक समान परिभाषा बनाई जा सकती है।उदाहरण के लिए, किसी के पास वेक्टर रिक्त स्थान और रैखिक मानचित्रों, या मॉड्यूल और मॉड्यूल होमोमोर्फिज्म का एक सटीक अनुक्रम हो सकता है।
वर्णक्रमीय अनुक्रम
होमोलॉजिकल बीजगणित और बीजगणितीय टोपोलॉजी में, एक वर्णक्रमीय अनुक्रम क्रमिक अनुमान लगाकर होमोलॉजी समूहों की गणना करने का एक साधन है।वर्णक्रमीय अनुक्रम सटीक अनुक्रमों का एक सामान्यीकरण है, और द्वारा उनके परिचय के बाद से Jean Leray (1946), वे एक महत्वपूर्ण अनुसंधान उपकरण बन गए हैं, विशेष रूप से होमोटोपी सिद्धांत में।
सेट सिद्धांत
एक आदेश टोपोलॉजी#ऑर्डिनल-इंडेक्सेड सीक्वेंस | ऑर्डिनल-इंडेक्सेड सीक्वेंस एक अनुक्रम का एक सामान्यीकरण है।यदि α एक सीमा क्रमबद्ध है और x एक सेट है, तो X के तत्वों का α-indexed अनुक्रम α से X तक एक फ़ंक्शन है। इस शब्दावली में एक ω-indexed अनुक्रम एक साधारण अनुक्रम है।
कम्प्यूटिंग
कंप्यूटर विज्ञान में, परिमित अनुक्रमों को सूची कहा जाता है।संभावित रूप से अनंत अनुक्रमों को धाराएं कहा जाता है।वर्णों या अंकों के परिमित दृश्यों को स्ट्रिंग्स कहा जाता है।
धाराएँ
एक परिमित वर्णमाला से खींचे गए अंकों (या वर्ण) के अनंत अनुक्रम सैद्धांतिक कंप्यूटर विज्ञान में विशेष रुचि रखते हैं।उन्हें अक्सर केवल अनुक्रम या धाराओं के रूप में संदर्भित किया जाता है, जैसा कि परिमित तार के विपरीत होता है।उदाहरण के लिए, अनंत द्विआधारी अनुक्रम, बिट्स के अनंत अनुक्रम हैं (वर्णमाला {0, 1} से खींचे गए वर्ण)।सेट c = {0, 1}सभी अनंत द्विआधारी अनुक्रमों के v को कभी -कभी कैंटर स्पेस कहा जाता है।
एक अनंत द्विआधारी अनुक्रम n & thinsp को सेट करके एक औपचारिक भाषा (स्ट्रिंग्स का एक सेट) का प्रतिनिधित्व कर सकता है; अनुक्रम का बिट 1 के लिए यदि और केवल अगर n & thinsp; th स्ट्रिंग (शॉर्टलेक्स ऑर्डर में) भाषा में है।यह प्रतिनिधित्व कैंटर के विकर्ण तर्क में उपयोगी है। सबूतों के लिए विकर्ण विधि।[10]
यह भी देखें
- गणना
- पूर्णांक अनुक्रमों की ऑन-लाइन विश्वकोश
- पुनरावृत्ति संबंध
- अनुक्रम स्थान
- संचालन
- Cauchy उत्पाद
- उदाहरण
- असतत समय का संकेत
- फेरी अनुक्रम
- फिबोनाची अनुक्रम
- लुक-एंड-टू सीक्वेंस
- थ्यू -मूर्स अनुक्रम
- पूर्णांक अनुक्रमों की सूची
- प्रकार
- ± 1-अनुक्रम
- अंकगणितीय प्रगति
- स्वचालित अनुक्रम
- Cauchy अनुक्रम
- निरंतर-पुनरावर्ती अनुक्रम
- ज्यामितीय अनुक्रम
- हार्मोनिक प्रगति
- होलोनोमिक अनुक्रम
- के-नियमित अनुक्रम | नियमित अनुक्रम
- स्यूडोरेंडोम बाइनरी अनुक्रम
- यादृच्छिक अनुक्रम
- संबंधित अवधारणाएं
- सूची (कंप्यूटिंग)
- नेट (टोपोलॉजी) (अनुक्रमों का एक सामान्यीकरण)
- ऑर्डर टोपोलॉजी#ऑर्डिनल-इंडेक्सेड सीक्वेंस | ऑर्डिनल-इंडेक्सेड सीक्वेंस
- पुनरावर्ती (कंप्यूटर विज्ञान)
- सेट (गणित)
- Tuple
- क्रमपरिवर्तन
टिप्पणियाँ
- ↑ If the inequalities are replaced by strict inequalities then this is false: There are sequences such that for all , but .
संदर्भ
- ↑ 1.0 1.1 "Sequences". www.mathsisfun.com. Retrieved 2020-08-17.
- ↑ Weisstein, Eric W. "Sequence". mathworld.wolfram.com (in English). Retrieved 2020-08-17.
- ↑ Index to OEIS, On-Line Encyclopedia of Integer Sequences, 2020-12-03
- ↑ 4.0 4.1 4.2 Gaughan, Edward (2009). "1.1 Sequences and Convergence". Introduction to Analysis. AMS (2009). ISBN 978-0-8218-4787-9.
- ↑ Edward B. Saff & Arthur David Snider (2003). "Chapter 2.1". Fundamentals of Complex Analysis. ISBN 978-01-390-7874-3.
- ↑ James R. Munkres (2000). "Chapters 1&2". Topology. ISBN 978-01-318-1629-9.
- ↑ Lando, Sergei K. (2003-10-21). "7.4 Multiplicative sequences". Lectures on generating functions. AMS. ISBN 978-0-8218-3481-7.
- ↑ Falcon, Sergio (2003). "Fibonacci's multiplicative sequence". International Journal of Mathematical Education in Science and Technology. 34 (2): 310–315. doi:10.1080/0020739031000158362. S2CID 121280842.
- ↑ Dawikins, Paul. "Series and Sequences". Paul's Online Math Notes/Calc II (notes). Retrieved 18 December 2012.
- ↑ Oflazer, Kemal. "FORMAL LANGUAGES, AUTOMATA AND COMPUTATION: DECIDABILITY" (PDF). cmu.edu. Carnegie-Mellon University. Retrieved 24 April 2015.
बाहरी संबंध
- "Sequence", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- The On-Line Encyclopedia of Integer Sequences
- Journal of Integer Sequences (free)
]