तापानुशीतन (पदार्थ विज्ञान)

From Vigyanwiki
Revision as of 11:57, 29 July 2022 by alpha>Abhishekk (few para edited)

धातुकर्म और पदार्थ विज्ञान में, तापानुशीतन एक ऊष्मा प्रबंध है जो पदार्थ के भौतिक और कभी-कभी रासायनिक गुणों को, अपनी तन्यता बढ़ाने और इसकी कठोरता को कम करने के लिए बदल देता है, जिससे यह अधिक सुकरणीय हो जाता है। इसमें पदार्थ को उसके पुन: क्रिस्टलीकरण तापमान से ऊपर गर्म किया जाता है, उचित समय के लिए उपयुक्त तापमान बनाए रखना और फिर ठंडा किया जाता है।

तापानुशीतन में, परमाणु क्रिस्टल जाल में स्थानांतरण करते हैं और अव्यवस्थाओं की संख्या कम हो जाती है, जिससे तन्यता और कठोरता में परिवर्तन होता है। जैसे ही पदार्थ ठंडा होता है, यह पुन: क्रिस्टलीकृत हो जाता है। कार्बन इस्पात सहित कई मिश्र धातुओं के लिए, क्रिस्टल कण आकार और कला संयोजन, जो अंततः पदार्थ के गुणों को निर्धारित करते हैं, तापन दर और शीतलन दर पर निर्भर हैं। तापानुशीतन प्रक्रिया के बाद तप्तकर्मण या अनूष्ण क्रियाविधि धातु संरचना को बदल देती है, इसलिए आवश्यक गुणों को प्राप्त करने के लिए और ऊष्मा प्रबंध का उपयोग किया जा सकता है। संयोजन और कला आरेख से, ऊष्मा प्रबंध का उपयोग कठोर और अधिक भंगुर से मृदु और अधिक तन्य में समायोजित करने के लिए किया जा सकता है।

लौह धातुओं के मामले में, जैसे कि स्टील, पदार्थ (सामान्यतः चमकने तक) को गर्म करके धीरे-धीरे इसे शांत वायु में कमरे के तापमान तक ठंडा करके तापानुशीतन किया जाता है। तांबे, चांदी और पीतल को या तो धीरे-धीरे हवा में ठंडा किया जा सकता है, या जल्दी से पानी में ठंडा किया जा सकता है।[1] इस तरह, धातु को मृदु बनाया जा सकता है और इसके बाद आकार देने, मुद्रांकन या किसी भी रूप मे तैयार किया जाता है।

ऊष्मागतिकी

तापानुशीतन ठोस पदार्थ में परमाणुओं के प्रसार से होता है, ताकि पदार्थ इसके संतुलन की स्थिति की ओर बढ़े।गर्मी बांड को तोड़ने के लिए आवश्यक ऊर्जा प्रदान करके प्रसार की दर को बढ़ाती है।परमाणुओं के आंदोलन में धातुओं में अव्यवस्थाओं को पुनर्वितरित करने और उन्मूलन करने का प्रभाव होता है ((कुछ हद तक) सिरेमिक में।मौजूदा अव्यवस्थाओं के लिए यह परिवर्तन एक धातु वस्तु को अधिक आसानी से विकृत करने की अनुमति देता है, जिससे इसकी लचीलापन बढ़ जाता है।[2] एक विकृत धातु में प्रोसेस-इनिटेटिंग गिब्स मुक्त ऊर्जा की मात्रा भी एनीलिंग प्रक्रिया द्वारा कम हो जाती है।अभ्यास और उद्योग में, गिब्स मुक्त ऊर्जा की इस कमी को तनाव से राहत कहा जाता है।[citation needed] आंतरिक तनावों की राहत एक थर्मोडायनामिक रूप से सहज प्रक्रिया है;हालांकि, कमरे के तापमान पर, यह एक बहुत धीमी प्रक्रिया है।उच्च तापमान जिस पर एनीलिंग होता है, इस प्रक्रिया में तेजी लाने के लिए काम करता है।[citation needed] ठंड-काम की धातु को अपनी तनाव-मुक्त स्थिति में लौटाने की सुविधा जो प्रतिक्रिया है, उनमें कई प्रतिक्रिया मार्ग हैं, जिनमें ज्यादातर धातु के शरीर के भीतर जाली रिक्ति ग्रेडिएंट्स के उन्मूलन को शामिल करते हैं।जाली रिक्तियों का निर्माण अरहेनियस समीकरण द्वारा शासित होता है, और जाली रिक्तियों के प्रवास/प्रसार को फिक के प्रसार के कानून द्वारा नियंत्रित किया जाता है। फिक के प्रसार के कानून।[3] स्टील में, एक decarburation तंत्र है जिसे तीन अलग -अलग घटनाओं के रूप में वर्णित किया जा सकता है: स्टील की सतह पर प्रतिक्रिया, कार्बन परमाणुओं के अंतरालीय प्रसार और स्टील के भीतर कार्बाइड के विघटन।[4]


चरण

सामग्री के तापमान के रूप में आगे बढ़ने वाली एनीलिंग प्रक्रिया के तीन चरणों में वृद्धि होती है: वसूली, पुनरावृत्ति, और अनाज की वृद्धि।पहला चरण वसूली है, और यह मुख्य रूप से रैखिक दोषों को हटाने के माध्यम से धातु को नरम करने के परिणामस्वरूप होता है, जिसे नापसंद कहा जाता है और आंतरिक तनाव वे कारण होते हैं।रिकवरी सभी एनीलिंग प्रक्रियाओं के निचले तापमान चरण में और नए तनाव-मुक्त अनाज की उपस्थिति से पहले होती है।अनाज का आकार और आकार नहीं बदलता है।[5] दूसरा चरण पुनर्संरचना है, जहां नए तनाव मुक्त अनाज न्यूक्लिएट और आंतरिक तनावों द्वारा विकृत लोगों को बदलने के लिए बढ़ते हैं।[5]यदि annealing को एक बार पुनरावृत्ति पूरा होने के बाद जारी रखने की अनुमति दी जाती है, तो अनाज की वृद्धि (तीसरा चरण) होता है।अनाज की वृद्धि में, माइक्रोस्ट्रक्चर मोटे होने लगता है और धातु को अपनी मूल ताकत का एक बड़ा हिस्सा खो सकता है।हालांकि इसे सख्त होने के साथ फिर से हासिल किया जा सकता है।[citation needed]


नियंत्रित वायुमंडल

एनीलिंग के उच्च तापमान के परिणामस्वरूप धातु की सतह का ऑक्सीकरण हो सकता है, जिसके परिणामस्वरूप स्केल होता है।यदि पैमाने से बचा जाना चाहिए, तो एनीलिंग को एक विशेष वातावरण में किया जाता है, जैसे कि एंडोथर्मिक गैस (कार्बन मोनोऑक्साइड, हाइड्रोजन गैस और नाइट्रोजन गैस का मिश्रण) के साथ।एनीलिंग भी गैस बनाने, हाइड्रोजन और नाइट्रोजन के मिश्रण में किया जाता है।

म्यू-मेटल (एस्पे कोर) के चुंबकीय गुणों को एक हाइड्रोजन वातावरण में मिश्र धातु की घोषणा करके पेश किया जाता है।

सेटअप और उपकरण

आमतौर पर, बड़े ओवन का उपयोग एनीलिंग प्रक्रिया के लिए किया जाता है। ओवन के अंदर वर्कपीस को परिसंचारी गर्म हवा के लिए अधिकतम जोखिम प्राप्त करने के लिए वर्कपीस को रखने के लिए पर्याप्त है। उच्च मात्रा की प्रक्रिया के लिए, गैस निकाल दी गई कन्वेयर भट्टियों का अक्सर उपयोग किया जाता है। बड़े वर्कपीस या उच्च मात्रा वाले भागों के लिए, कार-तल भट्टियों का उपयोग किया जाता है ताकि श्रमिक आसानी से भागों को अंदर और बाहर ले जा सकें। एक बार जब एनीलिंग प्रक्रिया सफलतापूर्वक पूरी हो जाती है, तो वर्कपीस को कभी -कभी ओवन में छोड़ दिया जाता है, इसलिए भागों को नियंत्रणीय तरीके से ठंडा कर दिया जाता है। जबकि कुछ वर्कपीस को एक नियंत्रित फैशन में ठंडा करने के लिए ओवन में छोड़ दिया जाता है, अन्य सामग्रियों और मिश्र धातुओं को ओवन से हटा दिया जाता है। एक बार ओवन से हटा दिए जाने के बाद, वर्कपीस को अक्सर एक प्रक्रिया में जल्दी से ठंडा किया जाता है जिसे बुझाने के सख्त के रूप में जाना जाता है। बुझाने के सख्त सामग्री के विशिष्ट तरीकों में मीडिया जैसे हवा, पानी, तेल या नमक शामिल हैं। नमक का उपयोग आमतौर पर ब्राइन (नमक पानी) के रूप में शमन के लिए एक माध्यम के रूप में किया जाता है। ब्राइन पानी की तुलना में तेजी से शीतलन दर प्रदान करता है। ऐसा इसलिए है क्योंकि जब किसी वस्तु को पानी में बुझाया जाता है, तो सतह के क्षेत्र को कम करने वाली वस्तु की सतह पर पानी भाप के बुलबुले बन जाते हैं। नमकीन में नमक वस्तु की सतह पर भाप के बुलबुले के गठन को कम करता है, जिसका अर्थ है कि पानी के संपर्क में वस्तु का एक बड़ा सतह क्षेत्र है, जो तेजी से शीतलन दर प्रदान करता है।[citation needed] बुझाना सख्त आम तौर पर कुछ लौह मिश्र धातुओं पर लागू होता है, लेकिन तांबे के मिश्र धातुओं पर नहीं।[citation needed]


सेमीकंडक्टर्स की डिफ्यूजन एनीलिंग

सेमीकंडक्टर उद्योग में, सिलिकॉन वेफर्स को आयन आरोपण जैसे चरणों से परमाणु स्तर के विकार की मरम्मत के लिए एनाल किया जाता है।प्रक्रिया के चरण में, डोपेंट परमाणु, आमतौर पर बोरॉन, फॉस्फोरस या आर्सेनिक, क्रिस्टल जाली में मिश्रित स्थिति में चले जाते हैं, जो इन डोपेंट परमाणुओं को अर्धचालक सामग्री में डोपेंट के रूप में ठीक से काम करने की अनुमति देता है।

विशिष्ट चक्र

सामान्यीकरण

सामान्यीकरण एक तापानुशीतन प्रक्रिया है जो पदार्थ को ठीक ठाक संरचना प्रदान करने के लिए लौह मिश्र धातु पैर की जाती है तथा इस्पात मे अधिक तन्यता को रोकता है। इसमें इस्पात को 20-50 °C (डिग्री सेल्सियस) क्रांतिक तापमान से उच्च तापमान पर गर्म किया जाता है तथा कुछ समय के लिए उसे उस तापमान पर भिगो कर वायु द्वारा ठंडा किया जाता है। इस्पात को उसके क्रांतिक तापमान से कुछ उच्च तापमान पर गर्म करने से ऑस्टेनिटिक कण (पिछले फेरिटिक कण से अत्यधिक छोटा) बनता है अपने ऊपरी आलोचनात्मक बिंदु के ठीक ऊपर स्टील को गर्म करने से ऑस्टेनिटिक अनाज (पिछले फेरिटिक अनाज की तुलना में बहुत छोटा) बनता है, जो ठंडा होने के दौरान, एक और परिष्कृत कण के आकार के साथ नए फेरिटिक कण बनाते हैं। यह प्रक्रिया अतयधिक उग्र तथा तन्य पदार्थ का उत्पादन करती है, और स्तंभाकार कण और द्रुमिका पृथक्करण को समाप्त करती है जो कभी -कभी ढलाई के दौरान होती है। सामान्यीकरण घटक के मशीनीकरण में सुधार करता है और उष्मीय प्रबंध प्रक्रियाओं के अधीन होने पर आयामी स्थिरता प्रदान करता है।

तापानुशीतन प्रक्रिया

तापानुशीतन प्रक्रिया, जिसे मध्यवर्ती तापानुशीतन, उपक्रांतिक तापानुशीतन, या तापानुशीतन प्रक्रम भी कहा जाता है, एक उष्मीय प्रबन्ध चक्र है जो अतप्त कर्मित उत्पाद के लिए कुछ तन्यता को पुनर्स्थापित करता है, अतः इसके टूटे बिना इस अतप्त कर्मित किया जा सकता है।

तपानुशीतन प्रक्रिया के लिए तापमान सीमा 260°C (डिग्री सेल्सियस) (500°F (डिग्री फारेनहाइट)) से 760°C (डिग्री सेल्सियस) (1400°F (डिग्री फारेनहाइट)) तक है जो उपयुक्त मिश्र धातु पर निर्भर करता है। यह प्रक्रिया मुख्य रूप से कम कार्बन इस्पात के लिए अनुकूल है। पदार्थ को इस्पात के क्रांतिक तापमान के कुछ कम तापमान पर गर्म किया जाता है। अतप्त कर्मित इस्पात सामान्यतः वर्धित कठोरता और कम तन्यता होती है, जिससे कार्य करना कठिन हो जाता है। तपानुशीतन प्रक्रिया इन विशेषताओं में सुधार करने के लिए जाता है। यह मुख्य रूप से शीतल ताप-दाबित इस्पात जैसे इस्पात के बनाए गए तार, के केन्द्र से हटते हुए तन्य लौह पाइप आदि पर किया जाता है।

पूर्ण तापानुशीतन

पूर्ण एनीलिंग तापमान रेंज

पूर्ण तापानुशीतन सामान्यतः दूसरे सबसे अधिक तन्य अवस्था में परिणाम देता है। इसका उद्देश्य एक समान और स्थिर सूक्ष्म संरचना की उत्पत्ति करना है जो धातु के कला आरेख संतुलन सूक्ष्म संरचना के सबसे निकट मिलता-जुलता है, इस प्रकार धातु को उच्च सुनम्यता और उग्रता के साथ अपेक्षाकृत निम्न स्तर की कठोरता, परम शक्ति और अंतिम शक्ति प्राप्त करता है। उदाहरण के लिए इस्पात पर पूर्ण तापानुशीतन करने के लिए, इस्पात को ऑस्टेनिटिक तापमान से थोड़ा ऊपर गर्म किया जाता है और पदार्थ को पूरी तरह से ऑस्टेनाइट या ऑस्टेनाइट-सीमेंटेट कण संरचना बनाने तक पर्याप्त समय के लिए संघटित किया जाता है। फिर पदार्थ को बहुत धीरे-धीरे ठंडा होने दिया जाता है ताकि संतुलन सूक्ष्म संरचना प्राप्त हो सके। अधिकतर स्थितियों मे इसका अर्थ है कि पदार्थ को भट्टी (भट्ठी को बंद करके) मे ठंडा किया जाता है लेकिन कुछ स्थितियों में यह ठंडी वायु के द्वारा ठंडा किया जाता है। इस्पात की शीतलन दर को पर्याप्त रूप से धीमा होना चाहिए ताकि ऑस्टेनाइट को बैनाइट या मार्टेंसाइट में परिवर्तित न हो, बल्कि यह पूरी तरह से पर्लिट और फेराइट या सीमेंटाइट में परिवर्तित हो जाये। इसका अर्थ है कि इस्पात जो बहुत कठोर हैं (अर्थात मध्यम रूप से कम शीतलन दर से मार्टेंसाइट बनाते हैं) को भट्ठी मे ठंडा करना पड़ता है। प्रक्रिया का विवरण धातु के प्रकार और निश्चित मिश्र धातु पर निर्भर करता है। किसी भी स्थिति में परिणाम एक अधिक तन्य पदार्थ है लेकिन कम उपज शक्ति और एक कम तन्यता शक्ति के साथ। इस प्रक्रिया को इस्पात उद्योग में लैमेलर पर्लिट के लिए एलपी (LP) तापानुशीतन भी कहा जाता है, तापानुशीतन प्रक्रिया के विपरीत, जो एक सूक्ष्म संरचना को निर्दिष्ट नहीं करता है और पदार्थ को केवल तन्यता प्रदान करता है। प्रायः मशीनीकृत किए जाने वाले पदार्थ का तापानुशीतन किया जाता है, और फिर अंतिम वांछित गुणों को प्राप्त करने के लिए और उष्मीय प्रबंध के अधीन किया जाता है।

लघु चक्र तापानुशीतन

लघु चक्र तापानुशीतन का उपयोग सामान्य फेराइट को आघात वर्धनीय फेराइट में बदलने के लिए किया जाता है। इसमें 4 से 8 घंटे तक गर्म, ठंडा तथा पुनः गर्म किया जाता है।

प्रतिरोध तापन

तांबे के तार को कुशलतापूर्वक हटाने के लिए प्रतिरोध तापन का उपयोग किया जा सकता है। उष्मीय प्रणाली एक नियंत्रित विद्युत लघु परिपथ को नियुक्त करती है। यह लाभदायक हो सकता है क्योंकि इसमें तापानुशीतन के अन्य विधियों की तरह तापमान नियंत्रित भट्टी की आवश्यकता नहीं होती है।

इस प्रक्रिया में दो चालकीय घिरनिया (सोपान घिरनी) होते हैं, जिससे तार एक ओर से दूसरी ओर खींचा जाता है। दोनों घिरनियों के बीच विद्युत विभव होता है, जिसके कारण तार में लघु परिपथ होता है। जूल प्रभाव के कारण तार का तापमान लगभग 400 °C (डिग्री सेल्सियस) तक बढ़ जाता है। यह तापमान घिरनियों की घूर्णन गति, परिवेश के तापमान और लगाए गए वोल्टेज से प्रभावित होता है। जहां t तार का तापमान, k एक नियतांक, v लगाया गया वोल्टेज, r प्रति मिनट घिरनियों के घूर्णन की संख्या, तथा Ta परिवेश का तापमान है।

नियतांक k घिरनियों के व्यास और तांबे की प्रतिरोधकता पर निर्भर करता है।

पूर्ण रूप से तांबे के तार के तापमान के संदर्भ में, घिरनी प्रणाली के माध्यम से तार की गति में वृद्धि प्रतिरोध में कमी के समान प्रभाव डालती है।

यह भी देखें

  • तापानुशीतन (ग्लास)
  • लघु परिपथ द्वारा तापानुशीतन
  • हॉलोमन-जफ पैरामीटर
  • अवकृष्ट हाइड्रोजन तापानुशीतन
  • कृत्रिम तापानुशीतन
  • टेम्परिंग (धातुकर्म)

संदर्भ

  1. "Archived copy". Archived from the original on 2010-07-24. Retrieved 2010-04-19.{{cite web}}: CS1 maint: archived copy as title (link)
  2. Wu, Hao (August 2020). "An overview of tailoring strain delocalization for strength-ductility synergy". Progress in Materials Science. 113: 100675. doi:10.1016/j.pmatsci.2020.100675.
  3. Van Vlack, L. H. (1985). Elements of Materials Science and Engineering. Addison-Wesley. p. 134.
  4. Alvarenga, H. D.; Van de Putte, T.; Van Steenberge, N.; Sietsma, J.; Terryn, H. (Apr 2009). "Influence of Carbide Morphology and Microstructure on the Kinetics of Superficial Decarburization of C-Mn Steels". Metall Mater Trans A. 46: 123–133. doi:10.1007/s11661-014-2600-y. S2CID 136871961.
  5. 5.0 5.1 Verhoeven, J.D. Fundamentals of Physical Metallurgy, Wiley, New York, 1975, p. 326


अग्रिम पठन

  • Thesis of Degree, Cable Manufacture and Tests of General Use and Energy. Jorge Luis Pedraz (1994), UNI, Files, Peru.
  • "Dynamic annealing of the Copper wire by using a Controlled Short circuit." Jorge Luis Pedraz (1999), Peru: Lima, CONIMERA 1999, INTERCON 99,


बाहरी संबंध

  • Annealing – efunda – engineering fundamentals
  • Annealing – Aluminum and Aircraft Metal Alloys

]