फर्मी तरल सिद्धांत

From Vigyanwiki
Revision as of 11:49, 12 May 2022 by alpha>Sarika (Created page with "{{Short description|Theoretical model of interacting fermions}} {{other uses|Fermi (disambiguation)}} {{Condensed matter physics|expanded=States of matter}} ''' फर्म...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

फर्मी लिक्विड थ्योरी (जिसे लैंडौ के फर्मी-लिक्विड थ्योरी के रूप में भी जाना जाता है) फ़र्मियन एस के परस्पर क्रिया का एक सैद्धांतिक मॉडल है जो पर्याप्त रूप से कम तापमान पर अधिकांश धातु एस की सामान्य स्थिति का वर्णन करता है।[1] कई-शरीर प्रणाली के कणों के बीच बातचीत को छोटा होने की आवश्यकता नहीं है। फेनोमेनोलॉजिकल फर्मी लिक्विड्स का सिद्धांत सोवियत भौतिक विज्ञानी लेव डेविडोविच लैंडौ द्वारा 1956 में पेश किया गया था, और बाद में एलेक्सी एब्रिकोसोव और इसाक खलातनिकोव द्वारा आरेखीय गड़बड़ी सिद्धांत [2] सिद्धांत बताता है कि एक अंतःक्रियात्मक फर्मियन प्रणाली के कुछ गुण आदर्श फर्मी गैस (यानी गैर-अंतःक्रियात्मक फर्मियन) के समान क्यों हैं, और अन्य गुण भिन्न क्यों हैं।

जहां फर्मी तरल सिद्धांत को सफलतापूर्वक लागू किया गया है, उसके महत्वपूर्ण उदाहरण अधिकांश धातुओं और तरल हीलियम -3 में विशेष रूप से इलेक्ट्रॉन हैं।[3] तरल हीलियम -3 कम तापमान पर एक फर्मी तरल है (लेकिन इतना कम नहीं है कि इसके सुपरफ्लुइड चरण में हो)। हीलियम -3 हीलियम का आइसोटोप है, जिसमें 2 प्रोटॉन एस, 1 न्यूट्रॉन और प्रति परमाणु 2 इलेक्ट्रॉन हैं। चूँकि नाभिक के अंदर विषम संख्या में फ़र्मियन होते हैं, परमाणु स्वयं भी एक फ़र्मियन होता है। एक सामान्य (गैर- अतिचालक ) धातु में इलेक्ट्रॉन एस भी एक फर्मी तरल बनाता है, जैसा कि परमाणु नाभिक में न्यूक्लियंस (प्रोटॉन और न्यूट्रॉन) करते हैं। स्ट्रोंटियम रूथेनेट फर्मी तरल पदार्थों के कुछ प्रमुख गुणों को प्रदर्शित करता है, दृढ़ता से सहसंबद्ध सामग्री होने के बावजूद, और इसकी तुलना उच्च तापमान सुपरकंडक्टर एस जैसे कप्रेट एस से की जाती है।[4]

विवरण

लांडौ के सिद्धांत के पीछे प्रमुख विचार 'एडियाबेटिकिटी' की धारणा और पाउली अपवर्जन सिद्धांत हैं।[5] एक गैर-अंतःक्रियात्मक फर्मियन सिस्टम (एक फर्मी गैस ) पर विचार करें, और मान लें कि हम धीरे-धीरे बातचीत को चालू करते हैं। लैंडौ ने तर्क दिया कि इस स्थिति में, फर्मी गैस की जमीनी स्थिति एडियैबेटिक रूप से अंतःक्रियात्मक प्रणाली की जमीनी स्थिति में बदल जाएगी।

पाउली के अपवर्जन सिद्धांत के अनुसार, जमीनी स्थिति of a Fermi gas consists of fermions occupying all momentum states corresponding to momentum सभी उच्च गति के साथ निर्वासित राज्य। जैसे-जैसे इंटरेक्शन चालू होता है, कब्जे वाली अवस्थाओं के अनुरूप फ़र्मों का स्पिन, चार्ज और संवेग अपरिवर्तित रहता है, जबकि उनके गतिशील गुण, जैसे कि उनका द्रव्यमान, चुंबकीय क्षण आदि रेनॉर्मलाइज़्ड से नए होते हैं। मूल्यों[5] इस प्रकार, फर्मी गैस प्रणाली के प्राथमिक उत्तेजनाओं और फर्मी तरल प्रणाली के बीच एक-से-एक पत्राचार होता है। फर्मी द्रवों के संदर्भ में, इन उत्तेजनाओं को अर्ध-कण कहा जाता है[1]

लैंडौ क्वासिपार्टिकल्स जीवन भर के साथ लंबे समय तक चलने वाले उत्तेजना हैं that satisfies where is the quasiparticle energy (measured from the Fermi energy). At finite temperature, is on the order of the thermal energy , and the condition for Landau quasiparticles can be reformulated as . इस प्रणाली के लिए, ग्रीन का फलन लिखा जा सकता है[6] (इसके ध्रुवों के पास) रूप में

कहाँ पे is the chemical potential and दी गई संवेग अवस्था के अनुरूप ऊर्जा है।

मूल्य इसे 'क्वासिपार्टिकल अवशेष' कहा जाता है और यह फर्मी तरल सिद्धांत की बहुत विशेषता है। सिस्टम के लिए वर्णक्रमीय कार्य सीधे कोण-समाधानित फोटोमिशन स्पेक्ट्रोस्कोपी (एआरपीईएस) के माध्यम से देखा जा सकता है, और फॉर्म में (निचले उत्तेजना की सीमा में) लिखा जा सकता है:

कहाँ पे फर्मी वेग है[7]

भौतिक रूप से, हम कह सकते हैं कि एक प्रोपेगेटिंग फ़र्मियन अपने आस-पास के साथ इस तरह से बातचीत करता है कि इंटरैक्शन का शुद्ध प्रभाव फ़र्मियन को एक कपड़े पहने हुए फ़र्मियन के रूप में व्यवहार करना है, इसके प्रभावी द्रव्यमान और अन्य गतिशील गुणों को बदलना है। ये कपड़े पहने हुए फ़र्मियन हैं जिन्हें हम क्वासिपार्टिकल्स के रूप में समझते हैं[2]

फर्मी द्रवों का एक अन्य महत्वपूर्ण गुण इलेक्ट्रॉनों के प्रकीर्णन अनुप्रस्थ काट से संबंधित है। मान लीजिए हमारे पास ऊर्जा वाला एक इलेक्ट्रॉन है Fermi सतह के ऊपर, और मान लें कि यह Fermi समुद्र में ऊर्जा के साथ एक कण के साथ बिखरता है Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ए" found.in 1:29"): {\displaystyle \epsilon_2</mएथ>. पाउली के अपवर्जन सिद्धांत के अनुसार, प्रकीर्णन के बाद दोनों कणों को ऊर्जा के साथ फर्मी सतह के ऊपर स्थित होना चाहिए <math>\epsilon_3,\epsilon_4>\epsilon_{\rm F}} . Now, suppose the initial electron has energy very close to the Fermi surface Then, we have that भी फर्मी सतह के बहुत करीब होना चाहिए। यह बिखरने के बाद संभावित राज्यों के चरण स्थान मात्रा को कम कर देता है, और इसलिए, फर्मी के सुनहरे नियम से, बिखरने वाला क्रॉस सेक्शन शून्य हो जाता है। इस प्रकार हम कह सकते हैं कि फर्मी सतह पर कणों का जीवनकाल अनंत तक जाता है[1]

फर्मी गैस से समानताएं

फर्मी तरल गुणात्मक रूप से गैर-अंतःक्रियात्मक फर्मी गैस के अनुरूप है, निम्नलिखित अर्थों में: कम उत्तेजना ऊर्जा और तापमान पर सिस्टम की गतिशीलता और थर्मोडायनामिक्स को गैर-अंतःक्रियात्मक फर्मों को क्वासिपार्टिकल एस के साथ प्रतिस्थापित करके वर्णित किया जा सकता है, प्रत्येक जिनमें से स्पिन , चार्ज और गति मूल कणों के समान है। भौतिक रूप से इन्हें ऐसे कण के रूप में माना जा सकता है जिनकी गति आसपास के कणों से बाधित होती है और जो स्वयं अपने आसपास के कणों को परेशान करते हैं। इंटरैक्टिंग सिस्टम की प्रत्येक कई-कण उत्तेजित अवस्था को सभी कब्जे वाले गति राज्यों को सूचीबद्ध करके वर्णित किया जा सकता है, जैसे कि गैर-अंतःक्रियात्मक प्रणाली में। नतीजतन, फर्मी तरल की गर्मी क्षमता जैसी मात्राएं उसी तरह गुणात्मक रूप से व्यवहार करती हैं जैसे फर्मी गैस में (उदाहरण के लिए ताप क्षमता तापमान के साथ रैखिक रूप से बढ़ जाती है)।

फर्मी गैस से अंतर

गैर-अंतःक्रियात्मक फर्मी गैस में निम्नलिखित अंतर उत्पन्न होते हैं:

ऊर्जा

एक बहु-कण अवस्था की ऊर्जा केवल सभी अधिकृत राज्यों की एकल-कण ऊर्जाओं का योग नहीं है। इसके बजाय, किसी दिए गए परिवर्तन के लिए ऊर्जा में परिवर्तन in occupation of states contains terms both linear and quadratic in (for the Fermi gas, it would only be linear, , where एकल-कण ऊर्जाओं को दर्शाता है)। रैखिक योगदान पुनर्सामान्यीकृत एकल-कण ऊर्जा से मेल खाता है, जिसमें शामिल है, उदाहरण के लिए, कणों के प्रभावी द्रव्यमान में परिवर्तन। द्विघात शब्द क्वासिपार्टिकल्स के बीच एक प्रकार के माध्य-क्षेत्रीय अंतःक्रिया के अनुरूप हैं, जो तथाकथित लैंडौ फर्मी तरल मापदंडों द्वारा पैरामीट्रिज्ड है और फर्मी तरल में घनत्व दोलनों (और स्पिन-घनत्व दोलनों) के व्यवहार को निर्धारित करता है। फिर भी, इन माध्य-क्षेत्रीय अंतःक्रियाओं से विभिन्न गति वाले राज्यों के बीच कणों के हस्तांतरण के साथ अर्ध-कणों का प्रकीर्णन नहीं होता है।

इंटरैक्टिंग फर्मियन के तरल पदार्थ के द्रव्यमान के पुनर्मूल्यांकन की गणना कई-शरीर कम्प्यूटेशनल तकनीकों का उपयोग करके पहले सिद्धांतों से की जा सकती है। द्वि-आयामी सजातीय इलेक्ट्रॉन गैस , [[GW सन्निकटन | GW गणना के लिए][8] और क्वांटम मोंटे कार्लो विधि[9][10][11] पुनर्सामान्यीकृत क्वासिपार्टिकल प्रभावी द्रव्यमान की गणना के लिए उपयोग किया गया है।

विशिष्ट ताप और संपीड्यता

विशिष्ट ऊष्मा ,  संपीड्यता ,  स्पिन-संवेदनशीलता  और अन्य मात्राएँ फर्मी गैस के समान गुणात्मक व्यवहार (जैसे तापमान पर निर्भरता) दिखाती हैं, लेकिन परिमाण (कभी-कभी दृढ़ता से) बदल जाता है।

बातचीत

माध्य-क्षेत्रीय अंतःक्रियाओं के अलावा, अर्ध-कणों के बीच कुछ कमजोर अंतःक्रियाएं बनी रहती हैं, जो एक-दूसरे से क्वैसिपार्टिकल्स के बिखरने की ओर ले जाती हैं। इसलिए, क्वासिपार्टिकल्स एक सीमित जीवनकाल प्राप्त करते हैं। हालांकि, फर्मी सतह के ऊपर पर्याप्त कम ऊर्जा पर, यह जीवनकाल बहुत लंबा हो जाता है, जैसे कि उत्तेजना ऊर्जा (आवृत्ति में व्यक्त) और जीवनकाल का उत्पाद एक से बहुत बड़ा होता है। इस अर्थ में, अर्ध-कण ऊर्जा अभी भी अच्छी तरह से परिभाषित है (विपरीत सीमा में, हाइजेनबर्ग का अनिश्चितता संबंध ऊर्जा की सटीक परिभाषा को रोक देगा)।

संरचना

बेयर पार्टिकल्स की संरचना (कैसिपार्टिकल के विपरीत) ग्रीन का फंक्शन फर्मी गैस के समान है (जहां, किसी दिए गए मोमेंटम के लिए, फ्रीक्वेंसी स्पेस में ग्रीन का फंक्शन संबंधित सिंगल-पार्टिकल एनर्जी पर डेल्टा पीक होता है) . राज्यों के घनत्व में डेल्टा शिखर को चौड़ा किया जाता है (क्वासिपार्टिकल जीवनकाल द्वारा दी गई चौड़ाई के साथ)। इसके अलावा (और क्वासिपार्टिकल ग्रीन के कार्य के विपरीत), इसका वजन (आवृत्ति पर अभिन्न) एक क्वासिपार्टिकल वजन कारक द्वारा दबा दिया जाता है . कुल वजन का शेष एक व्यापक असंगत पृष्ठभूमि में है, जो कम समय-पैमाने पर फ़र्मियन पर बातचीत के मजबूत प्रभावों के अनुरूप है।

वितरण

शून्य तापमान पर गति अवस्थाओं पर कणों का वितरण (क्यूसिपार्टिकल्स के विपरीत) अभी भी फर्मी सतह पर एक असंतत छलांग दिखाता है (जैसा कि फर्मी गैस में है), लेकिन यह 1 से 0 तक नहीं गिरता है: कदम केवल आकार का है .

विद्युत प्रतिरोधकता

एक धातु में umklapp बिखरने वाले के संयोजन में इलेक्ट्रॉन-इलेक्ट्रॉन बिखरने पर कम तापमान पर प्रतिरोधकता हावी होती है। एक फर्मी तरल के लिए, इस तंत्र से प्रतिरोधकता भिन्न होती है , which is often taken as an experimental check for Fermi liquid behaviour (in addition to the linear temperature-dependence of the specific heat), although it only arises in combination with the lattice. In certain cases, umklapp scattering is not required. For example, the resistivity of compensated semimetals scales as इलेक्ट्रॉन और छिद्र के परस्पर प्रकीर्णन के कारण। इसे बाबर तंत्र के रूप में जाना जाता है[12]

ऑप्टिकल प्रतिक्रिया

फर्मी तरल सिद्धांत भविष्यवाणी करता है कि बिखरने की दर, जो धातुओं की ऑप्टिकल प्रतिक्रिया को नियंत्रित करती है, न केवल तापमान पर द्विघात रूप से निर्भर करती है (इस प्रकार डीसी प्रतिरोध की निर्भरता), लेकिन यह आवृत्ति पर भी द्विघात रूप से निर्भर करता है[13][14][15] यह गैर-अंतःक्रियात्मक धातु इलेक्ट्रॉनों के लिए ड्रूड भविष्यवाणी के विपरीत है, जहां आवृत्ति के एक समारोह के रूप में बिखरने की दर स्थिर है। एक सामग्री जिसमें ऑप्टिकल फर्मी तरल व्यवहार प्रयोगात्मक रूप से देखा गया था, वह है Sr2RuO4 का निम्न-तापमान धात्विक चरण[16]

अस्थिरता

अत्यधिक सहसंबद्ध प्रणालियों में विदेशी चरणों के प्रायोगिक अवलोकन ने सैद्धांतिक समुदाय से उनके सूक्ष्म मूल को समझने की कोशिश करने के लिए एक बहुत बड़ा प्रयास शुरू किया है। एक फर्मी तरल की अस्थिरता का पता लगाने का एक संभावित मार्ग ठीक इसाक पोमेरेनचुक द्वारा किया गया विश्लेषण है।[17] उसके कारण, पोमेरेनचुक अस्थिरता का कई लेखकों द्वारा अध्ययन किया गया है [18] पिछले कुछ वर्षों में विभिन्न तकनीकों के साथ और विशेष रूप से, नेमैटिक चरण के लिए फर्मी तरल की अस्थिरता की जांच कई मॉडलों के लिए की गई थी।

गैर-फर्मी तरल पदार्थ

शब्द गैर-फर्मी तरल, जिसे अजीब धातु के रूप में भी जाना जाता है[19] एक प्रणाली का वर्णन करने के लिए प्रयोग किया जाता है जो फर्मी-तरल व्यवहार के टूटने को प्रदर्शित करता है। इस तरह की प्रणाली का सबसे सरल उदाहरण एक आयाम में परस्पर क्रिया करने की प्रणाली है, जिसे लुटिंगर तरल कहा जाता है।[3] हालांकि लुटिंगर तरल पदार्थ भौतिक रूप से फर्मी तरल पदार्थ के समान हैं, एक आयाम के लिए प्रतिबंध कई गुणात्मक अंतरों को जन्म देता है जैसे गति पर निर्भर वर्णक्रमीय कार्य, स्पिन-चार्ज पृथक्करण, और स्पिन घनत्व तरंगें । एक आयाम में अंतःक्रियाओं के अस्तित्व को नजरअंदाज नहीं किया जा सकता है और समस्या का वर्णन गैर-फर्मी सिद्धांत के साथ करना होगा, जहां लुटिंगर तरल उनमें से एक है। एक आयाम में छोटे परिमित स्पिन-तापमान पर सिस्टम की जमीनी-स्थिति को स्पिन-असंगत लुटिंगर तरल (SILL) द्वारा वर्णित किया जाता है।[20]

इस तरह के व्यवहार का एक और उदाहरण क्वांटम क्रिटिकल पॉइंट सेकंड के कुछ दूसरे क्रम के चरण संक्रमण पर देखा गया है, जैसे कि हैवी फ़र्मियन क्रिटिकलिटी, एमओटी क्रिटिकलिटी और उच्च cuprate phase transitions.[7] The ground state of such transitions is characterized by the presence of a sharp Fermi surface, although there may not be well-defined quasiparticles. That is, on approaching the critical point, it is observed that the quasiparticle residue

संघनित पदार्थ भौतिकी में गैर-फर्मी तरल पदार्थों के व्यवहार को समझना एक महत्वपूर्ण समस्या है। इन परिघटनाओं की व्याख्या करने के दृष्टिकोण में सीमांत फर्मी तरल पदार्थ का उपचार शामिल है; महत्वपूर्ण बिंदुओं को समझने और स्केलिंग संबंध प्राप्त करने का प्रयास; और गेज सिद्धांत का उपयोग करते हुए होलोग्राफिक गेज/गुरुत्वाकर्षण द्वैत की तकनीकों के साथ विवरण[21]

See also

]

  1. 1.0 1.1 1.2 Phillips, Philip (2008). Advanced Solid State Physics. Perseus Books. p. 224. ISBN 978-81-89938-16-1.
  2. 2.0 2.1 Cross, Michael. mcc/Ph127/c/Lecture9.pdf "Fermi Liquid Theory: Principles" (PDF). California Institute of Technology. Retrieved 2 February 2015.
  3. 3.0 3.1 Schulz, H. J. (March 1995). "Fermi liquids and non–Fermi liquids". In "proceedings of les Houches Summer School Lxi", ed. E. Akkermans, G. Montambaux, J. Pichard, et J. Zinn-Justin (Elsevier, Amsterdam. 1995 (533). arXiv:cond-mat/9503150. Bibcode:1995cond.mat..3150S.
  4. Wysokiński, Carol; et al. (2003). "Spin triplet superconductivity in Sr2RuO4" (PDF). Physica Status Solidi. 236 (2): 325–331. arXiv:cond-mat/0211199. Bibcode:2003PSSBR.236..325W. doi:10.1002/pssb.200301672. S2CID 119378907. Retrieved 8 April 2012.
  5. 5.0 5.1 Coleman, Piers. coleman/620/mbody/pdf/bkx.pdf Introduction to Many Body Physics (PDF). Rutgers University. p. 143. Archived from coleman/620/mbody/pdf/bkx.pdf the original (PDF) on 2012-05-17. Retrieved 2011-02-14. (प्रालेख
  6. Lifshitz, E. M.; Pitaevskii, L.P. (1980). Statistical Physics (Part 2). Landau and Lifshitz. Vol. 9. Elsevier. ISBN 978-0-7506-2636-1.
  7. 7.0 7.1 Senthil, Todadri (2008). "Critical Fermi surfaces and non-Fermi liquid metals". Physical Review B. 78 (3): 035103. arXiv:0803.4009. Bibcode:2008PhRvB..78c5103S. doi:10.1103/PhysRevB.78.035103. S2CID 118656854.
  8. R. Asgari; B. Tanatar (2006). "Many-body effective mass and spin susceptibility in a quasi-two-dimensional electron liquid" (PDF). Physical Review B. 74 (7): 075301. Bibcode:2006PhRvB..74g5301A. doi:10.1103/PhysRevB.74.075301. hdl:11693/23741.
  9. Y. Kwon; D. M. Ceperley; R. M. Martin (2013). "Quantum Monte Carlo calculation of the Fermi-liquid parameters in the two-dimensional electron gas". Physical Review B. 50 (3): 1684–1694. arXiv:1307.4009. Bibcode:1994PhRvB..50.1684K. doi:10.1103/PhysRevB.50.1684. PMID 9976356.
  10. M. Holzmann; B. Bernu; V. Olevano; R. M. Martin; D. M. Ceperley (2009). "Renormalization factor and effective mass of the two-dimensional electron gas". Physical Review B. 79 (4): 041308(R). arXiv:0810.2450. Bibcode:2009PhRvB..79d1308H. doi:10.1103/PhysRevB.79.041308. S2CID 12279058.
  11. N. D. Drummond; R. J. Needs (2013). "Diffusion quantum Monte Carlo calculation of the quasiparticle effective mass of the two-dimensional homogeneous electron gas". Physical Review B. 87 (4): 045131. arXiv:1208.6317. Bibcode:2013PhRvB..87d5131D. doi:10.1103/PhysRevB.87.045131. S2CID 53548304.
  12. Baber, W. G. (1937). "The Contribution to the Electrical Resistance of Metals from Collisions between Electrons". Proc. Royal Soc. Lond. A. 158 (894): 383–396. Bibcode:1937RSPSA.158..383B. doi:10.1098/rspa.1937.0027.
  13. R. N. Gurzhi (1959). "MUTUAL ELECTRON CORRELATIONS IN METAL OPTICS". Sov. Phys. JETP. 8: 673–675.
  14. M. Scheffler; K. Schlegel; C. Clauss; D. Hafner; C. Fella; M. Dressel; M. Jourdan; J. Sichelschmidt; C. Krellner; C. Geibel; F. Steglich (2013). "Microwave spectroscopy on heavy-fermion systems: Probing the dynamics of charges and magnetic moments". Phys. Status Solidi B. 250 (3): 439–449. arXiv:1303.5011. Bibcode:2013PSSBR.250..439S. doi:10.1002/pssb.201200925. S2CID 59067473.
  15. C. C. Homes; J. J. Tu; J. Li; G. D. Gu; A. Akrap (2013). "Optical conductivity of nodal metals". Scientific Reports. 3 (3446): 3446. arXiv:1312.4466. Bibcode:2013NatSR...3E3446H. doi:10.1038/srep03446. PMC 3861800. PMID 24336241.
  16. D. Stricker; J. Mravlje; C. Berthod; R. Fittipaldi; A. Vecchione; A. Georges; D. van der Marel (2014). "Optical Response of Sr2RuO4 Reveals Universal Fermi-Liquid Scaling and Quasiparticles Beyond Landau Theory". Physical Review Letters. 113 (8): 087404. arXiv:1403.5445. Bibcode:2014PhRvL.113h7404S. doi:10.1103/PhysRevLett.113.087404. PMID 25192127. S2CID 20176023.
  17. I. I. Pomeranchuk (1959). "ON THE STABILITY OF A FERMI LIQUID". Sov. Phys. JETP. 8: 361–362.
  18. दरअसल, यह जांच का विषय है, उदाहरण के लिए देखें: https://arxiv.org/abs/0804.4422
  19. Ong, edited by N. Phuan; Bhatt, Ravin N. (2001). More is different : fifty years of condensed matter physics. Princeton (N.J.): Princeton university press. p. 65. ISBN 978-0691088662. Retrieved 2 February 2015. {{cite book}}: |first1= has generic name (help)
  20. M. Soltanieh-ha, A. E. Feiguin (2012). "Class of variational Ansätze for the spin-incoherent ground state of a Luttinger liquid coupled to a spin bath". Physical Review B. 86 (20): 205120. arXiv:1211.0982. Bibcode:2012PhRvB..86t5120S. doi:10.1103/PhysRevB.86.205120. S2CID 118724491.
  21. Faulkner, Thomas; Polchinski, Joseph (2010). "Semi-Holographic Fermi Liquids". Journal of High Energy Physics. 2011 (6): 12. arXiv:1001.5049. Bibcode:2011JHEP...06..012F. CiteSeerX 10.1.1.755.3304. doi:10.1007/JHEP06(2011)012. S2CID 119243857.