ऐल्काइन
कार्बनिक रसायन विज्ञान में, एक एल्काइन एक असंतृप्तहाइड्रोकार्बन है जिसमें कम से कम एक कार्बन-कार्बन (C≡C) तृतीयक बंध होता है।[1] सबसे सरल अचक्रीय एल्काइन जिसमें केवल एक तृतीयक बंध होता है और कोई अन्य कार्यात्मक समूह सामान्य रासायनिक सूत्र के साथ एक समरूप श्रृंखला नहीं बनाता है जिसका सामान्य रासायनिक सूत्र CnH2n-2है एल्काइन को पारंपरिक रूप से एसिटिलीन के रूप में जाना जाता है, हालांकि एसिटिलीन का समान्य रासायनिक सूत्र C2H2 विशेष रूप से संदर्भित करता है C2H2कार्बनिक रसायन के IUPAC नामकरण का उपयोग करके औपचारिक रूप से एथीन के रूप में जाना जाता है। अन्य हाइड्रोकार्बन की तरह, एल्काइन आमतौर पर जल विरोधी(हाइड्रोफोबिक) होते हैं।[2]
संरचना और संबंध
एसिटिलीन में, H-C≡C आबंध कोण 180° होते हैं। इस आबंध कोण के कारण एल्काइन रेखीय होते हैं। तदनुसार, चक्रीय एल्काइन दुर्लभ हैं। बेंजीन को अलग नहीं किया जा सकता है।C≡C की बंध दूरी 121 पिकोमीटर होती है, जोकि C=C की बंध दूरी (134 pm) से कम होती है या एल्केन में C-C बंध दूरी (153 pm) से बहुत कम है।
- तृतीयक बंध जोकि एक बहुत ही प्रबल बंध है उसकी बंधन शक्ति 839 kJ/mol है। सिग्मा बंध की बंधन शक्ति 369 kJ/mol होती है, पहला पाई बंध 268 kJ/mol और दूसरा पाई बंध 202 kJ/mol बंधन शक्ति का योगदान देता है। बंध की चर्चा आमतौर पर आणविक कक्षीय सिद्धांत के संदर्भ में की जाती है, जो तृतीयक बंध को s और p ऑर्बिटल्स (कक्षाओं) के अतिव्यापन से उत्पन्न होता है। संयोजकता बंध सिद्धांत के अनुसार, एक एल्काइन आबंध में कार्बन परमाणु sp संकरित होते हैं: उनमें से प्रत्येक में दो असंकरित p कक्षक और दो कक्षीय संकरण होते हैं। प्रत्येक परमाणु से एक sp कक्षक का अतिव्यापन एक sp-sp सिग्मा बंध बनाता है। एक परमाणु पर प्रत्येक p ऑर्बिटल एक दूसरे परमाणु पर अतिव्यापन करता हैऔर दो पाई बंध बनाता है, जिससे कुल तीन बंध बनते हैं। प्रत्येक परमाणु पर शेष sp ऑर्बिटल् दूसरे परमाणु के साथ एक सिग्मा बंध बना सकता है, उदाहरण के लिए मूल एसिटिलीन में में दो हाइड्रोजन परमाणु आपस में सिग्मा बंध द्वारा जुड़े होते हैं। दो sp कक्षक कार्बन परमाणु के विपरीत दिशा में प्रक्षेपित होते हैं। .
टर्मिनल और आंतरिक एल्काइन
आंतरिक एल्काइन में प्रत्येक एसिटिलेनिक कार्बन पर कार्बन पदार्थ होते हैं। सममित उदाहरणों में डाईफिनाइल एसिटिलीन और 3-हेक्साइन सम्मिलित हैं।
टर्मिनल एल्काइन का सूत्र होता है RC2H एक उदाहरण मिथाइलएसिटिलीन (आईयूपीएसी नामकरण का उपयोग करते हुए प्रोपाइन) है। एसिटिलीन की तरह ही टर्मिनल एल्काइन, हल्के अम्लीय होते हैं, जिनमें pKaमान 25 होता है। वे एल्केन और एल्कीन की तुलना में कहीं अधिक अम्लीय होते हैं, जिनमें pKa मान क्रमशः लगभग 40 और 50 होता है। टर्मिनल एल्केन पर अम्लीय हाइड्रोजन को विभिन्न समूहों द्वारा प्रतिस्थापित किया जा सकता है जिसके परिणामस्वरूप हैलो- सिलाइल - और एल्कोक्सोएल्काइन होते हैं। टर्मिनल एल्काइन के डिप्रोटोनेशन द्वारा उत्पन्न कार्ब ऋणायन को एसिटाइलाइड कहा जाता है।[3]
नामकरण एल्काइन
रासायनिक नामकरण में, बिना किसी अतिरिक्त अक्षर के ग्रीक उपसर्ग प्रणाली के साथ एल्काइन का नाम दिया गया है। उदाहरणों में एथीन या ऑक्टीन सम्मिलित हैं। चार या अधिक कार्बन वाली मूल श्रृंखलाओं में, यह कहना आवश्यक है कि तृतीयक बंध कहाँ स्थित है। ऑक्टीन के लिए, जब बंधन तीसरे कार्बन से शुरू होता है, तो कोई या तो 3-ऑक्टीन या ऑक्टा-3-यन लिख सकता है। तृतीयक बंध को सबसे कम संभव संख्या दी जाती है। जब कोई बेहतर कार्यात्मक समूह मौजूद नहीं होता है, तो मूल श्रृंखला में तृतीयक बंध सम्मिलित होना चाहिए, भले ही वह अणु में सबसे लंबी कार्बन श्रृंखला न हो। एथाइन को आमतौर पर इसके तुच्छ नाम एसिटिलीन से पुकारा जाता है।
रसायन विज्ञान में, प्रत्यय -इन का उपयोग तृतीयक बंध की उपस्थिति को दर्शाने के लिए किया जाता है। कार्बनिक रसायन विज्ञान में, प्रत्यय अक्सर रासायनिक नामकरण का अनुसरण करता है। हालांकि, तृतीयक बंध के रूप में संतृप्त और असंतृप्त यौगिकों की विशेषता वाले अकार्बनिक यौगिक ों को वैकल्पिक नामकरण द्वारा एल्काइन के साथ उपयोग की जाने वाली समान विधियों के साथ निरूपित किया जा सकता है (अर्थात संबंधित संतृप्त यौगिक का नाम -एन के साथ समाप्त होने वाले -yne को बदलकर संशोधित किया जाता है)। पोलीने| -डायने का उपयोग तब किया जाता है जब दो तृतीयक बंध होते हैं, और इसी तरह। असंतृप्ति की स्थिति एक संख्यात्मक स्थान द्वारा इंगित की जाती है, जो -येन प्रत्यय से ठीक पहले होती है, या कई तृतीयक बंध के मामले में 'स्थानीय'। स्थानीय लोगों को चुना जाता है ताकि संख्या यथासंभव कम हो। -yne का उपयोग उन प्रतिस्थापन समूहों के नाम के लिए एक इन्फ़िक्स के रूप में भी किया जाता है जो मूल यौगिक से तीन गुना बंधे होते हैं।
कभी-कभी हैफ़ेन के बीच एक संख्या को यह बताने के लिए डाला जाता है कि तृतीयक बंध किस परमाणु के बीच है। यह प्रत्यय एसिटिलीन शब्द के अंत के संक्षिप्त रूप के रूप में उभरा। अंतिम -ई गायब हो जाता है यदि इसके बाद एक और प्रत्यय होता है जो एक स्वर से शुरू होता है।[4]
संरचनात्मक समरूपता
चार या अधिक कार्बन परमाणुओं वाले एल्काइन अलग-अलग स्थितियों में तृतीयक बंध होने या मूल श्रृंखला के हिस्से के बजाय कुछ कार्बन परमाणुओं के स्थानापन्न होने से विभिन्न संरचनात्मक समावयवी बना सकते हैं। अन्य गैर-एल्काइन संरचनात्मक समावयवी भी संभव हैं।
- C2H2: एसिटिलीन केवल
- C3H4: केवल प्रोपाइन
- C4H6: 2 समावयवी: 1-ब्यूटाइन, और 2-ब्यूटाइन
- C5H8: 3 समावयवी: 1-पेंटाइन, 2-पेंटाइन और 3-मिथाइल- ब्यूटाइन
- C6H10: 7 समावयवी: 1-हेक्साइन, 2-हेक्साइन, 3-हेक्साइन, 4-मिथाइल-1-पेंटाइन, 4-मिथाइल-2-पेंटाइन, 3-मिथाइल-1-पेंटाइन, 3,3-डाइमिथाइल-1-ब्यूटाइन
संश्लेषण
भंजन
व्यावसायिक रूप से, प्रमुख एल्काइन एसिटिलीन ही है, जिसका उपयोग ईंधन और अन्य यौगिकों के अग्रदूत के रूप में किया जाता है, जैसे, एक्राइलेट्। प्राकृतिक गैस के आंशिक ऑक्सीकरण से प्रतिवर्ष करोड़ों किलोग्राम का उत्पादन होता है:[5]:
औद्योगिक रूप से उपयोगी प्रोपाइन भी हाइड्रोकार्बन के तापीय भंजन द्वारा तैयार किया जाता है।
डिहाइड्रोहैलोजनीकरण और संबंधित अभिक्रियाएं
डबल डिहाइड्रोहैलोजनीकरण द्वारा 1,2- और 1,1-एल्किल डाइहैलाइड से एल्काइन तैयार किए जाते हैं। अभिक्रिया एल्काइन को एल्केन में परिवर्तन करने का एक साधन प्रदान करती है, जो पहले हैलोजेनेटेड और फिर डीहाइड्रोहैलोजेनेटेड होते हैं। उदाहरण के लिए, स्टाइरीन के ब्रोमीनीकरण द्वारा स्टाइरीन डाइब्रोमाइड प्राप्त होता है स्टाइरीन डाइब्रोमाइड का अमोनिया की उपस्थिति में सोडियम एमाइड के साथ अभिक्रिया कराने पर फेनिलएसिटिलीन प्राप्त होता है:[6][7]
- File:Phenylacetylene prepn.png
- फ्रिट्च-बटनबर्ग-वीशेल पुनर्व्यवस्था के माध्यम से, विनाइल ब्रोमाइड् से एल्काइन प्राप्त किया जा सकता है। कोरे -फुच अभिक्रिया का उपयोग करके एल्डिहाइड से एल्केन प्राप्त किया जा सकता है और सेफर्थ-गिल्बर्ट होमोलोगेशन द्वारा एल्डिहाइड या कीटोन से एल्केन तैयार किया जा सकता है।
विनाइल क्लोराइड डिहाइड्रो क्लोरीनीकरण के लिए अतिसंवेदनशील होते हैं। विनाइल क्लोराइड अभिकर्मक (क्लोरोमेथिलीन) ट्राइफेनिलफॉस्फोरन का उपयोग करके एल्डिहाइड से उपलब्ध होते हैं।
आवेदन सहित अभिक्रियाएं
एक अभिक्रियाशील कार्यात्मक समूह की विशेषता, अल्काइन कई कार्बनिक अभिक्रिया ओं में भाग लेते हैं। इस तरह के उपयोग का नेतृत्व राल्फ राफेल ने किया था, जिन्होंने 1955 में कार्बनिक संश्लेषण में मध्यवर्ती के रूप में उनकी बहुमुखी प्रतिभा का वर्णन करते हुए पहली पुस्तक लिखी थी।[8]
हाइड्रोजनीकरण
ऐल्कीनों की तुलना में अधिक असंतृप्त यौगिक होने के कारण, एल्काइनों की कुछ अभिलक्षणिक अभिक्रियाएँ होती हैं जो दर्शाती हैं कि वे दुगुनी असंतृप्त हैं। एल्काइन दो तुल्यांक H2 को जोड़ने में सक्षम हैं, जबकि एक एल्कीन केवल एक तुल्यांक जोड़ता है।[9] उत्प्रेरक और स्थितियों के आधार पर, एल्काइन एक या दो तुल्यांक हाइड्रोजन जोड़ते हैं। आंशिक हाइड्रोजनीकरण, एल्काइन में एक तुल्यांक H2 के योग से एल्कीन प्राप्त होती है एल्कीन से एल्केन बनाने के लिए केवल एक तुल्यांक H2 का योग करना होता है, लेकिन एल्कीन की तुलना में एल्केन ज्यादा महत्वपूर्ण नहीं है आमतौर पर एल्कीन अधिक वांछनीय है क्योंकि एल्केन कम उपयोगी होते हैं:
इस तकनीक का व्यापक अनुप्रयोग रिफाइनरियों में एसिटिलीन का एथिलीन में रूपांतरण है (एल्केन् की भाप भंजन से कुछ प्रतिशत एसिटिलीन उत्पन्न होती है, जो पैलेडियम /सिल्वर उत्प्रेरक की उपस्थिति में हाइड्रोजनीकृत होता है)। लिंडलर उत्प्रेरक को अधिक जटिल एल्काइन से एल्केन का निर्माण करने के लिए उपयोग नहीं किया जाता है, उदाहरण के लिए फेनिलएसिटिलीन को स्टाइरीन में बदलने के लिए।[10] इसी प्रकार, एल्काइनों के हैलोजनीकरण से ऐल्कीन डाइहैलाइड या ऐल्किल टेट्राहैलाइड प्राप्त होते हैं:
-
- RCH=CR'H + H2 - RCH2CR'H2
आन्तरिक एल्काइनों में एक तुल्यांक H2 का योग करने पर सिस ऐल्कीन प्राप्त होता है
हैलोजनीकरण और संबंधित अभिकर्मकों का योग
एल्काइन विशिष्ट रूप से हैलोजन और हाइड्रोजन हैलाइड के दो तुल्यांकों को जोड़ने में सक्षम हैं।
C≡C बंध पर अध्रुवीय E−H बंध का योग सिलेन, बोरेन और संबंधित हाइड्राइड के लिए सामान्य है। एल्काइन की हाइड्रोबोरेशन-ऑक्सीकरण अभिक्रिया से विनाइलिक बोरेन प्राप्त होती है जो संबंधित एल्डिहाइड या कीटोन का ऑक्सीकरण करती है। थियोल-येन अभिक्रिया में सब्सट्रेट एक थियोल है।
हाइड्रोजन हैलाइडों का योग लंबे समय से रुचिकर रहा है।मर्क्यूरिक क्लोराइड उत्प्रेरक की उपस्थिति में, एसिटिलीन की हाइड्रोजन क्लोराइड के साथ अभिक्रिया कराने पर विनाइल क्लोराइड प्राप्त होता है। जबकि पश्चिम में इस पद्धति को छोड़ दिया गया है, यह चीन में मुख्य उत्पादन विधि बनी हुई है।[11]
जलयोजन
एसिटिलीन की जलयोजन अभिक्रिया द्वारा एसीटैल्डिहाइड प्राप्त होता है। अभिक्रिया विनाइल ऐलकोहल के निर्माण से प्राप्त होती है, इसमें कीटो-ईनोल’ चलावयवता द्वारा एल्डिहाइड का निर्माण होता है। यह अभिक्रिया कभी एक प्रमुख औद्योगिक प्रक्रिया थी लेकिन इसे वाकर प्रक्रिया द्वारा विस्थापित कर दिया गया है। यह अभिक्रिया प्रकृति में होती है, इसमें उत्प्रेरक एसिटिलीन हाइड्रेटस होता है।
फेनिलएसिटिलीन का जलयोजन करने पर एसीटोफिनोन प्राप्त होता है,[12] और यह जलयोजन (Ph3P)AuCH3- 1,8-नोना डाइआइन से 2,8-नॉननेडियोन में उत्प्रेरित होती है:[13]
- <केम>PhC#CH + H2O -> PhCOCH3</केम>
- <केम>HC#C(CH2)5C#CH + 2H2O -> CH3CO(CH2)5COCH3</केम>
चलावयवता
टर्मिनल एल्काइन चलावयवता प्रदर्शित करते हैं। प्रोपाइन एलीन के साथ साम्य में मौजूद है:
- <केम>एचसी#सी-सीएच3 <=> सीएच2=सी=सीएच2</केम>
साइक्लोएडिशन और ऑक्सीकरण
एल्काइन विविध साइक्लोएडिशन अभिक्रियाओं से गुजरते हैं। 1,3-डाई इन डील्स-ऐल्डर अभिक्रिया के साथ 1,4-साइक्लोहेक्साडाईइन देती है। यह सामान्य अभिक्रिया व्यापक रूप से विकसित की गई है। इलेक्ट्रोफिलिक एल्काइन विशेष रूप से प्रभावी डायनोफाइल हैं। 2-पाइरोन में एल्काइन के योग से प्राप्त साइक्लोडडक्ट ऐरोमैटिक यौगिक देने के लिए कार्बन डाइआक्साइड को समाप्त करता है। अन्य विशिष्ट साइक्लोडडिशन में बहुघटक अभिक्रियाएं सम्मिलित हैं जैसे कि ऐरोमैटिक यौगिकों को देने के लिए एल्काइन ट्राइमराइकरण और पॉसन-खंड अभिक्रिया में एल्काइन, एल्कीन और कार्बन मोनोआक्साइड का [2 + 2 + 1] साइक्लोडिशन अभिक्रिया। गैर-कार्बन अभिकर्मक भी चक्रीकरण से गुजरते हैं, उदाहरण ट्राईजोल देने के लिए एज़ाइड एल्काइन ह्यूसजेन साइक्लो एडिशन। को सम्मिलित करने वाली एल्काइन की साइक्लोडडिशन प्रक्रियाएं अक्सर धातुओं द्वारा उत्प्रेरित होती हैं, उदाहरणएनाइन मेटाथिसिस और एल्काइन मेटाथिसिस, जो कार्बाइन (RC) केंद्रों को जो कार्बाइन केंद्रों की स्क्रैम्बलिंग की अनुमति देता है:
- <केम>आरसी#सीआर + आर'सी#सीआर' <=> 2आरसी#सीआर'</केम>
एल्काइन का ऑक्सीकारक विदलन साइक्लोडडिशन के माध्यम से धातु आक्साइड तक पहुंचता है। सबसे प्रसिद्ध रूप से, पोटेशियम परमैंगनेट एल्काइन को कार्बोक्जिलिक अम्ल की एक जोड़ी में परिवर्तित करता है।
टर्मिनल एल्काइन के लिए विशिष्ट अभिक्रियाएँ
टर्मिनल एल्काइन आसानी से कई व्युत्पन्न में परिवर्तित हो जाते हैं, उदाहरण युग्मन और संघनन अभिक्रियाओं द्वारा। फॉर्मलाडेहाइड और एसिटिलीन के संघनन के माध्यम से 1,4-ब्यूटेनडाइऑल का उत्पादन होता है:[5][14] :
<केम>2CH2O + HC#CH -> HOCH2CCCH2OH</केम>
सोनोगाशिरा अभिक्रिया में, टर्मिनल एल्काइन को एरिल या विनाइल हैलाइड्स के साथ युग्मित किया जाता है:

- यह अभिक्रियाशीलता इस तथ्य का फायदा उठाती है कि टर्मिनल एल्काइन दुर्बल अम्ल होते हैं, जिनका pKa मान 25 के आसपास अमोनिया (35) और इथेनॉल (16) के बीच होता है:
- <केम>आरसी#सीएच + एमएक्स -> आरसी#सीएम + एचएक्स</केम>
जहाँ MX = सोडियम एमाइड(NaNH2) ब्यूटिलिथियम(LiBu), या ग्रिग्नार्ड अभिकर्मक।
निश्चित धातु धनायनों उदाहरण Ag+ तथा Cu+ के साथ एल्काइनों की अभिक्रियाएँ, एसिटाइलाइड भी देती हैं। इस प्रकार, टॉलेंस अभिकर्मक की कुछ बूँदें | डाइएमाइनसिल्वर(I) हाइड्रॉक्साइड (Ag(NH3)2OH) टर्मिनल एल्काइन के साथ अभिक्रिया करता है और सिल्वर एसिटाइलाइड के एक सफेद अवक्षेप के निर्माण करता है। यह अभिक्रियाशीलता एल्काइन युग्मन अभिक्रियाओं का आधार है, जिसमें कैडियोट-चोडकिविज़ युग्मन, ग्लेसर युग्मन और एग्लिंटन युग्मन सम्मिलित हैं:
फेवोर्स्की अभिक्रिया में और सामान्य रूप से एल्काइनाइलेशन में,टर्मिनल एल्काइन कार्बोनिल यौगिकों से योग करके हाइड्राक्सीएल्काइन देतें हैं।
धातु संकुल
एल्काइन संक्रमण धातुओं के साथ संकुल बनाते हैं। इस प्रकार के संकुल एल्काइनों की धातु उत्प्रेरित अभिक्रियाओं जैसे कि एल्काइन ट्राइमराइकरण में भी भाग लेते हैं। एसिटिलीन सहित टर्मिनल एल्काइन, जल के साथ अभिक्रिया करते हैं जिससे एल्डिहाइड प्राप्त होता है। इस परिवर्तन को आम तौर पर एंटी-मार्कोवनिकोव या खराश प्रभाव देने के लिए धातु उत्प्रेरक की आवश्यकता होती है।[15]
प्रकृति और चिकित्सा में एल्काइन
फर्डिनेंड बोहलमान के अनुसार, पहला प्राकृतिक रूप से पाया जाने वाला एसिटिलेनिक यौगिक, डिहाइड्रोमैट्रिकिया एस्टर, 1826 में एक आर्टेमिसिया प्रजाति से अलग किया गया था। इसके बाद की लगभग दो शताब्दियों में, एक हजार से अधिक प्राकृतिक रूप से पाए जाने वाले एसिटिलीन की खोज और रिपोर्ट की गई है। प्राकृतिक उत्पादों के इस वर्ग का एक सबसेट, पोलीने , पौधों की प्रजातियों की एक विस्तृत विविधता, उच्च कवक की संस्कृतियों, बैक्टीरिया, समुद्री स्पंज और कोरल से अलग किया गया है।[16] कुछ अम्ल जैसे टैरिक अम्ल में एक ऐल्कीन समूह होता है। डायनेस और ट्राइनेस, क्रमशः RC≡C-C≡CR′ और RC≡C-C≡C-C≡CR′ के साथ प्रजातियां, कुछ पौधों (इचथ्योथेरे , गुलदाउदी , हेमलोक , ओएनंथे (पौधे) और अन्य सदस्यों में होती हैं। Asteraceae और Apiaceae परिवार)। कुछ उदाहरण सिकुटॉक्सिन , ओएन्थोटॉक्सिन और फाल्कारिनोल हैं। ये यौगिक अत्यधिक जैव सक्रिय हैं, उदा। सूत्रकृमि के रूप में।[17] 1-फेनिलहेप्टा-1,3,5-ट्राईन प्राकृतिक रूप से पाए जाने वाले ट्राइने का उदाहरण है। According to Ferdinand Bohlmann, the first naturally occurring acetylenic compound, dehydromatricaria ester, was isolated from an Artemisia species in 1826. In the nearly two centuries that have followed, well over a thousand naturally occurring acetylenes have been discovered and reported. Polyynes, a subset of this class of natural products, have been isolated from a wide variety of plant species, cultures of higher fungi, bacteria, marine sponges, and corals. Some acids like tariric acid contain an alkyne group. Diynes and triynes, species with the linkage RC≡C–C≡CR′ and RC≡C–C≡C–C≡CR′ respectively, occur in certain plants (Ichthyothere, Chrysanthemum, Cicuta, Oenanthe and other members of the Asteraceae and Apiaceae families). Some examples are cicutoxin, oenanthotoxin, and falcarinol . These compounds are highly bioactive, e.g. as nematocides. 1-Phenylhepta-1,3,5-triyne is illustrative of a naturally occurring triyne.
कुछ फार्मास्यूटिकल्स में एल्काइन होते हैं, जिनमें गर्भनिरोधक नोरेटिनोड्रेल भी सम्मिलित है। एक कार्बन-कार्बन तृतीयक बंध भी एंटीरेट्रोवाइरल इफावरेन्ज और एंटीफंगल टेरबिनाफाइन जैसी विपणन दवाओं में मौजूद है। एनी-डायनेस नामक अणु में दो एल्काइन समूहों (डायने) के बीच एक एल्कीन (एनई) युक्त एक वलय होता है। ये यौगिक, उदा। कैलिकेमिसिन , ज्ञात सबसे आक्रामक एंटीट्यूमर दवाओं में से कुछ हैं, इतना अधिक है कि एनी-डायने सबयूनिट को कभी-कभी वारहेड के रूप में जाना जाता है। Ene-diynes बर्गमैन चक्रीकरण के माध्यम से पुनर्व्यवस्था से गुजरता है, अत्यधिक अभिक्रियाशील कट्टरपंथी मध्यवर्ती उत्पन्न करता है जो ट्यूमर के भीतर डीएनए पर हमला करता है।[18]
यह भी देखें
- -यने
- साइक्लोअल्काइन
संदर्भ
- ↑ Alkyne. Encyclopædia Britannica
- ↑ Saul Patai, ed. (1978). कार्बन-कार्बन ट्रिपल बॉन्ड. Vol. 1. John Wiley & Sons. ISBN 9780470771563.
- ↑ Bloch, Daniel R. (2012). कार्बनिक रसायन का रहस्योद्घाटन (2nd ed.). McGraw-Hill. p. 57. ISBN 978-0-07-176797-2.
- ↑ The Commission on the कार्बनिक रसायन विज्ञान का नामकरण (1971) [1958 (A: Hydrocarbons, and B: Fundamental Heterocyclic Systems), 1965 (C: Characteristic Groups)]. कार्बनिक रसायन विज्ञान का नामकरण (3rd ed.). London: Butterworths. ISBN 0-408-70144-7.
- ↑ 5.0 5.1 Gräfje, Heinz; Körnig, Wolfgang; Weitz, Hans-Martin; Reiß, Wolfgang; Steffan, Guido; Diehl, Herbert; Bosche, Horst; Schneider, Kurt; Kieczka (2000). "Butanediols, Butenediol, and Butynediol". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_455.
- ↑ Kenneth N. Campbell, Barbara K. Campbell (1950). "Phenylacetylene". Organic Syntheses. 30: 72. doi:10.15227/orgsyn.030.0072.
- ↑ A. Le Coq and A. Gorgues (1979). "फेज ट्रांसफर-उत्प्रेरित डिहाइड्रोहैलोजनेशन के माध्यम से क्षारीयता: प्रोपियोलाल्डिहाइड डायथाइल एसिटल". Organic Syntheses. 59: 10. doi:10.15227/orgsyn.059.0010.
- ↑ Raphael, Ralph Alexander (1955). कार्बनिक संश्लेषण में एसिटिलेनिक यौगिक. London: Butterworths Scientific Publications. OCLC 3134811.
- ↑ Rosser & Williams (1977). ए-लेवल के लिए आधुनिक ऑर्गेनिक केमिस्ट्री. Great Britain: Collins. p. 82. ISBN 0003277402.
- ↑ H. Lindlar; R. Dubuis (1973). "Palladium catalyst for partial reduction of acetylenes". Organic Syntheses.; Collective Volume, vol. 5, p. 880.
- ↑ Dreher, Eberhard-Ludwig; Torkelson, Theodore R.; Beutel, Klaus K. (2011). "Chlorethanes and Chloroethylenes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.o06_o01.
- ↑ Fukuda, Y.; Utimoto, K. (1991). "सोने (III) उत्प्रेरक के साथ निष्क्रिय एल्काइन का कीटोन या एसिटल में प्रभावी परिवर्तन". J. Org. Chem. 56 (11): 3729. doi:10.1021/jo00011a058..
- ↑ Mizushima, E.; Cui, D.-M.; Nath, D. C. D.; Hayashi, T.; Tanaka, M. (2005). "Au(I)-Catalyzed hydratation of alkynes: 2,8-nonanedione". Organic Syntheses. 83: 55.
- ↑ Peter Pässler; Werner Hefner; Klaus Buckl; Helmut Meinass; Andreas Meiswinkel; Hans-Jürgen Wernicke; Günter Ebersberg; Richard Müller; Jürgen Bässler (2008). "Acetylene". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_097.pub3.
- ↑ Hintermann, Lukas; Labonne, Aurélie (2007). "अल्काइन्स का उत्प्रेरक जलयोजन और संश्लेषण में इसका अनुप्रयोग". Synthesis. 2007 (8): 1121–1150. doi:10.1055/s-2007-966002. S2CID 95666091.
- ↑ Annabelle L. K. Shi Shun; Rik R. Tykwinski (2006). "प्राकृतिक रूप से पाए जाने वाले पॉलीयन्स का संश्लेषण". Angew. Chem. Int. Ed. 45 (7): 1034–1057. doi:10.1002/anie.200502071. PMID 16447152.
- ↑ Lam, Jørgen (1988). प्राकृतिक रूप से पाए जाने वाले एसिटिलीन और संबंधित यौगिकों का रसायन विज्ञान और जीव विज्ञान (NOARC): प्राकृतिक रूप से पाए जाने वाले एसिटिलीन और संबंधित यौगिकों (NOARC) के रसायन विज्ञान और जीव विज्ञान पर एक सम्मेलन की कार्यवाही।. Amsterdam: Elsevier. ISBN 0-444-87115-2.
- ↑ S. Walker; R. Landovitz; W.D. Ding; G.A. Ellestad; D. Kahne (1992). "कैलिकेमिसिन गामा 1 और कैलिकेमिसिन टी का दरार व्यवहार". Proc Natl Acad Sci USA. 89 (10): 4608–12. Bibcode:1992PNAS...89.4608W. doi:10.1073/pnas.89.10.4608. PMC 49132. PMID 1584797.