फ्राउड संख्या

From Vigyanwiki
Revision as of 12:21, 11 August 2023 by alpha>Indicwiki (Created page with "{{short description|Dimensionless number; ratio of a fluid's flow inertia to the external field}} सातत्य यांत्रिकी में, फ्राउड...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

सातत्य यांत्रिकी में, फ्राउड संख्या (Fr, विलियम फ्राउड के बाद, /ˈfrd/[1]) एक आयामहीन संख्या है जिसे बाहरी क्षेत्र की श्यानता के अनुपात के रूप में परिभाषित किया गया है (बाद वाला कई अनुप्रयोगों में केवल गुरुत्वाकर्षण के कारण होता है)। फ्राउड संख्या गति-लंबाई अनुपात पर आधारित है जिसे उन्होंने इस प्रकार परिभाषित किया है:[2][3]

कहाँ u स्थानीय प्रवाह वेग है, g स्थानीय निकाय बल है, और L एक विशिष्ट लंबाई है. फ्राउड संख्या का मैक संख्या के साथ कुछ सादृश्य है। सैद्धांतिक द्रव गतिकी में फ्राउड संख्या पर अक्सर विचार नहीं किया जाता है क्योंकि आमतौर पर समीकरणों को नगण्य बाहरी क्षेत्र की उच्च फ्राउड सीमा में माना जाता है, जिससे सजातीय समीकरण बनते हैं जो गणितीय पहलुओं को संरक्षित करते हैं। उदाहरण के लिए, सजातीय यूलर समीकरण (द्रव गतिशीलता) संरक्षण कानून हैं।

हालाँकि, नौसैनिक वास्तुकला में फ्राउड संख्या एक महत्वपूर्ण आंकड़ा है जिसका उपयोग पानी के माध्यम से चलती हुई आंशिक रूप से जलमग्न वस्तु के प्रतिरोध को निर्धारित करने के लिए किया जाता है।

उत्पत्ति

ओपन-चैनल प्रवाह में, Belanger 1828 सबसे पहले प्रवाह वेग और गुरुत्वाकर्षण त्वरण के वर्गमूल और प्रवाह की गहराई के अनुपात का परिचय दिया। जब अनुपात एकता से कम था, तो प्रवाह एक नदी गति (यानी, सबक्रिटिकल प्रवाह) की तरह व्यवहार करता था, और जब अनुपात एकता से अधिक होता था, तो एक मूसलाधार प्रवाह गति की तरह व्यवहार करता था।[4]

हंस (ऊपर) और कौवे (नीचे) के पतवार। 3, 6, और 12 का एक क्रम (चित्र में दिखाया गया है) फ़ुट स्केल मॉडल का निर्माण फ्राउड द्वारा किया गया था और प्रतिरोध और स्केलिंग कानूनों को स्थापित करने के लिए टोइंग परीक्षणों में उपयोग किया गया था।

तैरती हुई वस्तुओं के प्रतिरोध को मापने का श्रेय आम तौर पर विलियम फ्राउड को दिया जाता है, जिन्होंने एक निश्चित गति से खींचे जाने पर प्रत्येक मॉडल द्वारा पेश किए गए प्रतिरोध को मापने के लिए स्केल मॉडल की एक श्रृंखला का उपयोग किया था। नौसैनिक निर्माता फ्रेडरिक रीच ने बहुत पहले 1852 में जहाजों और प्रोपेलर के परीक्षण के लिए इस अवधारणा को सामने रखा था लेकिन फ्राउड इससे अनजान थे।[5] गति-लंबाई अनुपात को मूल रूप से फ्राउड ने 1868 में अपने तुलनात्मक नियम में आयामी शब्दों में परिभाषित किया था:

कहाँ:

  • u = प्रवाह गति
  • LWL = जलरेखा की लंबाई

इस शब्द को गैर-आयामी शब्दों में परिवर्तित कर दिया गया और उनके द्वारा किए गए कार्य के सम्मान में उन्हें फ्राउड का नाम दिया गया। फ़्रांस में, इसे कभी-कभी फ़्रेडेरिक रीच के नाम पर रीच-फ़्राउड नंबर कहा जाता है।[6]

परिभाषा और मुख्य अनुप्रयोग

यह दिखाने के लिए कि फ्राउड संख्या सामान्य सातत्य यांत्रिकी से कैसे जुड़ी है, न कि केवल जल-गत्यात्मकता से, हम इसके आयामहीन (नॉनडायमेंशनल) रूप में कॉची गति समीकरण से शुरू करते हैं।

कॉची संवेग समीकरण

समीकरणों को आयामहीन बनाने के लिए, एक विशेषता लंबाई r0, और एक विशिष्ट वेग यू0, परिभाषित करने की आवश्यकता है। इन्हें इस प्रकार चुना जाना चाहिए कि आयामहीन चर सभी क्रम एक के हों। इस प्रकार निम्नलिखित आयामहीन चर प्राप्त होते हैं:

यूलर संवेग समीकरणों में इन व्युत्क्रम संबंधों का प्रतिस्थापन, और फ्राउड संख्या की परिभाषा:
और यूलर संख्या (भौतिकी):
समीकरण अंततः व्यक्त किए गए हैं (सामग्री व्युत्पन्न के साथ और अब अनुक्रमणिका को छोड़कर):

Cauchy momentum equation (nondimensional convective form)

उच्च फ्राउड सीमा में कॉची-प्रकार के समीकरण Fr → ∞ (नगण्य बाह्य क्षेत्र के अनुरूप) को मुक्त समीकरण नाम दिया गया है। दूसरी ओर, निम्न यूलर सीमा में Eu → 0 (नगण्य तनाव के अनुरूप) सामान्य कॉची गति समीकरण एक अमानवीय बर्गर समीकरण बन जाता है (यहां हम सामग्री व्युत्पन्न को स्पष्ट करते हैं):

Burgers equation (nondimensional conservation form)

यह एक अमानवीय शुद्ध संवहन समीकरण है, जितना स्टोक्स प्रवाह एक शुद्ध प्रसार समीकरण है।

यूलर संवेग समीकरण

यूलर संवेग समीकरण एक कॉची संवेग समीकरण है जिसमें पास्कल नियम तनाव संवैधानिक संबंध है:

नॉनडायमेंशनल लैग्रेंजियन रूप में है:
फ्री यूलर समीकरण रूढ़िवादी हैं। उच्च फ्राउड संख्या (कम बाहरी क्षेत्र) की सीमा इस प्रकार उल्लेखनीय है और गड़बड़ी सिद्धांत के साथ इसका अध्ययन किया जा सकता है।

असंपीड़ित नेवियर-स्टोक्स गति समीकरण

असंपीड्य नेवियर-स्टोक्स संवेग समीकरण पास्कल नियम और स्टोक्स नियम के साथ एक कॉची संवेग समीकरण है|स्टोक्स का नियम तनाव संवैधानिक संबंध है:

गैर-आयामी संवहनी रूप में यह है:[7]
कहाँ Re रेनॉल्ड्स संख्या है. फ्री नेवियर-स्टोक्स समीकरण विघटनकारी प्रणाली (गैर रूढ़िवादी) हैं।

अन्य अनुप्रयोग

जहाज हाइड्रोडायनामिक्स

तरंग पैटर्न बनाम गति, विभिन्न फ्राउड संख्याओं को दर्शाता है।

समुद्री हाइड्रोडायनामिक अनुप्रयोगों में, फ्राउड संख्या को आमतौर पर नोटेशन के साथ संदर्भित किया जाता है Fn और इसे इस प्रकार परिभाषित किया गया है:[8]

कहाँ u समुद्र और जहाज के बीच सापेक्ष प्रवाह वेग है, g विशेष रूप से पृथ्वी का गुरुत्वाकर्षण है, और L जल रेखा स्तर पर जहाज की लंबाई है, या Lwl कुछ नोटेशन में। यह जहाज के ड्रैग (भौतिकी), या प्रतिरोध के संबंध में एक महत्वपूर्ण पैरामीटर है, खासकर लहर बनाने के प्रतिरोध के संदर्भ में।

योजना शिल्प के मामले में, जहां जलरेखा की लंबाई सार्थक होने के लिए बहुत अधिक गति पर निर्भर है, फ्राउड संख्या को विस्थापन फ्राउड संख्या के रूप में सबसे अच्छी तरह से परिभाषित किया गया है और संदर्भ लंबाई को पतवार के वॉल्यूमेट्रिक विस्थापन के घनमूल के रूप में लिया जाता है:


उथले पानी की लहरें

सुनामी और हाइड्रोलिक छलांग जैसी उथली पानी की लहरों के लिए, विशेषता वेग है U औसत प्रवाह वेग है, जो प्रवाह दिशा के लंबवत क्रॉस-सेक्शन पर औसत होता है। तरंग वेग को गति कहा जाता है c, गुरुत्वाकर्षण त्वरण के वर्गमूल के बराबर है g, क्रॉस-अनुभागीय क्षेत्र का समय A, मुक्त-सतह चौड़ाई से विभाजित B:

तो उथले पानी में फ्राउड संख्या है:
समान गहराई वाले आयताकार क्रॉस-सेक्शन के लिए d, फ्राउड संख्या को सरल बनाया जा सकता है:
के लिए Fr < 1 प्रवाह को उपक्रिटिकल प्रवाह कहा जाता है, आगे के लिए Fr > 1 प्रवाह को अतिक्रिटिकल प्रवाह के रूप में जाना जाता है। कब Fr ≈ 1 प्रवाह को क्रांतिक प्रवाह के रूप में दर्शाया गया है।

पवन इंजीनियरिंग

सस्पेंशन ब्रिज जैसी गतिशील रूप से संवेदनशील संरचनाओं पर पवन इंजीनियरिंग पर विचार करते समय कभी-कभी हवा के उतार-चढ़ाव वाले बल के साथ संरचना के कंपन द्रव्यमान के संयुक्त प्रभाव का अनुकरण करना आवश्यक होता है। ऐसे मामलों में, फ्राउड नंबर का सम्मान किया जाना चाहिए। इसी तरह, प्राकृतिक हवा के साथ गर्म धुएं के गुबार का अनुकरण करते समय, उछाल बलों और हवा की गति के बीच सही संतुलन बनाए रखने के लिए फ्राउड संख्या स्केलिंग आवश्यक है।

एलोमेट्री

स्थलीय जानवरों की स्थलीय गति का अध्ययन करने के लिए फ्राउड संख्या को एलोमेट्री में भी लागू किया गया है,[9] मृग सहित[10] और डायनासोर.[11]


विस्तारित फ्राउड संख्या

हिमस्खलन और मलबे के प्रवाह जैसे भूभौतिकीय द्रव्यमान प्रवाह झुकी हुई ढलानों पर होते हैं जो फिर कोमल और सपाट रन-आउट क्षेत्रों में विलीन हो जाते हैं।[12]

तो, ये प्रवाह स्थलाकृतिक ढलानों की ऊंचाई से जुड़े होते हैं जो प्रवाह के दौरान दबाव संभावित ऊर्जा के साथ-साथ गुरुत्वाकर्षण संभावित ऊर्जा को प्रेरित करते हैं। इसलिए, शास्त्रीय फ्राउड संख्या में यह अतिरिक्त प्रभाव शामिल होना चाहिए। ऐसी स्थिति के लिए फ्राउड नंबर को दोबारा परिभाषित करने की जरूरत है. विस्तारित फ्राउड संख्या को गतिज और संभावित ऊर्जा के बीच के अनुपात के रूप में परिभाषित किया गया है:

कहाँ u माध्य प्रवाह वेग है, β = gK cos ζ, (Kपार्श्व पृथ्वी दबाव है, ζ ढलान है), sg = g sin ζ, x चैनल डाउनस्लोप स्थिति है और चैनल के साथ द्रव्यमान विमोचन के बिंदु से उस बिंदु तक की दूरी है जहां प्रवाह क्षैतिज संदर्भ डेटाम से टकराता है; Ep
pot
= βh
और Eg
pot
= sg(xdx)
क्रमशः दबाव क्षमता और गुरुत्वाकर्षण संभावित ऊर्जाएं हैं। उथले पानी या दानेदार प्रवाह फ्राउड संख्या की शास्त्रीय परिभाषा में, सतह की ऊंचाई से जुड़ी संभावित ऊर्जा, Eg
pot
, नहीं माना जाता. विस्तारित फ्राउड संख्या उच्च सतह उन्नयन के लिए शास्त्रीय फ्राउड संख्या से काफी भिन्न है। शब्द βh ढलान के साथ गतिमान द्रव्यमान की ज्यामिति के परिवर्तन से उभरता है। आयामी विश्लेषण से पता चलता है कि उथले प्रवाह के लिए βh ≪ 1, जबकि u और sg(xdx) दोनों क्रम एकता के हैं। यदि द्रव्यमान वस्तुतः बिस्तर-समानांतर मुक्त-सतह के साथ उथला है, तो βh की उपेक्षा की जा सकती है। इस स्थिति में, यदि गुरुत्वाकर्षण क्षमता को ध्यान में नहीं रखा जाता है, तो {{math|Fr}गतिज ऊर्जा परिबद्ध होने पर भी } असीमित है। इसलिए, औपचारिक रूप से गुरुत्वाकर्षण स्थितिज ऊर्जा के कारण अतिरिक्त योगदान पर विचार करते हुए, Fr में विलक्षणता को हटा दिया जाता है।

हलचल टैंक

उत्तेजित टैंकों के अध्ययन में, फ्राउड संख्या सतह के भंवरों के निर्माण को नियंत्रित करती है। चूंकि प्ररित करनेवाला टिप वेग है ωr (गोलाकार गति), कहाँ ω प्ररित करनेवाला आवृत्ति है (आमतौर पर प्रति मिनट क्रांतियों में) और r प्ररित करनेवाला त्रिज्या है (इंजीनियरिंग में व्यास का उपयोग बहुत अधिक बार किया जाता है), फ्राउड संख्या तब निम्नलिखित रूप लेती है:

फ्राउड नंबर का उपयोग पाउडर मिक्सर में भी इसी तरह किया जाता है। इसका उपयोग वास्तव में यह निर्धारित करने के लिए किया जाएगा कि ब्लेंडर किस मिश्रण व्यवस्था में काम कर रहा है। यदि Fr<1, कणों को बस हिलाया जाता है, लेकिन यदि Fr>1, पाउडर पर लगाए गए केन्द्रापसारक बल गुरुत्वाकर्षण पर काबू पा लेते हैं और कणों का बिस्तर द्रवीकृत हो जाता है, कम से कम ब्लेंडर के कुछ हिस्से में, मिश्रण को बढ़ावा देता है[13]


डेंसिमेट्रिक फ्राउड संख्या

जब बाउसिनस्क सन्निकटन (उछाल) के संदर्भ में उपयोग किया जाता है तो डेंसिमेट्रिक फ्राउड संख्या को इस प्रकार परिभाषित किया जाता है

कहाँ g कम गुरुत्वाकर्षण है:
डेंसिमेट्रिक फ्राउड संख्या आमतौर पर मॉडेलर्स द्वारा पसंद की जाती है जो रिचर्डसन संख्या के लिए गति वरीयता को गैर-आयामी बनाना चाहते हैं जो स्तरीकृत कतरनी परतों पर विचार करते समय अधिक सामान्यतः सामने आती है। उदाहरण के लिए, गुरुत्व धारा का अग्रणी किनारा लगभग एकता की अग्र फ्रौड संख्या के साथ चलता है।

वॉकिंग फ्राउड नंबर

फ्राउड संख्या का उपयोग जानवरों की चाल पैटर्न में रुझान का अध्ययन करने के लिए किया जा सकता है। पैरों की गति की गतिशीलता के विश्लेषण में, चलने वाले अंग को अक्सर एक उल्टे लंगर के रूप में तैयार किया जाता है, जहां द्रव्यमान का केंद्र पैर पर केंद्रित एक गोलाकार चाप से होकर गुजरता है।[14] फ्राउड संख्या गति के केंद्र, पैर और चलने वाले जानवर के वजन के आसपास अभिकेन्द्रीय बल का अनुपात है:

कहाँ m द्रव्यमान है, l विशेषता लंबाई है, gपृथ्वी का गुरुत्वाकर्षण है और v वेग है. विशेषता लंबाई l को वर्तमान अध्ययन के अनुरूप चुना जा सकता है। उदाहरण के लिए, कुछ अध्ययनों में ज़मीन से कूल्हे के जोड़ की ऊर्ध्वाधर दूरी का उपयोग किया गया है,[15] जबकि अन्य ने पैर की कुल लंबाई का उपयोग किया है।[14][16]

फ्राउड संख्या की गणना स्ट्राइड फ़्रीक्वेंसी से भी की जा सकती है f निम्नलिखित नुसार:[15]

यदि कुल पैर की लंबाई को विशेषता लंबाई के रूप में उपयोग किया जाता है, तो चलने की सैद्धांतिक अधिकतम गति में 1.0 की फ्राउड संख्या होती है क्योंकि किसी भी उच्च मूल्य के परिणामस्वरूप टेकऑफ़ होगा और पैर जमीन से गायब हो जाएगा। दो पैरों पर चलने से लेकर दौड़ने तक की सामान्य संक्रमण गति किसके साथ होती है? Fr ≈ 0.5.[17] आर. एम. अलेक्जेंडर ने पाया कि विभिन्न आकार और द्रव्यमान के जानवर अलग-अलग गति से यात्रा करते हैं, लेकिन एक ही फ्राउड संख्या के साथ, लगातार समान चाल प्रदर्शित करते हैं। इस अध्ययन में पाया गया कि जानवर आम तौर पर 1.0 की फ्राउड संख्या के आसपास एक एंबेल से एक सममित चलने वाली चाल (उदाहरण के लिए, एक ट्रॉट या गति) में स्विच करते हैं। 2.0 और 3.0 के बीच फ्राउड संख्या में असममित चाल (उदाहरण के लिए, एक कैंटर, अनुप्रस्थ गैलप, रोटरी गैलप, बाउंड, या प्रोंक) के लिए प्राथमिकता देखी गई थी।[15]

उपयोग

फ्राउड संख्या का उपयोग विभिन्न आकारों और आकृतियों के पिंडों के बीच तरंग बनाने वाले प्रतिरोध की तुलना करने के लिए किया जाता है।

मुक्त-सतह प्रवाह में, प्रवाह की प्रकृति (सुपरक्रिटिकल प्रवाह या सबक्रिटिकल) इस पर निर्भर करती है कि फ्राउड संख्या एकता से अधिक है या कम है।

कोई भी रसोई या बाथरूम के सिंक में क्रिटिकल फ्लो की रेखा आसानी से देख सकता है। इसे अनप्लग छोड़ दें और नल को चलने दें। उस स्थान के पास जहां पानी की धारा सिंक से टकराती है, प्रवाह अति गंभीर है। यह सतह को 'आलिंगन' करता है और तेज़ी से आगे बढ़ता है। प्रवाह पैटर्न के बाहरी किनारे पर प्रवाह सबक्रिटिकल है। यह प्रवाह अधिक गाढ़ा होता है और अधिक धीमी गति से चलता है। दो क्षेत्रों के बीच की सीमा को हाइड्रोलिक जंप कहा जाता है। छलांग वहां से शुरू होती है जहां प्रवाह महत्वपूर्ण है और फ्राउड संख्या 1.0 के बराबर है।

जानवरों की चाल के रुझानों का अध्ययन करने के लिए फ्राउड नंबर का उपयोग किया गया है ताकि यह बेहतर ढंग से समझा जा सके कि जानवर अलग-अलग चाल पैटर्न का उपयोग क्यों करते हैं[15] साथ ही विलुप्त प्रजातियों की चाल के बारे में परिकल्पनाएँ बनाना।[16]

इसके अलावा इष्टतम ऑपरेटिंग विंडो स्थापित करने के लिए कण बिस्तर व्यवहार को फ्राउड संख्या (एफआर) द्वारा निर्धारित किया जा सकता है।[18]

यह भी देखें

टिप्पणियाँ

  1. Merriam Webster Online (for brother James Anthony Froude) [1]
  2. Shih 2009, p. 7.
  3. White 1999, p. 294.
  4. Chanson 2009, pp. 159–163.
  5. Normand 1888, pp. 257–261.
  6. Chanson 2004, p. xxvii.
  7. Shih 2009.
  8. Newman 1977, p. 28.
  9. Alexander, R. McNeill (2013-10-01). "Chapter 2. Body Support, Scaling, and Allometry". कार्यात्मक कशेरुकी आकृति विज्ञान (in English). Harvard University Press. pp. 26–37. doi:10.4159/harvard.9780674184404.c2. ISBN 978-0-674-18440-4.
  10. Alexander, R. McN. (1977). "मृगों के अंगों की एलोमेट्री (बोविडे)". Journal of Zoology (in English). 183 (1): 125–146. doi:10.1111/j.1469-7998.1977.tb04177.x. ISSN 0952-8369.
  11. Alexander, R. McNeill (1991). "डायनासोर कैसे दौड़े". Scientific American. 264 (4): 130–137. Bibcode:1991SciAm.264d.130A. doi:10.1038/scientificamerican0491-130. ISSN 0036-8733. JSTOR 24936872.
  12. Takahashi 2007, p. 6.
  13. "Powder Mixing - Powder Mixers Design - Ribbon blender, Paddle mixer, Drum blender, Froude Number". powderprocess.net. n.d. Retrieved 31 May 2019.
  14. 14.0 14.1 Vaughan & O'Malley 2005, pp. 350–362.
  15. 15.0 15.1 15.2 15.3 Alexander 1984.
  16. 16.0 16.1 Sellers & Manning 2007.
  17. Alexander 1989.
  18. Jikar, Dhokey & Shinde 2021.


संदर्भ


बाहरी संबंध