ट्रांसपेरेंसी (डेटा कम्प्रेशन)

From Vigyanwiki
Revision as of 14:46, 7 December 2023 by alpha>Indicwiki (Created page with "{{Short description|Perceptually indistinguishable data compression}} {{multiple issues| {{more footnotes|date=February 2019}} {{jargon|date=February 2022}} }} डेटा...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

डेटा संपीड़न और मनोध्वनिकी में, पारदर्शिता हानिपूर्ण डेटा संपीड़न का परिणाम है जो इतना सटीक है कि संपीड़ित परिणाम असम्पीडित इनपुट से अप्रभेद्य है, अर्थात अवधारणात्मक रूप से दोषरहित है।

पारदर्शिता सीमा एक दिया गया मान है जिस पर पारदर्शिता पहुँच जाती है। इसका उपयोग आमतौर पर संपीड़ित डेटा बिटरेट का वर्णन करने के लिए किया जाता है। उदाहरण के लिए, MP3 से रैखिक PCM ऑडियो के लिए पारदर्शिता सीमा 175 और 245 kbit/s के बीच, 44.1 kHz|44.1 kHz के बीच बताई जाती है, जब इसे वेरिएबल_बिट्रेट MP3 के रूप में एन्कोड किया जाता है (अत्यधिक लोकप्रिय की -V3 और -V0 सेटिंग्स के अनुरूप) लंगड़ा एमपी3 एनकोडर)।[1] इसका मतलब यह है कि जब उन बिटरेट्स पर एन्कोड किया गया एमपी 3 वापस चलाया जा रहा है, तो यह मूल पीसीएम से अप्रभेद्य है, और संपीड़न श्रोता के लिए पारदर्शी है।

पारदर्शी संपीड़न शब्द एक फ़ाइल फाइल सिस्टम सुविधा को भी संदर्भित कर सकता है जो संपीड़ित फ़ाइलों को नियमित फ़ाइलों की तरह पढ़ने और लिखने की अनुमति देता है। इस मामले में, कंप्रेसर आमतौर पर एक सामान्य प्रयोजन दोषरहित कंप्रेसर है।

संकल्प

ध्वनि या वीडियो की गुणवत्ता की तरह पारदर्शिता भी व्यक्तिपरक है। यह डिजिटल कलाकृतियों के साथ श्रोता की परिचितता, उनकी जागरूकता पर निर्भर करता है कि कलाकृतियाँ वास्तव में मौजूद हो सकती हैं, और कुछ हद तक, संपीड़न विधि, उपयोग की गई बिट दर, इनपुट विशेषताओं और सुनने/देखने की स्थितियों और उपकरणों पर निर्भर करती है। इसके बावजूद, कभी-कभी इस बात पर आम सहमति बन जाती है कि कौन से संपीड़न विकल्प अधिकांश उपकरणों पर अधिकांश लोगों के लिए पारदर्शी परिणाम प्रदान करने चाहिए। व्यक्तिपरकता और संपीड़न, रिकॉर्डिंग और प्लेबैक तकनीक की बदलती प्रकृति के कारण, ऐसी राय को स्थापित तथ्य के बजाय केवल मोटे अनुमान के रूप में माना जाना चाहिए।

पर्यवेक्षक-प्रत्याशा प्रभाव के कारण पारदर्शिता को आंकना मुश्किल हो सकता है, जिसमें एक निश्चित संपीड़न पद्धति की व्यक्तिपरक पसंद/नापसंद भावनात्मक रूप से उनके निर्णय को प्रभावित करती है। इस पूर्वाग्रह को आमतौर पर प्लेसबो के रूप में जाना जाता है, हालांकि यह उपयोग इस शब्द के चिकित्सा उपयोग से थोड़ा अलग है।

वैज्ञानिक रूप से यह साबित करने के लिए कि संपीड़न विधि पारदर्शी नहीं है, डबल अंधा परीक्षण उपयोगी हो सकते हैं। एबीएक्स परीक्षण आम तौर पर एक शून्य परिकल्पना के साथ प्रयोग किया जाता है कि परीक्षण किए गए नमूने समान हैं और एक वैकल्पिक परिकल्पना के साथ कि नमूने वास्तव में अलग हैं।

सभी दोषरहित संपीड़न विधियाँ स्वभावतः पारदर्शी होती हैं।

छवि संपीड़न में

DisplayPort में DSC और JPEG XL की डिफ़ॉल्ट सेटिंग्स दोनों[2] दृष्टिगत रूप से दोषरहित माने जाते हैं। दोषरहितता आमतौर पर एक झिलमिलाहट परीक्षण द्वारा निर्धारित की जाती है: डिस्प्ले शुरू में संपीड़ित और मूल को एक साथ दिखाता है, उन्हें एक सेकंड के एक छोटे से हिस्से के लिए इधर-उधर घुमाता है और फिर मूल पर वापस चला जाता है। यह परीक्षण अगल-बगल तुलना (दृष्टिगत रूप से लगभग दोषरहित) की तुलना में अधिक संवेदनशील है, क्योंकि मानव आंख प्रकाश में अस्थायी परिवर्तनों के प्रति अत्यधिक संवेदनशील है।[3] एक पैनिंग परीक्षण भी है जो कथित तौर पर फ़्लिकर परीक्षण से अधिक संवेदनशील है।[4]


कलाकृतियों की कमी से अंतर

एक अवधारणात्मक रूप से दोषरहित संपीड़न हमेशा संपीड़न कलाकृतियों से मुक्त होता है, लेकिन उलटा सच नहीं है: कंप्रेसर के लिए एक संकेत उत्पन्न करना संभव है जो प्राकृतिक दिखता है लेकिन परिवर्तित सामग्री के साथ। ऐसा भ्रम रेडियोलोजी के क्षेत्र में व्यापक रूप से मौजूद है (विशेष रूप से नैदानिक ​​​​रूप से स्वीकार्य अपरिवर्तनीय संपीड़न के अध्ययन के लिए), जहां दृष्टिहीन दोषरहित का अर्थ विरूपण-मुक्त से कहीं भी लिया जाता है[5] अगल-बगल से देखने पर अप्रभेद्य होना,[6] न ही फ़्लिकर परीक्षण जितना कठोर है।

यह भी देखें

संदर्भ

  1. cjxl(1) – Linux General Commands Manual
  2. ISO/IEC JTC 1/SC 29. "Annex B. Forced choice paradigm with interleaved images test protocol". ISO/IEC 29170-2:2015 Information technology — Advanced image coding and evaluation — Part 2: Evaluation procedure for nearly lossless coding. {{cite book}}: |website= ignored (help)
  3. Allison, Robert; Wilcox, Laurie; Wang, Wei; Hoffman, David; Hou, Yuqian; Goel, James; Deas, Lesley; Stolitzka, Dale. डिस्प्ले स्ट्रीम संपीड़न का बड़े पैमाने पर व्यक्तिपरक मूल्यांकन. The Society for Information Display's annual Display Week 2017.
  4. European Society of Radiology (April 2011). "रेडियोलॉजिकल इमेजिंग में अपरिवर्तनीय छवि संपीड़न की उपयोगिता। यूरोपियन सोसाइटी ऑफ रेडियोलॉजी (ईएसआर) द्वारा एक स्थिति पत्र". Insights into Imaging. 2 (2): 103–115. doi:10.1007/s13244-011-0071-x. PMC 3259360. PMID 22347940.
  5. Kim, Kil Joong; Kim, Bohyoung; Lee, Kyoung Ho; Mantiuk, Rafal; Richter, Thomas; Kang, Heung Sik (September 2013). "Use of Image Features in Predicting Visually Lossless Thresholds of JPEG2000 Compressed Body CT Images: Initial Trial". Radiology. 268 (3): 710–718. doi:10.1148/radiol.13122015. PMID 23630311.
  • Bosi, Marina; Richard E. Goldberg. Introduction to digital audio coding and standards. Springer, 2003. ISBN 1-4020-7357-7
  • Cvejic, Nedeljko; Tapio Seppänen. Digital audio watermarking techniques and technologies: applications and benchmarks. Idea Group Inc (IGI), 2007. ISBN 1-59904-513-3
  • Pohlmann, Ken C. Principles of digital audio. McGraw-Hill Professional, 2005. ISBN 0-07-144156-5
  • Spanias, Andreas; Ted Painter; Venkatraman Atti. Audio signal processing and coding. Wiley-Interscience, 2007. ISBN 0-471-79147-4
  • Syed, Mahbubur Rahman. Multimedia technologies: concepts, methodologies, tools, and applications, Volume 3. Idea Group Inc (IGI), 2008. ISBN 1-59904-953-8


बाहरी संबंध