रैखिक निकाय

From Vigyanwiki
Revision as of 11:55, 1 December 2023 by alpha>Sadafsiddiqui

प्रणाली सिद्धांत में, रैखिक प्रणाली रैखिक ऑपरेटर के उपयोग पर आधारित प्रणाली का गणितीय मॉडल है। रैखिक प्रणालियाँ प्रायः उन विशेषताओं और गुणों को प्रदर्शित करती हैं जो गैर-रेखीय स्थिति की तुलना में बहुत सरल होते हैं। गणितीय संक्षिप्तीकरण या आदर्शीकरण के रूप में, रैखिक प्रणालियों को स्वचालित नियंत्रण सिद्धांत, सिग्नल प्रोसेसिंग और दूरसंचार में महत्वपूर्ण अनुप्रयोग प्राप्त होते हैं। उदाहरण के लिए, वायरलेस संचार प्रणालियों के लिए प्रसार माध्यम को प्रायः रैखिक प्रणालियों द्वारा मॉडल किया जा सकता है।

परिभाषा

नियतात्मक निरंतर-समय SISO सिस्टम के लिए एडिटिविटी गुण को दर्शाने वाला ब्लॉक आरेख। सिस्टम एडिटिविटी प्रॉपर्टी को संतुष्ट करता है या अगर और केवल अगर एडिटिव है हमेशा के लिए और सभी इनपुट के लिए और . इसे विस्तृत करने के लिए छवि पर क्लिक करें।
नियतात्मक निरंतर-समय SISO प्रणाली के लिए एकरूपता गुण को दर्शाने वाला ब्लॉक आरेख। प्रणाली एकरूपता संपत्ति को संतुष्ट करती है या यदि और केवल अगर सजातीय है हमेशा के लिए , सभी वास्तविक स्थिरांक के लिए और सभी इनपुट के लिए . इसे विस्तृत करने के लिए छवि पर क्लिक करें।
नियतात्मक निरंतर-समय SISO प्रणाली के लिए सुपरपोज़िशन सिद्धांत को दर्शाने वाला ब्लॉक आरेख। सिस्टम सुपरपोज़िशन सिद्धांत को संतुष्ट करता है और इस प्रकार रैखिक है यदि और केवल यदि हमेशा के लिए , सभी वास्तविक स्थिरांकों के लिए और और सभी इनपुट के लिए और . इसे विस्तृत करने के लिए छवि पर क्लिक करें।

सामान्य नियतात्मक प्रणाली को ऑपरेटर, H द्वारा वर्णित किया जा सकता है, जो इनपुट, x(t) को आउटपुट, y(t), एक प्रकार के ब्लैक बॉक्स विवरण के रूप में t के फलन के रूप में मैप करता है।

प्रणाली रैखिक होती है यदि और केवल यदि यह अध्यारोपण सिद्धांत, या समतुल्यता और समरूपता गुणों दोनों को बिना किसी प्रतिबंध के संतुष्ट करती है (अर्थात, सभी इनपुट के लिए, सभी स्केलिंग स्थिरांक और सभी समय के लिए)।[1][2][3][4]

अध्यारोपण सिद्धांत का अर्थ है कि प्रणाली में इनपुट का रैखिक संयोजन अलग-अलग इनपुट के अनुरूप अलग-अलग शून्य-अवस्था आउटपुट (अर्थात, प्रारंभिक स्थितियों को शून्य पर सेट करने वाले आउटपुट) का एक रैखिक संयोजन उत्पन्न करता है।[5][6]

ऐसी प्रणाली में जो समरूपता गुण को संतुष्ट करती है, इनपुट को स्केल करने से सदैव एक ही कारक द्वारा शून्य-अवस्था प्रतिक्रिया को स्केल किया जाता है।[6] एक ऐसी प्रणाली में जो योज्यता गुण को संतुष्ट करती है, दो इनपुट जोड़ने से सदैव अलग-अलग इनपुट के कारण संबंधित दो शून्य-अवस्था प्रतिक्रियाओं को जोड़ने में परिणाम प्राप्त होता हैं।[6]

गणितीय रूप से, सतत समय प्रणाली के लिए, दो यादृच्छिक इनपुट दिए गए हैं

साथ ही उनके संबंधित शून्य-अवस्था आउटपुट
तो रैखिक प्रणाली को संतुष्ट करना होगा
किसी भी अदिश मानों α और β के लिए, किसी भी इनपुट सिग्नल x1(t) और x2(t) के लिए, और सभी समय t के लिए।


प्रणाली को तब समीकरण H(x(t)) = y(t) द्वारा परिभाषित किया जाता है, जहां y(t) समय के कुछ यादृच्छिक फलन है, और x(t) प्रणाली अवस्था है। y(t) और H, को देखते हुए, प्रणाली को x(t) के लिए हल किया जा सकता है।

जटिल इनपुट के अधीन परिणामी प्रणाली के व्यवहार को सरल इनपुट की प्रतिक्रियाओं के योग के रूप में वर्णित किया जा सकता है। अरैखिक प्रणालियों में, ऐसा कोई संबंध नहीं होता है। यह गणितीय गुण कई अरैखिक प्रणालियों की तुलना में मॉडलिंग समीकरणों के समाधान को सरल बनाता है। समय-अपरिवर्तनीय प्रणालियों के लिए यह आवेग प्रतिक्रिया या आवृत्ति प्रतिक्रिया विधियों (एलटीआई (LTI) प्रणाली सिद्धांत देखें) का आधार है, जो इकाई आवेगों या आवृत्ति घटकों के संदर्भ में एक सामान्य इनपुट फलन x(t) का वर्णन करता है।

रैखिक समय-अपरिवर्तनीय प्रणालियों के विशिष्ट अवकल समीकरणों को सतत स्थिति में लाप्लास परिवर्तन और असतत स्थिति में जेड (Z)-रूपांतरण (विशेषकर कंप्यूटर कार्यान्वयन में) का उपयोग करके विश्लेषण के लिए अच्छी तरह से अनुकूलित किया जाता है।

एक अन्य परिप्रेक्ष्य यह है कि रैखिक प्रणालियों के समाधान में फलनों की प्रणाली सम्मिलित होती है जो ज्यामितीय अर्थ में वेक्टर की तरह कार्य करती है।

रैखिक मॉडलों का सामान्य उपयोग रैखिकरण द्वारा अरैखिक प्रणाली का वर्णन करना है। यह प्रायः गणितीय सुविधा के लिए किया जाता है।

रैखिक प्रणाली की पूर्व परिभाषा एसआईएसओ (SISO) (एकल-इनपुट एकल-आउटपुट) प्रणालियों पर लागू होती है। एमआईएमओ (MIMO) (एकाधिक-इनपुट एकाधिक-आउटपुट) प्रणाली के लिए, इनपुट और आउटपुट सिग्नल (, , , ) के स्थान पर इनपुट और आउटपुट सिग्नल वेक्टर (, , , ) पर विचार किया जाता है।[2][4]

रैखिक प्रणाली की यह परिभाषा गणना में रैखिक अवकल समीकरण की परिभाषा, और रैखिक बीजगणित में रैखिक रूपांतरण के अनुरूप है।

उदाहरण

एक साधारण हार्मोनिक थरथरानवाला अंतर समीकरण का पालन करता है:

अगर
तब H एक रैखिक संकारक है। दे y(t) = 0, हम अंतर समीकरण को फिर से लिख सकते हैं H(x(t)) = y(t), जो दर्शाता है कि एक साधारण हार्मोनिक ऑसीलेटर एक रैखिक प्रणाली है।

रैखिक प्रणालियों के अन्य उदाहरणों में वे शामिल हैं जिनका वर्णन किया गया है , , , और साधारण रेखीय अंतर समीकरणों द्वारा वर्णित कोई भी प्रणाली।[4]सिस्टम द्वारा वर्णित , , , , , , , और विषम-समरूपता आउटपुट वाली एक प्रणाली जिसमें एक रेखीय क्षेत्र और एक संतृप्ति (स्थिर) क्षेत्र शामिल है, गैर-रैखिक हैं क्योंकि वे हमेशा सुपरपोजिशन सिद्धांत को संतुष्ट नहीं करते हैं।[7][8][9][10]

एक रेखीय प्रणाली के आउटपुट बनाम इनपुट ग्राफ़ को मूल के माध्यम से एक सीधी रेखा नहीं होना चाहिए। उदाहरण के लिए, द्वारा वर्णित एक प्रणाली पर विचार करें (जैसे एक स्थिर-समाई संधारित्र या एक स्थिर-अधिष्ठापन प्रारंभ करनेवाला)। यह रैखिक है क्योंकि यह अध्यारोपण सिद्धांत को संतुष्ट करता है। हालाँकि, जब इनपुट एक साइनसॉइड होता है, तो आउटपुट भी एक साइनसॉइड होता है, और इसलिए इसका आउटपुट-इनपुट प्लॉट मूल से गुजरने वाली एक सीधी रेखा के बजाय मूल पर केंद्रित एक दीर्घवृत्त होता है।

साथ ही, एक रैखिक प्रणाली के आउटपुट में हार्मोनिक विश्लेषण हो सकता है (और इनपुट की तुलना में एक छोटी मौलिक आवृत्ति होती है) भले ही इनपुट एक साइनसॉइड हो। उदाहरण के लिए, द्वारा वर्णित एक प्रणाली पर विचार करें . यह रैखिक है क्योंकि यह अध्यारोपण सिद्धांत को संतुष्ट करता है। हालाँकि, जब इनपुट फॉर्म का साइनसॉइड होता है , List_of_trigonometric_identities#Product-to-sum_and_sum-to-product_identities|product-to-sum त्रिकोणमितीय पहचान का उपयोग करके यह आसानी से दिखाया जा सकता है कि आउटपुट है , अर्थात्, आउटपुट में केवल इनपुट के समान आवृत्ति के साइनसॉइड शामिल नहीं होते हैं (3 rad/s), बल्कि आवृत्तियों के साइनसोइड्स के बजाय 2 rad/s और 4 rad/s; इसके अलावा, आउटपुट के साइनसोइड्स की मूलभूत अवधि के कम से कम सामान्य बहु को लेते हुए, यह दिखाया जा सकता है कि आउटपुट की मौलिक कोणीय आवृत्ति है 1 rad/s, जो कि इनपुट से भिन्न है।

समय-भिन्न आवेग प्रतिक्रिया

समय-भिन्न आवेग प्रतिक्रिया {{math|h(t2, t1)}एक रेखीय प्रणाली के } को समय t = t पर प्रणाली की प्रतिक्रिया के रूप में परिभाषित किया गया है2 समय पर लागू एकल आवेग समारोह के लिए t = t1. दूसरे शब्दों में, यदि इनपुट x(t) एक रेखीय प्रणाली के लिए है

कहाँ δ(t) डिराक डेल्टा समारोह और संबंधित प्रतिक्रिया का प्रतिनिधित्व करता है {{math|y(t)}सिस्टम का } है

फिर समारोह h(t2, t1) सिस्टम की समय-भिन्न आवेग प्रतिक्रिया है। चूंकि इनपुट लागू होने से पहले सिस्टम प्रतिक्रिया नहीं दे सकता है, इसलिए निम्नलिखित आकस्मिक स्थिति को संतुष्ट होना चाहिए:


कनवल्शन इंटीग्रल

किसी भी सामान्य निरंतर-समय रैखिक प्रणाली का उत्पादन एक अभिन्न द्वारा इनपुट से संबंधित होता है जिसे कार्य-कारण की स्थिति के कारण दोगुनी अनंत सीमा पर लिखा जा सकता है:

यदि सिस्टम के गुण उस समय पर निर्भर नहीं करते हैं जिस पर यह संचालित होता है तो इसे समय-अपरिवर्तनीय कहा जाता है और h केवल समय के अंतर का फलन है τ = tt' जिसके लिए शून्य है τ < 0 (अर्थात t < t' ). पुनर्परिभाषित करके h तब इनपुट-आउटपुट संबंध को किसी भी तरह से समान रूप से लिखना संभव है,
लीनियर टाइम-इनवेरिएंट सिस्टम्स को आमतौर पर इम्पल्स रिस्पांस फंक्शन के लाप्लास ट्रांसफॉर्म की विशेषता होती है जिसे ट्रांसफर फंक्शन कहा जाता है:
अनुप्रयोगों में यह आमतौर पर का एक तर्कसंगत बीजगणितीय कार्य है s. क्योंकि h(t) ऋणात्मक के लिए शून्य है t, अभिन्न को समान रूप से दोगुनी अनंत सीमा और डालने पर लिखा जा सकता है s = आवृत्ति प्रतिक्रिया फ़ंक्शन के सूत्र का अनुसरण करता है:


असतत-समय प्रणाली

किसी भी असतत समय रैखिक प्रणाली का आउटपुट समय-भिन्न कनवल्शन योग द्वारा इनपुट से संबंधित होता है:

या समकक्ष रूप से पुनर्परिभाषित करने पर एक समय-अपरिवर्तनीय प्रणाली के लिए h,
कहाँ
समय m पर उत्तेजना और समय n पर प्रतिक्रिया के बीच अंतराल समय का प्रतिनिधित्व करता है।

यह भी देखें


श्रेणी:प्रणाली सिद्धांत श्रेणी:गतिशील प्रणालियाँ श्रेणी:गणितीय मॉडलिंग श्रेणी:भौतिकी की अवधारणाएँ

संदर्भ

  1. Phillips, Charles L.; Parr, John M.; Riskin, Eve A. (2008). सिग्नल, सिस्टम और ट्रांसफॉर्म (4 ed.). Pearson. p. 74. ISBN 978-0-13-198923-8.
  2. 2.0 2.1 Bessai, Horst J. (2005). MIMO सिग्नल और सिस्टम. Springer. pp. 27–28. ISBN 0-387-23488-8.
  3. Alkin, Oktay (2014). सिग्नल और सिस्टम: एक MATLAB एकीकृत दृष्टिकोण. CRC Press. p. 99. ISBN 978-1-4665-9854-6.
  4. 4.0 4.1 4.2 Nahvi, Mahmood (2014). सिग्नल और सिस्टम. McGraw-Hill. pp. 162–164, 166, 183. ISBN 978-0-07-338070-4.
  5. Sundararajan, D. (2008). सिग्नल और सिस्टम के लिए एक व्यावहारिक दृष्टिकोण. Wiley. p. 80. ISBN 978-0-470-82353-8.
  6. 6.0 6.1 6.2 Roberts, Michael J. (2018). सिग्नल और सिस्टम: ट्रांसफ़ॉर्म मेथड्स और MATLAB® का उपयोग करके विश्लेषण (3 ed.). McGraw-Hill. pp. 131, 133–134. ISBN 978-0-07-802812-0.
  7. Deergha Rao, K. (2018). सिग्नल और सिस्टम. Springer. pp. 43–44. ISBN 978-3-319-68674-5.
  8. Chen, Chi-Tsong (2004). सिग्नल और सिस्टम (3 ed.). Oxford University Press. p. 55-57. ISBN 0-19-515661-7.
  9. ElAli, Taan S.; Karim, Mohammad A. (2008). MATLAB के साथ निरंतर सिग्नल और सिस्टम (2 ed.). CRC Press. p. 53. ISBN 978-1-4200-5475-0.
  10. Apte, Shaila Dinkar (2016). सिग्नल और सिस्टम: सिद्धांत और अनुप्रयोग. Cambridge University Press. p. 187. ISBN 978-1-107-14624-2.