समन्वय बहुलक

From Vigyanwiki
Revision as of 18:58, 23 November 2022 by alpha>Ashutoshyadav
Error creating thumbnail:
चित्र 1. 1, 2 और 3 विमीयता का चित्रण।

समन्वय बहुलक एक ऐसी अकार्बनिक या कार्बधात्विक बहुलक संरचना है, जिसमें लिगैंड्स द्वारा जुड़े धातु के धनायन युक्त केंद्र होते हैं। तथा अधिक औपचारिक रूप से समन्वय बहुलक 1, 2 या 3 आयामों में विस्तारित समन्वय संस्थाओं के साथ एक समन्वय यौगिक होता है।[1]

इसे एक बहुलक के रूप में भी वर्णित किया जा सकता है, जिसकी पुनरावृत्ति इकाइयाँ समन्वय परिसर(कॉम्प्लेक्स) होती हैं। तथा समन्वय बहुलक में उपवर्ग समन्वय नेटवर्क होते हैं, जो समन्वय यौगिकों को दोहराते हुए समन्वय संस्थाओं के माध्यम से 1 आयाम में दो या दो से अधिक व्यक्तिगत श्रृंखलाओं, लूपों या स्पाइरो-लिंक्स के बीच क्रॉस-लिंक के साथ या समन्वय यौगिकों का 2 या 3 आयामों की इकाइयों के माध्यम से विस्तार करते हैं। इनमें से एक उपवर्ग कार्बनिक धातु संरचना या MOFs होता हैं, जो संभावित रिक्तियों वाले कार्बनिक लिगैंड्स के साथ समन्वय नेटवर्क मे होता है।[1]

समन्वय बहुलक कई क्षेत्रों के लिए प्रासंगिक हैं, जिनमें कई संभावित अनुप्रयोग भी सम्मिलित होते हैं।[2] समन्वय बहुलक को उनकी संरचना के अनुसार कई तरीकों से वर्गीकृत किया जा सकता है। तथा एक महत्वपूर्ण वर्गीकरण को विमीयता कहा जाता है। एक संरचना को 1, 2 या 3 आयामी होने के लिए निर्धारित किया जा सकता है, अंतरिक्ष में दिशाओं की संख्या के आधार पर सरणी फैली हुई है। जो एक-आयामी संरचना सीधी रेखा x अक्ष में फैली हुई होती है, द्वि-आयामी संरचना समतल दो दिशाओं (x और y अक्षों) में फैली होती है, तथा त्रि-आयामी संरचना तीनों दिशाओं (x, y और z अक्षों) में फैली हुई होती है।[3] यह चित्र 1 में दर्शाया गया है।

इतिहास

अल्फ्रेड वर्नर और उनके समकालीनों के कार्य ने समन्वय बहुलक के अध्ययन के लिए नींव रखी तथा कई बार उनकी सम्मानित सामग्रियों को समन्वय बहुलक के रूप में पहचाना जाता है। इनमें साइनाइड कॉम्प्लेक्स हल्का नीला और हॉफमैन क्लैथ्रेट्स सम्मिलित हैं।[4]

संश्लेषण और प्रसारण

समन्वय बहुलक अधिकांश स्व-संयोजन द्वारा निर्मित किए जाते हैं, जिसमें लिगेंड के साथ धातु के नमक का क्रिस्टलीकरण सम्मिलित होता है। जो क्रिस्टल अभियांत्रिकी और आणविक स्व-संयोजन के तंत्र प्रासंगिक होते हैं।[2]

File:Planer3and6Coordination.png
चित्रा 2. 3 समन्वय और 6 समन्वय के साथ तलीय ज्यामिति दिखाता है।

अंतराआण्विक बल और संबंध

धातु-लिगैंड परिसरों को निर्धारित करने वाले बलों में वान डर वाल्स बल, पीआई-पीआई अन्तःक्रिया , हाइड्रोजन बंध , और धातु और लिगैंड के बीच गठित समन्वय बंधन के अलावा ध्रुवीकृत बॉन्ड द्वारा पाई बॉन्ड का स्थिरीकरण शामिल है। सहसंयोजक बंधों की तुलना में लंबी संतुलन दूरी (बंध लंबाई) के साथ ये अंतर-आणविक बल कमजोर होते हैं। उदाहरण के लिए, बेंजीन के छल्ले के बीच पाई-पाई बातचीत में लगभग 5-10 kJ/mol ऊर्जा होती है और रिंगों के समानांतर चेहरों के बीच इष्टतम दूरी 3.4–3.8 ngstroms होती है।

धातु-लिगैंड परिसरों को निर्धारित करने वाले बलों में धातु और लिगैंड के बीच बने समन्वय बंधन के अतिरिक्त वान डर वाल्स बल, पीआई-पीआई अन्तःक्रिया, हाइड्रोजन बंध और ध्रुवीकृत बंध द्वारा पीआई बंध का स्थिरीकरण सम्मिलित होता है। जो सहसंयोजक बंधों की तुलना में लंबी संतुलन दूरी (बंधन की लंबाई) के साथ अंतर-आणविक बल कमजोर होते हैं। उदाहरण के लिए, बेंजीन वलय के बीच पीआई-पीआई अन्तः क्रिया में लगभग 5-10 kJ/mol ऊर्जा होती है, जो वलयों के समानांतर तल के बीच सर्वोत्तम 3.4–3.8 एंग्स्ट्रॉम अंतराल का होता है।

समन्वय

समन्वय बहुलक की क्रिस्टल संरचना और आयाम संयोजक की कार्य क्षमता को धातु केंद्र के समन्वय ज्यामिति द्वारा निर्धारित किया जाता है। विमीयता सामान्य रूप से धातु केंद्र द्वारा संचालित होती है, जो संयोजक पर 16 से अधिक कार्यात्मक स्थितियों को जोड़ने की क्षमता रखती है। हालाँकि यह हमेशा ऐसा नहीं होता है, क्योंकि संयोजक द्वारा आयाम को संचालित किया जा सकता है। जब संयोजक धातु केंद्र की तुलना में अधिक धातु केंद्रों से जुड़ता है।[5] तो समन्वय बहुलक की उच्चतम ज्ञात समन्वय संख्या 14 होती है,[6] हालांकि इसकी समन्वय संख्या अधिकांश 2 से 10 के बीच होती है।[7] विभिन्न समन्वय संख्याओं के उदाहरण के लिए चित्र 2 में तलीय ज्यामिति को दिखाया गया हैं, और चित्र 1 में 1डी संरचना 2-समन्वित है तथा तलीय 4-समन्वित और 3डी मे 6-समन्वित को दिखाया गया है।

धातु केंद्र

File:Coordination figure.jpg
चित्रा 3. विभिन्न आयामीता के तीन समन्वय बहुलक। तीनों को एक ही लिगैंड (4,5-डायहाइड्रोक्सीबेंजीन-1,3-डिसल्फ़ोनेट (एल)) का उपयोग करके बनाया गया था, लेकिन अलग-अलग धातु के उद्धरण। सभी धातुएं आवर्त सारणी (क्षारीय पृथ्वी धातु ) पर समूह 2 से आती हैं और इस मामले में, धनायन आकार और ध्रुवीकरण के साथ आयामीता बढ़ जाती है। ए [सीए (एल) (एच2ओ)4]•ह2ओ बी [सीनियर (एल) (एच .)2ओ)4] •एच2ओ सी। [बीए (एल) (एच .)2ओह2O[8] प्रत्येक मामले में, धातु को हरे रंग में दर्शाया गया है।

धातु केंद्र, जिन्हें अक्सर नोड्स या हब कहा जाता है, अच्छी तरह से परिभाषित कोणों पर एक विशिष्ट संख्या में लिंकर्स से बंधे होते हैं। एक नोड से जुड़े लिंकर्स की संख्या को समन्वय संख्या के रूप में जाना जाता है, जो उन कोणों के साथ-साथ संरचना की आयामीता निर्धारित करता है। एक धातु केंद्र की समन्वय संख्या और समन्वय ज्यामिति उसके चारों ओर इलेक्ट्रॉन घनत्व के गैर-समान वितरण द्वारा निर्धारित की जाती है, और सामान्य रूप से समन्वय संख्या में धनायन आकार के साथ वृद्धि होती है। कई मॉडल, विशेष रूप से कक्षीय संकरण मॉडल और आणविक कक्षीय सिद्धांत , समन्वय ज्यामिति की भविष्यवाणी और व्याख्या करने के लिए श्रोडिंगर समीकरण का उपयोग करते हैं, हालांकि इलेक्ट्रॉन घनत्व वितरण पर पर्यावरण के जटिल प्रभाव के कारण यह भाग में मुश्किल है।[9]


संक्रमण धातु

संक्रमण धातुओं को आमतौर पर नोड्स के रूप में उपयोग किया जाता है। आंशिक रूप से भरे हुए d परमाणु कक्षक, या तो परमाणु या आयन में, कक्षीय संकरण पर्यावरण के आधार पर भिन्न रूप से कर सकते हैं। यह इलेक्ट्रॉनिक संरचना उनमें से कुछ को कई समन्वय ज्यामिति, विशेष रूप से तांबे और सोने के आयनों को प्रदर्शित करने का कारण बनती है, जो तटस्थ परमाणुओं के रूप में उनके बाहरी गोले में पूर्ण डी-ऑर्बिटल्स होते हैं।

लैंथेनाइड्स

लैंथेनाइड्स बड़े परमाणु होते हैं जिनकी समन्वय संख्या 7 से 14 तक भिन्न होती है। उनके समन्वय वातावरण की भविष्यवाणी करना मुश्किल हो सकता है, जिससे उन्हें नोड्स के रूप में उपयोग करना चुनौतीपूर्ण हो जाता है। वे ल्यूमिनसेंट घटकों को शामिल करने की संभावना प्रदान करते हैं।

क्षार धातु और क्षारीय पृथ्वी धातु

क्षार धातुएँ और क्षारीय मृदा धातुएँ स्थिर धनायनों के रूप में मौजूद हैं। क्षार धातुएं स्थिर संयोजकता कोशों के साथ आसानी से धनायन बनाती हैं, जिससे उन्हें लैंथेनाइड्स और संक्रमण धातुओं की तुलना में अलग समन्वय व्यवहार मिलता है। वे संश्लेषण में उपयोग किए जाने वाले नमक के काउंटरियन से अत्यधिक प्रभावित होते हैं, जिससे बचना मुश्किल है। चित्र 3 में दिखाए गए समन्वय बहुलक सभी समूह दो धातु हैं। इस मामले में, इन संरचनाओं की आयामीता बढ़ जाती है क्योंकि धातु की त्रिज्या समूह के नीचे बढ़ती है (कैल्शियम से स्ट्रोंटियम से बेरियम तक)।

लिगैंड ्स

अधिकांश समन्वय बहुलक में, एक लिगैंड (परमाणु या परमाणुओं का समूह) औपचारिक रूप से एक धातु के धनायन के लिए इलेक्ट्रॉन ों का एक अकेला जोड़ा दान करेगा और लुईस एसिड/बेस संबंध (लुईस एसिड और बेस ) के माध्यम से एक समन्वय परिसर का निर्माण करेगा। समन्वय बहुलक तब बनते हैं जब एक लिगैंड में कई समन्वय बांड बनाने और कई धातु केंद्रों के बीच एक सेतु के रूप में कार्य करने की क्षमता होती है। लिगैंड जो एक समन्वय बंधन बना सकते हैं उन्हें मोनोडेंट कहा जाता है, लेकिन जो कई समन्वय बंधन बनाते हैं, जो समन्वय बहुलक को जन्म दे सकते हैं उन्हें पॉलीडेंट कहा जाता है। पॉलीडेंटेट लिगैंड विशेष रूप से महत्वपूर्ण हैं क्योंकि यह लिगेंड के माध्यम से है जो कई धातु केंद्रों को एक साथ जोड़ता है जिससे एक अनंत सरणी बनती है। पॉलीडेंटेट लिगैंड भी एक ही धातु (जिसे कटियन कहा जाता है) के लिए कई बंधन बना सकते हैं। मोनोडेंटेट लिगैंड्स को टर्मिनल के रूप में भी जाना जाता है क्योंकि वे नेटवर्क को जारी रखने के लिए जगह नहीं देते हैं। अक्सर, समन्वय बहुलक में पॉली- और मोनोडेंटेट, ब्रिजिंग, चेलेटिंग और टर्मिनल लिगैंड्स का संयोजन होता है।

रासायनिक संरचना

इलेक्ट्रॉनों की एक जोड़ी के साथ लगभग किसी भी प्रकार के परमाणु को एक लिगैंड में शामिल किया जा सकता है। आमतौर पर समन्वय बहुलक में पाए जाने वाले लिगैंड्स में पॉलीपाइरीडीन, मैचिंग पज़ल्स और आरओ लाइन , हाइड्रोक्सीक्विनोलिन और पॉलीकार्बोक्सिलेट्स शामिल हैं। ऑक्सीजन और नाइट्रोजन परमाणु आमतौर पर बाध्यकारी साइटों के रूप में पाए जाते हैं, लेकिन अन्य परमाणु, जैसे गंधक [10] और फास्फोरस ,[11][12] देखे गए हैं।

लिगैंड्स और मेटल केशन हार्ड सॉफ्ट एसिड बेस थ्योरी (HSAB ) ट्रेंड का पालन करते हैं। इसका मतलब यह है कि बड़ी, अधिक ध्रुवीकरण वाली नरम धातुएं बड़े अधिक ध्रुवीकरण वाले नरम लिगैंड के साथ अधिक आसानी से समन्वयित करेंगी, और छोटी, गैर-ध्रुवीकरण योग्य, कठोर धातुएं छोटे, गैर-ध्रुवीकरण योग्य, कठोर लिगेंड के साथ समन्वय करती हैं।

स्ट्रक्चरल ओरिएंटेशन

1,2-बीआईएस (4-पाइरिडाइल) ईथेन एक लचीला लिगैंड है, जो गौचे या विरोधी अनुरूपता में मौजूद हो सकता है।

लिगैंड लचीले या कठोर हो सकते हैं। एक कठोर लिगैंड वह होता है जिसे किसी संरचना के भीतर बंधों के चारों ओर घूमने या पुन: उन्मुख करने की कोई स्वतंत्रता नहीं होती है। लचीले लिगैंड झुक सकते हैं, बांडों के चारों ओर घूम सकते हैं, और खुद को पुन: उन्मुख कर सकते हैं। ये विभिन्न रूपात्मक समरूपता संरचना में अधिक विविधता पैदा करते हैं। समन्वय बहुलक के उदाहरण हैं जिनमें एक संरचना के भीतर एक ही लिगैंड के दो विन्यास शामिल हैं,[13] साथ ही दो अलग-अलग संरचनाएं जहां उनके बीच एकमात्र अंतर लिगैंड ओरिएंटेशन है।

लिगैंड लंबाई

लिगैंड की लंबाई एक बहुलक संरचना बनाम गैर-बहुलक (मोनो- या ओलिगोमेरिक) संरचनाओं के गठन की संभावना निर्धारित करने में एक महत्वपूर्ण कारक हो सकती है।[14]


अन्य कारक

काउंटर

धातु और लिगैंड की पसंद के अलावा, कई अन्य कारक हैं जो समन्वय बहुलक की संरचना को प्रभावित करते हैं। उदाहरण के लिए, अधिकांश धातु केंद्र धनावेशित आयन होते हैं जो लवण के रूप में मौजूद होते हैं। नमक में काउंटर समग्र संरचना को प्रभावित कर सकता है। उदाहरण के लिए, चांदी के लवण जैसे AgNO3, एजीबीएफ4, एजीसीएलओ4, एजीपीएफ6, AgAsF6 और एजीएसबीएफ6 सभी एक ही लिगैंड के साथ क्रिस्टलीकृत होते हैं, संरचनाएं धातु के समन्वय वातावरण के साथ-साथ संपूर्ण समन्वय बहुलक की आयामीता के संदर्भ में भिन्न होती हैं।[15]


क्रिस्टलीकरण पर्यावरण

इसके अतिरिक्त, क्रिस्टलीकरण वातावरण में भिन्नताएं भी संरचना को बदल सकती हैं। पीएच में परिवर्तन,[16] प्रकाश के संपर्क में, या तापमान में परिवर्तन[17] सभी परिणामी संरचना को बदल सकते हैं। क्रिस्टलीकरण पर्यावरण में परिवर्तन के आधार पर संरचना पर प्रभाव मामले के आधार पर निर्धारित किया जाता है।

अतिथि अणु

Error creating thumbnail:
अतिथि अणुओं को जोड़ने और हटाने से समन्वय बहुलक की परिणामी संरचना पर बड़ा प्रभाव पड़ सकता है। कुछ उदाहरण हैं (शीर्ष) एक रैखिक 1D श्रृंखला का ज़िगज़ैग पैटर्न में परिवर्तन, (मध्य) 2D शीट को स्टैक्ड करने के लिए, और (नीचे) 3D क्यूब्स अधिक व्यापक रूप से दूरी पर बन जाते हैं।

समन्वय बहुलक की संरचना में अक्सर छिद्रों या चैनलों के रूप में खाली जगह शामिल होती है। यह खाली स्थान थर्मोडायनामिक रूप से प्रतिकूल है। संरचना को स्थिर करने और पतन को रोकने के लिए, छिद्रों या चैनलों पर अक्सर अतिथि अणुओं का कब्जा होता है। अतिथि अणु आसपास की जाली के साथ बंधन नहीं बनाते हैं, लेकिन कभी-कभी इंटरमॉलिक्युलर बलों, जैसे हाइड्रोजन बॉन्डिंग या पाई स्टैकिंग के माध्यम से बातचीत करते हैं। सबसे अधिक बार, अतिथि अणु वह विलायक होगा जिसमें समन्वय बहुलक को क्रिस्टलीकृत किया गया था, लेकिन वास्तव में कुछ भी हो सकता है (अन्य लवण मौजूद हैं, वायुमंडलीय गैसें जैसे ऑक्सीजन , नाइट्रोजन , कार्बन डाइआक्साइड , आदि) अतिथि अणु की उपस्थिति कभी-कभी हो सकती है। एक छिद्र या चैनल का समर्थन करके संरचना को प्रभावित करते हैं, जहां अन्यथा कोई भी मौजूद नहीं होता।

आवेदन

समन्वय बहुलक का रंग के रूप में व्यावसायीकरण किया जाता है। विशेष रूप से उपयोगी -एमिनोफिनोल के डेरिवेटिव हैं। तांबे या क्रोमियम का उपयोग करने वाले धातु के जटिल रंगों का उपयोग आमतौर पर सुस्त रंगों के उत्पादन के लिए किया जाता है। ट्राइडेंटेट लिगैंड डाई उपयोगी होते हैं क्योंकि वे अपने द्वि- या मोनो-डेंटेट समकक्षों की तुलना में अधिक स्थिर होते हैं।[18][19]

File:2-aminophenol diaz coup.png File:2-aminophenol coord.pngप्रारंभिक व्यावसायीकरण समन्वय बहुलक में से एक हॉफमैन यौगिक हैं, जिनका सूत्र Ni (CN) है।4नी (छोटा)3)2. ये सामग्री छोटे सुगंधित मेहमानों (बेंजीन, कुछ ज़ाइलीन) के साथ क्रिस्टलीकृत होती हैं, और इन हाइड्रोकार्बन के पृथक्करण के लिए इस चयनात्मकता का व्यावसायिक रूप से शोषण किया गया है।[20]


अनुसंधान रुझान

आणविक भंडारण

हालांकि अभी तक व्यावहारिक नहीं है, झरझरा समन्वय बहुलक में झरझरा कार्बन और जिओलाइट्स के समानांतर आणविक चलनी के रूप में क्षमता है।[4]छिद्र के आकार और आकार को लिंकर आकार और कनेक्टिंग लिगैंड की लंबाई और कार्यात्मक समूह ों द्वारा नियंत्रित किया जा सकता है। प्रभावी सोखना प्राप्त करने के लिए ताकना आकार को संशोधित करने के लिए, गैर-वाष्पशील मेजबान-अतिथि रसायन छिद्र आकार को कम करने के लिए झरझरा समन्वय बहुलक स्थान में अंतःक्षेपण (रसायन विज्ञान) हैं। सक्रिय सतह मेहमानों का भी सोखना में योगदान करने के लिए उपयोग किया जा सकता है। उदाहरण के लिए, बड़े-छिद्र वाले MOF-177, 11.8 व्यास में, C . द्वारा डोप किया जा सकता है60 एच के लिए सतह क्षेत्र को बढ़ाने के लिए अणु (6.83 Å व्यास में) या अत्यधिक संयुग्मित प्रणाली वाले बहुलक2 सोखना

लचीले झरझरा समन्वय बहुलक आणविक भंडारण के लिए संभावित रूप से आकर्षक हैं, क्योंकि उनके रोमकूपों के आकार को भौतिक परिवर्तनों द्वारा बदला जा सकता है। इसका एक उदाहरण एक बहुलक में देखा जा सकता है जिसमें सामान्य अवस्था में गैस के अणु होते हैं, लेकिन संपीड़न पर बहुलक ढह जाता है और संग्रहीत अणुओं को छोड़ देता है। बहुलक की संरचना के आधार पर, यह संभव है कि संरचना इतनी लचीली हो कि छिद्रों का ढहना प्रतिवर्ती हो और बहुलक को गैस के अणुओं को फिर से ऊपर उठाने के लिए पुन: उपयोग किया जा सके।[21] मेटल-ऑर्गेनिक फ्रेमवर्क पेज में H . से संबंधित एक विस्तृत खंड है2 गैस भंडारण।

ल्यूमिनेसेंस

ल्यूमिनसेंट समन्वय बहुलक में आमतौर पर कार्बनिक क्रोमोफोरिक लिगैंड होते हैं, जो प्रकाश को अवशोषित करते हैं और फिर धातु आयन को उत्तेजना ऊर्जा पास करते हैं। समन्वय बहुलक संभावित रूप से सबसे बहुमुखी ल्यूमिनसेंट प्रजाति हैं, क्योंकि उनके उत्सर्जन गुणों को अतिथि विनिमय के साथ जोड़ा जाता है। ल्यूमिनसेंट सुपरमॉलेक्यूलर आर्किटेक्चर ने हाल ही में ऑप्टोइलेक्ट्रोनिक उपकरणों में या फ्लोरोसेंट सेंसर और जांच के रूप में अपने संभावित अनुप्रयोगों के कारण बहुत रुचि को आकर्षित किया है। पूरी तरह से जैविक प्रजातियों की तुलना में समन्वय बहुलक अक्सर अधिक स्थिर (थर्मो- और विलायक-प्रतिरोधी) होते हैं। धातु लिंकर (एलएमसीटी के कारण नहीं) की उपस्थिति के बिना प्रतिदीप्त करने वाले लिगेंड के लिए, इन सामग्रियों का तीव्र फोटोल्यूमिनेशन उत्सर्जन अकेले मुक्त लिगैंड की तुलना में अधिक परिमाण का होता है। इन सामग्रियों का उपयोग प्रकाश उत्सर्जक डायोड (एलईडी ) उपकरणों के लिए संभावित उम्मीदवारों को डिजाइन करने के लिए किया जा सकता है। प्रतिदीप्ति में नाटकीय वृद्धि धातु केंद्र से समन्वयित होने पर लिगैंड की कठोरता और विषमता में वृद्धि के कारण होती है।[22]


विद्युत चालकता

Error creating thumbnail:
समन्वय बहुलक की संरचना जो चालकता प्रदर्शित करती है, जहां एम = फ़े, आरयू, ओएस; एल = ऑक्टाएथिलपोरफाइरिनाटो या प्थालोसायनिनेटो; N, पाइराज़िन या बाइपिरिडीन से संबंधित है।

समन्वय बहुलक की संरचनाओं में छोटे अकार्बनिक और संयुग्मित कार्बनिक पुल हो सकते हैं, जो विद्युत चालन के लिए मार्ग प्रदान करते हैं। ऐसे समन्वय बहुलक के उदाहरण प्रवाहकीय धातु-कार्बनिक ढांचे हैं। चित्र में दिखाए गए अनुसार निर्मित कुछ एक-आयामी समन्वय बहुलक 1x10 . की सीमा में चालकता प्रदर्शित करते हैं−6 से 2x10-1 एस/सेमी। चालकता धातु डी-कक्षीय और ब्रिजिंग लिगैंड के पीआई * स्तर के बीच बातचीत के कारण है। कुछ मामलों में समन्वय बहुलक में अर्धचालक व्यवहार हो सकता है। चांदी युक्त बहुलक की चादरों से युक्त त्रि-आयामी संरचनाएं धातु के केंद्रों को संरेखित करने पर अर्ध-चालकता प्रदर्शित करती हैं, और चांदी के परमाणु समानांतर से लंबवत तक जाने पर चालन कम हो जाता है।[22]


चुंबकत्व

समन्वय बहुलक कई प्रकार के चुंबकत्व प्रदर्शित करते हैं। [[ एंटिलौह चुम्बकत्व ]], फेरी चुम्बकत्व और फेरोमैग्नेटिज्म पैरामैग्नेटिक केंद्रों के स्पिन के बीच युग्मन से उत्पन्न होने वाले ठोस के भीतर चुंबकीय स्पिन की सहकारी घटनाएं हैं। कुशल चुंबकीय की अनुमति देने के लिए, धातु आयनों को छोटे धातु-धातु संपर्कों (जैसे ऑक्सो, साइनो और एज़िडो ब्रिज) के लिए अनुमति देने वाले छोटे लिगैंड द्वारा ब्रिज किया जाना चाहिए।[22]


सेंसर क्षमता

समन्वय बहुलक संरचना में शामिल विलायक अणुओं के परिवर्तन पर रंग परिवर्तन भी दिखा सकते हैं। इसका एक उदाहरण [Re . के दो सह समन्वय बहुलक होंगे6S8(सीएन)6]4− क्लस्टर जिसमें पानी के लिगैंड होते हैं जो कोबाल्ट परमाणुओं के साथ समन्वय करते हैं। यह मूल रूप से नारंगी घोल टेट्राहाइड्रोफुरान के साथ पानी के प्रतिस्थापन के साथ या तो बैंगनी या हरा हो जाता है, और डायथाइल ईथर के अतिरिक्त नीला हो जाता है। बहुलक इस प्रकार एक विलायक संवेदक के रूप में कार्य कर सकता है जो कुछ सॉल्वैंट्स की उपस्थिति में शारीरिक रूप से रंग बदलता है। रंग परिवर्तन को कोबाल्ट परमाणुओं पर पानी के लिगैंड्स को विस्थापित करने वाले आने वाले विलायक के लिए जिम्मेदार ठहराया जाता है, जिसके परिणामस्वरूप उनकी ज्यामिति ऑक्टाहेड्रल से टेट्राहेड्रल में बदल जाती है।[22]


संदर्भ

  1. 1.0 1.1 Batten, Stuart R.; Champness, Neil R.; Chen, Xiao-Ming; Garcia-Martinez, Javier; Kitagawa, Susumu; Öhrström, Lars; O'Keeffe, Michael; Suh, Myunghyun P.; Reedijk, Jan (2013). "Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013)". Pure and Applied Chemistry. 85 (8): 1715. doi:10.1351/PAC-REC-12-11-20.
  2. 2.0 2.1 Fromm, K. (2008). "एस-ब्लॉक धातु आयनों के साथ समन्वय बहुलक नेटवर्क" (PDF). Coord. Chem. Rev. 252 (8–9): 856–885. doi:10.1016/j.ccr.2007.10.032.
  3. Chen, X; Ye, B.; Tong, M. (2005). "2,2′-बिपिरिडिल-जैसे और कार्बोक्जिलेट लिगैंड्स के साथ धातु-कार्बनिक आणविक वास्तुकला". Coord. Chem. Rev. 249 (5–6): 545–565. doi:10.1016/j.ccr.2004.07.006.
  4. 4.0 4.1 Kitagawa, S.; Kitaura, R.; Noro, S. I. (2004). "कार्यात्मक झरझरा समन्वय पॉलिमर". Angewandte Chemie International Edition. 43 (18): 2334–2375. doi:10.1002/anie.200300610. PMID 15114565.
  5. Lamming, Glenn; El-Zubir, Osama; Kolokotroni, James; McGurk, Christopher; Waddell, Paul G.; Probert, Michael R.; Houlton, Andrew (2016-10-03). "Ag(I)-N बॉन्ड फॉर्मेशन पर आधारित दो-आयामी फ्रेमवर्क: सिंगल क्रिस्टल से सिंगल मॉलिक्यूलर शीट ट्रांसफॉर्मेशन". Inorganic Chemistry. 55 (19): 9644–9652. doi:10.1021/acs.inorgchem.6b01365. ISSN 0020-1669. PMID 27631950.
  6. Charpin, P.; Nierlich, M.; Vigner, D.; Lance, M.; Baudry, D. (1987). "यूरेनियम के दूसरे क्रिस्टलीय रूप की संरचना (चतुर्थ) टेट्राहाइड्रोबोरेट". Acta Crystallographica Section C. 43 (8): 1465–p1467. doi:10.1107/S0108270187091431.{{cite journal}}: CS1 maint: uses authors parameter (link)
  7. Robin, A. Y.; Fromm, K. M. (2006). "O- और N-दाताओं के साथ समन्वय बहुलक नेटवर्क: वे क्या हैं, क्यों और कैसे बनते हैं". Coord. Chem. Rev. 250 (15–16): 2127–2157. doi:10.1016/j.ccr.2006.02.013.{{cite journal}}: CS1 maint: uses authors parameter (link)
  8. Cote, A; Shimizu, G. (2003). "अनुकूलनीय घटकों के संयोजन के माध्यम से समन्वय ठोस: क्षारीय पृथ्वी ऑर्गनोसल्फोनेट नेटवर्क में व्यवस्थित संरचनात्मक भिन्नता". Chem. Eur. J. 9 (21): 5361–5370. doi:10.1002/chem.200305102. PMID 14613146.
  9. Bernstein, Jeremy; Paul M. Fishbane; Stephen G. Gasiorowicz (April 3, 2000). आधुनिक भौतिकी. Prentice-Hall. p. 624. ISBN 978-0-13-955311-0.
  10. Wen, M.; Munakata, M.; Suenaga, Y.; Kuroda-Sowa, T.; Maekawa, M.; Yan, S. G. (2001). "सिल्वर (I) चक्रीय सल्फर लिगैंड के समन्वय पॉलिमर, 2,2′,3,3′-टेट्राहाइड्रो-4,4′-डिथिया-1,1′-बिनाफ्थिलिडीन". Inorganica Chimica Acta. 322 (1–2): 133–137. doi:10.1016/S0020-1693(01)00556-4.
  11. Hung-Low, F.; Klausmeyer, K. K.; Gary, J. B. (2009). "4-(डिपेनिलफॉस्फिनोमिथाइल) पाइरीडीन के स्व-इकट्ठे चांदी (I) परिसरों में आयनों और लिगैंड अनुपात का प्रभाव और बाइपिरिडीन लिगैंड के साथ उनके डेरिवेटिव". Inorganica Chimica Acta. 362 (2): 426. doi:10.1016/j.ica.2008.04.032.
  12. Ricci, G.; Sommazzi, A.; Masi, F.; Ricci, M.; Boglia, A.; Leone, G. (2010). "1,3-डाइन्स पोलीमराइजेशन के लिए फॉस्फोरस और नाइट्रोजन लिगैंड्स के साथ अच्छी तरह से परिभाषित संक्रमण धातु परिसरों". Coordination Chemistry Reviews. 254 (5–6): 661. doi:10.1016/j.ccr.2009.09.023.
  13. Knaust, J. M.; Keller, S. W. (2002). "सीटू में से एक मिश्रित-लिगैंड समन्वय पॉलिमर, बीआईएस (4-पाइरिडाइल) एथिलीन का सीयू (आई) -मध्यस्थ आइसोमेराइजेशन". Inorganic Chemistry. 41 (22): 5650–2. doi:10.1021/ic025836c. PMID 12401066.
  14. Buvailo, Andrii I.; Gumienna-Kontecka, Elzbieta; Pavlova, Svetlana V.; Fritsky, Igor O.; Haukka, Matti (2010). "कॉपर में डिमेरिक बनाम पॉलिमरिक समन्वय (ii) बीआईएस (चेलेटिंग) ऑक्सीम और एमाइड लिगैंड के साथ धनायनित परिसरों". Dalton Transactions. 39 (27): 6266–75. doi:10.1039/C0DT00008F. PMID 20520918.
  15. Carlucci, L.; Ciani, G.; Proserpio, D. M.; Rizzato, S. (2002). "सिल्वर (i) साल्ट और फ्लेक्सिबल लिगैंड 1,3-बीआईएस (4-पाइरिडाइल) प्रोपेन (बीपीपी) के सेल्फ-असेंबली से नए पॉलीमेरिक नेटवर्क। काउंटरों के प्रभावों की एक व्यवस्थित जांच और बीपीपी . पर आधारित समन्वय पॉलिमर का एक सर्वेक्षण". CrystEngComm. 4 (22): 121. doi:10.1039/b201288j.
  16. Ni, L. B.; Zhang, R. H.; Liu, Q. X.; Xia, W. S.; Wang, H.; Zhou, Z. H. (2009). "PH- और mol-अनुपात पर निर्भर जिंक (II) समन्वय पॉलिमर का इमिनोडायसिटिक एसिड के साथ गठन: संश्लेषण, स्पेक्ट्रोस्कोपिक, क्रिस्टल संरचना और थर्मल अध्ययन". Journal of Solid State Chemistry. 182 (10): 2698–2706. Bibcode:2009JSSCh.182.2698N. doi:10.1016/j.jssc.2009.06.042. PMC 2778864. PMID 20161370.
  17. Tong, M. L.; Hu, S.; Wang, J.; Kitagawa, S.; Ng, S. W. (2005). "कैडमियम हाइड्रॉक्साइड चरणों में सुपरमॉलेक्यूलर आइसोमेरिज्म। α- और β-Cd2(OH)2(2,4-pyda) के फोटोल्यूमिनसेंट कोऑर्डिनेशन पॉलिमर का तापमान-निर्भर संश्लेषण और संरचना". Crystal Growth & Design. 5 (3): 837. doi:10.1021/cg049610r.
  18. Grychtol, K.; Mennicke, W. (2002) "Metal-Complex Dyes." In Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a16_299.
  19. Hunger, K.; Mischke, P.; Rieper, W.; Raue, R.; Kunde, K.; Engel, A. (2002) "Azo Dyes." In Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a03_245.
  20. Atwood, J. L. (2012) "Inclusion Compounds" in Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007.a14_119
  21. Bureekaew, S.; Shimomura, S.; Kitagawa, S. (2008). "लचीला झरझरा समन्वय पॉलिमर का रसायन विज्ञान और अनुप्रयोग". Science and Technology of Advanced Materials. 9 (1): 014108. Bibcode:2008STAdM...9a4108B. doi:10.1088/1468-6996/9/1/014108. PMC 5099803. PMID 27877934.
  22. 22.0 22.1 22.2 22.3 Batten, Stuart R. (2008). समन्वय पॉलिमर: डिजाइन, विश्लेषण और अनुप्रयोग. RSC Publishing. pp. 297–307, 396–407. doi:10.1039/9781847558862. ISBN 978-0-85404-837-3.