साइटोकिनेसिस
साइटोकिनेसिस (/ˌsaɪtoʊkɪˈniːsɪs/) कोशिका विभाजनप्रक्रिया का हिस्सा है जिसके दौरान एकल यूकेरियोटिक कोशिका का कोशिकाद्रव्य दो संतति कोशिकाओं में विभाजित हो जाता है। कोशिका द्रव्य विभाजन और माइटोसिस और अर्धसूत्री विभाजन में परमाणु विभाजन के अंतिम चरणों के दौरान या उसके बाद में शुरू होता है। साइटोकिन्सिस के दौरान स्पिंडल उपकरण विभाजन और डुप्लिकेट क्रोमैटिड को अलग करने वाली संतति कोशिकाओं के साइटोप्लाज्म में स्थानांतरित करता है। इससे यह सुनिश्चित होता है कि गुणसूत्र संख्या और पूरक एक पीढ़ी से दूसरी पीढ़ी तक बनाए रखा जाता है और विशेष मामलों को छोड़कर, संतति कोशिकाएं मूल कोशिका की कार्यात्मक प्रतियां होंगी। टेलोफ़ेज़ और साइटोकिन्सिस के पूरा होने के बाद, प्रत्येक संतति कोशिका कोशिका चक्र के अंतरावस्था में प्रवेश करती है।
विशेष कार्य के लिए सममित साइटोकाइनेसिस की प्रक्रिया से विभिन्न विचलन की आवश्यकता होती हैं, उदाहरण के लिए जानवरों में अंडजनन में डिंब लगभग सभी कोशिकाद्रव्य और अंगों को ग्रहण कर लेता है। यह परिणामी ध्रुवीय पिंडों के लिए बहुत कम बचता है, जो अधिकांश प्रजातियों में बिना कार्य के मर जाते हैं, यद्यपि वे अन्य प्रजातियों में विभिन्न विशेष कार्य करते हैं।[1] माइटोसिस का दूसरा अन्य रूप यकृत और कंकाल की मांसपेशी जैसे ऊतकों में होता है, यह साइटोकाइनेसिस को छोड़ देता है, जिससे बहुकेन्द्रीय कोशिकाएं उत्पन्न होती हैं।
पादप साइटोकाइनेसिस आंशिक रूप से पादप कोशिका सेल की दीवारों की कठोरता के कारण पशु साइटोकाइनेसिस से भिन्न होता है। पादप कोशिकाओं के बजाय पशु संतति कोशिकाओं के बीच विदलन खांचे का निर्माण होता है, कोशिका प्लेट के रूप में जानी जाने वाली विभाजित संरचना साइटोप्लाज्म में बनता है और पादप की संतति कोशिकाओं के बीच एक नई, दोहरी कोशिका भित्ति में विकसित होती है। यह कोशिका को दो संतति कोशिकाओं में विभाजित करता है।
साइटोकाइनेसिस काफी हद तक बाइनरी विखंडन की अकेन्द्रिक प्रक्रिया जैसा दिखता है, परंतु अकेन्द्रिक और यूकेरियोटिक सेल संरचनाओं और कार्यों के बीच अंतर के कारण, तंत्र भिन्न होते हैं। उदाहरण के लिए, एक जीवाणु कोशिका में एक वृत्ताकार गुणसूत्र (बंद लूप के रूप में एक एकल गुणसूत्र) होता है, जो रैखिक गुणसूत्र के विपरीत होता है, आमतौर पर यूकेरियोट के कई गुणसूत्र होते हैं। तदनुसार, बैक्टीरिया कोशिका विभाजन में माइटोटिक स्पिंडल का निर्माण नहीं करते हैं। साथ ही, गुणसूत्रों के वास्तविक पृथक्करण के दौरान अकेन्द्रिक डीएनए का दोहराव होता है; माइटोसिस में, माइटोसिस शुरू होने से पहले इंटरपेज़ के दौरान दोहराव होता है, हालांकि संतति क्रोमैटिड्स एनाफ़ेज़ से पहले पूरी तरह से अलग नहीं होते हैं।
व्युत्पत्ति और उच्चारण
साइटोकाइनेसिस शब्द (/ˌsaɪtoʊkaɪˈniːsɪs, -tə-, -kə-/[2][3]) wikt:cyto-#Prefix|cyto- + wikt:kine-#Prefix|kine- + wikt:-sis#Suffix|-sis, शास्त्रीय लैटिन और प्राचीन ग्रीक से नियो-लैटिन, सेल (जीव विज्ञान) को दर्शाती शास्त्रीय यौगिक का उपयोग करता है ) और किनेसिस (जीव विज्ञान) (गति, गति)। यह 1887 में चार्ल्स ओटिस व्हिटमैन द्वारा गढ़ा गया था।[4] इस शब्द की उत्पत्ति प्राचीन ग्रीक से है κύτος (kytos, एक खोखला), लैटिन व्युत्पन्नcyto (सेलुलर), ग्रीक κίνησις (kínesis, आंदोलन)।
पशु कोशिका
माइटोसिस के एनाफ़ेज़ में बहन क्रोमैटिड पृथक्करण की शुरुआत के तुरंत बाद पशु कोशिका साइटोकिनेसिस शुरू होता है। प्रक्रिया को निम्नलिखित अलग-अलग चरणों में विभाजित किया जा सकता है: एनाफेज स्पिंडल पुनर्गठन, डिवीजन प्लेन विनिर्देश, एक्टिन-मायोसिन रिंग असेंबली और संकुचन, और अनुपस्थिति।[5] उभरती संतति कोशिकाओं के लिए जीनोम का विश्वासयोग्य विभाजन आणविक सिग्नलिंग मार्ग द्वारा उपरोक्त व्यक्तिगत घटनाओं के तंग अस्थायी समन्वय के माध्यम से सुनिश्चित किया जाता है।
एनाफेज स्पिंडल पुनर्गठन
पशु कोशिका साइटोकिनेसिस सूक्ष्मनलिकाएं के स्थिरीकरण और केंद्रीय धुरी बनाने के लिए माइटोटिक धुरी के पुनर्गठन के साथ शुरू होता है। केंद्रीय स्पिंडल (या स्पिंडल मिडजोन) तब बनता है जब गैर-किनेटोचोर माइक्रोट्यूब्यूल फाइबर स्पिंडल ध्रुवों के बीच बंडल होते हैं। होमो सेपियन्स सहित कई विभिन्न प्रजातियां | एच। सेपियन्स, ड्रोसोफिला मेलानोगास्टर | डी। मेलानोगास्टर और कैनोर्हाडाइटिस एलिगेंस | सी। एलिगेंस को कुशलता से साइटोकाइनेसिस से गुजरने के लिए केंद्रीय धुरी की आवश्यकता होती है, हालांकि इसकी अनुपस्थिति से जुड़ा विशिष्ट फेनोटाइप एक प्रजाति से दूसरी प्रजाति में भिन्न होता है (उदाहरण के लिए, कुछ ड्रोसोफिला कोशिका प्रकार केंद्रीय धुरी के बिना दरार दरार बनाने में असमर्थ हैं, जबकि दोनों में C. एलिगेंस भ्रूण और मानव ऊतक संवर्धन कोशिकाएं एक विदलन खांचे को बनाने और प्रवेश करने के लिए मनाया जाता है, लेकिन फिर साइटोकाइनेसिस पूरा होने से पहले वापस आ जाता है)। माइटोटिक स्पिंडल पुनर्गठन और केंद्रीय स्पिंडल गठन की प्रक्रिया एनाफेज के दौरान सीडीके1 गतिविधि की गिरावट के कारण होती है।[5]मेटाफ़ेज़-एनाफ़ेज़ संक्रमण में CDK1 गतिविधि की गिरावट से कई केंद्रीय धुरी घटकों पर निरोधात्मक साइटों का विफॉस्फोराइलेटिंग होता है। सबसे पहले, CPC (क्रोमोसोमल पैसेंजर कॉम्प्लेक्स) की एक सबयूनिट से CDK1 फॉस्फोराइलेशन को हटाने से सेंट्रोमीटर से केंद्रीय स्पिंडल में इसका ट्रांसलोकलाइज़ेशन होता है, जहाँ यह मेटाफ़ेज़ के दौरान स्थित होता है। सेंट्रल स्पिंडल का एक संरचनात्मक घटक होने के अलावा, CPC PRC1 (साइटोकाइनेसिस 1 के लिए आवश्यक सूक्ष्मनलिका-बंडलिंग प्रोटीन) और MKLP1 (एक काइन्सिन मोटर प्रोटीन) सहित अन्य केंद्रीय स्पिंडल घटकों के फॉस्फोरेग्यूलेशन में भी भूमिका निभाता है। मूल रूप से सीडीके1-मध्यस्थता फास्फारिलीकरण द्वारा बाधित, पीआरसी1 अब एक होमोडीमर बनाने में सक्षम है जो केंद्रीय धुरी के सूक्ष्मनलिकाएं के स्थानिक संगठन को सुविधाजनक बनाने के लिए एंटीपरेलल सूक्ष्मनलिकाएं के बीच इंटरफेस को चुनिंदा रूप से बांधता है। MKLP1, Rho- परिवार GTPase सक्रिय करने वाले प्रोटीन CYK-4 (जिसे MgcRacGAP भी कहा जाता है) के साथ मिलकर सेंट्रलस्पिंडलिन कॉम्प्लेक्स बनाता है। सेंट्रलस्पिंडलिन केंद्रीय धुरी को उच्च-क्रम समूहों के रूप में बांधता है। CPC के एक घटक औरोरा B द्वारा MLKP1 के फॉस्फोराइलेशन द्वारा सेंट्रलस्पिंडलिन क्लस्टर गठन को बढ़ावा दिया जाता है। संक्षेप में, सेंट्रल स्पिंडल की स्व-असेंबली को मेटाफ़ेज़-एनाफ़ेज़ संक्रमण पर प्रत्यक्ष या अप्रत्यक्ष रूप से CDK1 गतिविधि की गिरावट से कई केंद्रीय स्पिंडल घटकों के फॉस्फोरेग्यूलेशन के माध्यम से शुरू किया जाता है। केंद्रीय धुरी में साइटोकाइनेसिस में कई कार्य हो सकते हैं जिनमें दरार दरार की स्थिति का नियंत्रण, दरार दरार को झिल्ली पुटिकाओं का वितरण, और मिडबॉडी संरचना का गठन शामिल है जो विभाजन के अंतिम चरणों के लिए आवश्यक है।[6]
डिवीजन विमान विनिर्देश
पशु कोशिका साइटोकाइनेसिस के दूसरे चरण में डिवीजन प्लेन स्पेसिफिकेशन और साइटोकाइनेटिक फ़रो फॉर्मेशन शामिल है। गुणसूत्रों के नुकसान को रोकने के लिए अलग-अलग गुणसूत्रों के दो द्रव्यमानों के बीच विभाजन तल की सटीक स्थिति आवश्यक है। इस बीच, तंत्र जिसके द्वारा स्पिंडल पशु कोशिकाओं में विभाजन विमान को निर्धारित करता है, शायद साइटोकाइनेसिस में सबसे स्थायी रहस्य है और गहन बहस का विषय है। फरो इंडक्शन की तीन परिकल्पनाएँ मौजूद हैं।[6]पहला एस्ट्रल स्टिमुलेशन परिकल्पना है, जो यह मानता है कि स्पिंडल पोल से सूक्ष्म सूक्ष्मनलिकाएं सेल कॉर्टेक्स में एक फ़रो-इंडेंटिंग सिग्नल ले जाती हैं, जहां दो ध्रुवों से सिग्नल किसी तरह स्पिंडल पर रिंग में केंद्रित होते हैं। एक दूसरी संभावना, जिसे सेंट्रल स्पिंडल परिकल्पना कहा जाता है, यह है कि क्लीवेज ग्रूव एक सकारात्मक उत्तेजना से प्रेरित होता है जो केंद्रीय स्पिंडल भूमध्य रेखा में उत्पन्न होता है। केंद्रीय धुरी विषुवतीय प्रांतस्था में छोटे GTPase RhoA की एकाग्रता और सक्रियता को बढ़ावा देकर विभाजन विमान के विनिर्देश में योगदान दे सकती है। एक तीसरी परिकल्पना सूक्ष्म विश्राम परिकल्पना है। यह मानता है कि सक्रिय एक्टिन-मायोसिन बंडल पूरे सेल कॉर्टेक्स में वितरित किए जाते हैं, और स्पिंडल ध्रुवों के पास उनके संकुचन के अवरोध के परिणामस्वरूप संविदात्मक गतिविधि का एक ढाल होता है जो ध्रुवों के मध्य बिंदु पर उच्चतम होता है। दूसरे शब्दों में, सूक्ष्म सूक्ष्मनलिकाएं एक नकारात्मक संकेत उत्पन्न करती हैं जो ध्रुवों के करीब कॉर्टिकल विश्राम को बढ़ाता है। सी. एलिगेंस भ्रूण में जेनेटिक और लेज़र-माइक्रोमैनीपुलेशन अध्ययनों से पता चला है कि स्पिंडल सेल कॉर्टेक्स को दो निरर्थक सिग्नल भेजता है, एक केंद्रीय स्पिंडल से उत्पन्न होता है, और दूसरा सिग्नल स्पिंडल एस्टर से प्राप्त होता है, जो संयुक्त रूप से कई तंत्रों की भागीदारी का सुझाव देता है। दरार खांचे की स्थिति। एक विशेष संकेत की प्रबलता कोशिका प्रकार और जीवों के बीच भिन्न होती है। और सिस्टम को मजबूत बनाने और स्थानिक सटीकता बढ़ाने के लिए संकेतों की भीड़ और आंशिक अतिरेक की आवश्यकता हो सकती है।[5]
एक्टोमोसिन रिंग असेंबली और संकुचन
साइटोकाइनेसिस खांचे में, यह एक्टोमीओसिन रिंग|एक्टिन-मायोसिन सिकुड़ा हुआ वलय है जो दरार प्रक्रिया को संचालित करता है, जिसके दौरान कोशिका झिल्ली और दीवार अंदर की ओर बढ़ती है, जो अंततः मातृ कोशिका को दो भागों में पिंच कर देती है। इस रिंग के प्रमुख घटक फिलामेंटस प्रोटीन एक्टिन और मोटर प्रोटीन मायोसिन II हैं। सिकुड़ा हुआ वलय विषुवतीय रूप से (कोशिका के मध्य में) कोशिका प्रांतस्था (कोशिका झिल्ली से सटे) पर इकट्ठा होता है। Rho प्रोटीन परिवार (स्तनधारी कोशिकाओं में RhoA प्रोटीन) पशु कोशिकाओं में सिकुड़ा हुआ वलय निर्माण और संकुचन का एक प्रमुख नियामक है।[6]RhoA पाथवे दो मुख्य प्रभावकों द्वारा एक्टिन-मायोसिन रिंग के संयोजन को बढ़ावा देता है। सबसे पहले, RhoA डायफेनस-संबंधित फॉर्मिन्स के सक्रियण द्वारा अशाखित एक्टिन फिलामेंट्स के न्यूक्लिएशन को उत्तेजित करता है। नए एक्टिन फिलामेंट्स की यह स्थानीय पीढ़ी सिकुड़ा हुआ रिंग बनाने के लिए महत्वपूर्ण है।[6]इस एक्टिन फिलामेंट निर्माण प्रक्रिया में प्रोफिलिन नामक एक प्रोटीन की भी आवश्यकता होती है, जो एक्टिन मोनोमर्स को बांधता है और उन्हें फिलामेंट एंड पर लोड करने में मदद करता है। दूसरा, RhoA किनेज रॉक द्वारा मायोसिन II सक्रियण को बढ़ावा देता है, जो मायोसिन लाइट चेन के फॉस्फोराइलेशन द्वारा सीधे मायोसिन II को सक्रिय करता है और फॉस्फेट-टारगेटिंग सबयूनिट MYPT के फॉस्फोराइलेशन द्वारा मायोसिन फॉस्फेट को भी रोकता है। एक्टिन और मायोसिन II के अलावा, सिकुड़ा हुआ रिंग में मचान प्रोटीन एनिलिन होता है। एनिलिन एक्टिन, मायोसिन, रोहो और सीवाईके-4 से बंधता है, और इस तरह केंद्रीय धुरी से संकेतों के साथ भूमध्यरेखीय प्रांतस्था को जोड़ता है। यह एक्टिन-मायोसिन रिंग को प्लाज्मा झिल्ली से जोड़ने में भी योगदान देता है। इसके अतिरिक्त, एनिलिन थर्मल उतार-चढ़ाव को ठीक करके सिकुड़ा हुआ बल उत्पन्न करता है।[7] एक अन्य प्रोटीन, सेप्टिन, को भी एक संरचनात्मक पाड़ के रूप में सेवा करने के लिए अनुमान लगाया गया है जिस पर साइटोकाइनेसिस तंत्र का आयोजन किया जाता है। इसकी असेंबली के बाद, एक्टिन-मायोसिन रिंग के संकुचन से जुड़ी प्लाज्मा झिल्ली का अंतर्ग्रहण होता है, जो साइटोप्लाज्म को उभरती हुई बहन कोशिकाओं के दो डोमेन में विभाजित करता है। मोटर प्रोटीन मायोसिन II द्वारा एक्टिन के साथ आंदोलनों द्वारा सिकुड़ा प्रक्रियाओं के लिए बल उत्पन्न होता है। मायोसिन II मुक्त ऊर्जा का उपयोग करता है जब एडेनोसाइन ट्रायफ़ोस्फेट को इन एक्टिन फिलामेंट्स के साथ स्थानांतरित करने के लिए हाइड्रोलाइज्ड किया जाता है, जिससे कोशिका झिल्ली को एक क्लेवाज नाली बनाने के लिए बाध्य किया जाता है। निरंतर हाइड्रोलिसिस इस विदलन खांचे को प्रवेश (अंदर की ओर) करने का कारण बनता है, एक हड़ताली प्रक्रिया जो एक प्रकाश सूक्ष्मदर्शी के माध्यम से स्पष्ट रूप से दिखाई देती है।
फरार
साइटोकाइनेटिक खांचा एक मिडबॉडी (कोशिका जीव विज्ञान) (इलेक्ट्रॉन-सघन, प्रोटीनयुक्त सामग्री से बना) बनने तक प्रवेश करता है, जहां एक्टिन-मायोसिन रिंग लगभग 1-2 माइक्रोन के व्यास तक पहुंच गया है। अधिकांश पशु कोशिका प्रकार कई घंटों तक एक अंतरकोशिकीय साइटोकाइनेटिक पुल से जुड़े रहते हैं, जब तक कि वे एक एक्टिन-स्वतंत्र प्रक्रिया द्वारा विभाजित नहीं हो जाते हैं, जिसे एब्सक्यूशन कहा जाता है, जो साइटोकाइनेसिस का अंतिम चरण है।[5][8] अनुपस्थिति की प्रक्रिया शारीरिक रूप से मिडबॉडी को दो भागों में विभाजित करती है। साइटोकाइनेटिक पुल से साइटोस्केलेटल संरचनाओं को हटाने, सेल कॉर्टेक्स के कसना, और प्लाज्मा झिल्ली विखंडन से पृथक्करण आगे बढ़ता है। इंटरसेलुलर ब्रिज केंद्रीय धुरी से निकलने वाले एंटीपैरलल माइक्रोट्यूबुल्स के घने बंडलों से भरा होता है। ये सूक्ष्मनलिकाएं मिडबॉडी पर ओवरलैप करती हैं, जिसे आमतौर पर एब्सक्यूशन मशीनरी के लिए एक लक्ष्यीकरण प्लेटफॉर्म माना जाता है।
सूक्ष्मनलिका विच्छेदन प्रोटीन स्पास्टिन काफी हद तक अंतरकोशिकीय पुल के अंदर सूक्ष्मनलिका बंडलों के पृथक्करण के लिए जिम्मेदार है। पूर्ण कॉर्टिकल कसना को अंतर्निहित साइटोस्केलेटल संरचनाओं को हटाने की भी आवश्यकता होती है। देर से साइटोकाइनेसिस के दौरान एक्टिन फिलामेंट डिसएस्पेशन PKCε-14-3-3 कॉम्प्लेक्स पर निर्भर करता है, जो फ़रो इनग्रेशन के बाद RhoA को निष्क्रिय कर देता है। एक्टिन डिसअसेंबली को आगे GTPase Rab35 और इसके प्रभावकारक, फॉस्फेटिडिलिनोसिटोल-4,5-बिस्फोस्फेट 5-फॉस्फेट OCRL द्वारा नियंत्रित किया जाता है। तंत्र को समझना जिसके द्वारा प्लाज्मा झिल्ली अंततः विभाजित हो जाती है, आगे की जांच की आवश्यकता होती है।
टाइमिंग साइटोकाइनेसिस
साइटोकिनेसिस को अस्थायी रूप से नियंत्रित किया जाना चाहिए ताकि यह सुनिश्चित किया जा सके कि यह सामान्य प्रोलिफेरेटिव सेल डिवीजनों के एनाफेज हिस्से के दौरान बहन क्रोमैटिड्स के अलग होने के बाद ही होता है। इसे प्राप्त करने के लिए, साइटोकाइनेसिस मशीनरी के कई घटकों को यह सुनिश्चित करने के लिए अत्यधिक विनियमित किया जाता है कि वे कोशिका चक्र के केवल एक विशेष चरण में एक विशेष कार्य करने में सक्षम हैं।[9][10] साइटोकिनेसिस एपीसी के सीडीसी20 से जुड़ने के बाद ही होता है।[citation needed] यह क्रोमोसोम और मायोसिन को एक साथ काम करने के लिए अलग करने की अनुमति देता है।
साइटोकाइनेसिस के बाद, गैर-काइनेटोचोर सूक्ष्मनलिकाएं पुनर्गठित होती हैं और एक नए साइटोस्केलेटन में गायब हो जाती हैं, क्योंकि कोशिका चक्र इंटरपेज़ पर लौटता है (कोशिका चक्र भी देखें)।
प्लांट सेल
कोशिका भित्ति की उपस्थिति के कारण, पादप कोशिकाओं में साइटोकाइनेसिस जंतु कोशिकाओं से काफी भिन्न होता है, एक सिकुड़ा हुआ वलय बनाने के बजाय, पादप कोशिकाएँ कोशिका के मध्य में एक कोशिका प्लेट का निर्माण करती हैं। सेल प्लेट के गठन के चरणों में शामिल हैं (1) phragmoplast का निर्माण, सूक्ष्मनलिकाएं की एक सरणी जो सेल प्लेट के गठन का मार्गदर्शन और समर्थन करती है; (2) विभाजन तल में पुटिकाओं की तस्करी और एक ट्यूबलर-वेसिकुलर नेटवर्क उत्पन्न करने के लिए उनका संलयन; (3) झिल्लीदार नलिकाओं का निरंतर संलयन और कैलोज़ के जमाव पर झिल्ली की चादरों में उनका परिवर्तन, इसके बाद सेल्यूलोज और अन्य कोशिका भित्ति घटकों का जमाव; (4) सेल प्लेट से अतिरिक्त झिल्ली और अन्य सामग्री का पुनर्चक्रण; और (5) पैतृक कोशिका भित्ति के साथ संलयन[11][12] फ्रेगमोप्लास्ट को मिटाटिक धुरी के अवशेषों से इकट्ठा किया जाता है, और वेसिकल (जीव विज्ञान) की तस्करी के लिए फ्रेगमोप्लास्ट मिडज़ोन के लिए एक ट्रैक के रूप में कार्य करता है। इन पुटिकाओं में एक नई कोशिका सीमा के निर्माण के लिए आवश्यक लिपिड, प्रोटीन और कार्बोहाइड्रेट होते हैं। इलेक्ट्रॉन टोमोग्राफिक अध्ययनों ने इन पुटिकाओं के स्रोत के रूप में गोल्गी उपकरण की पहचान की है,[13][14] लेकिन अन्य अध्ययनों ने सुझाव दिया है कि उनमें एंडोसाइटोज्ड सामग्री भी होती है।[15][16] ये नलिकाएं तब चौड़ी हो जाती हैं और एक दूसरे के साथ बाद में फ्यूज हो जाती हैं, अंत में एक प्लेनर, फेनेस्टेड शीट का निर्माण करती हैं [8]</उप>। जैसे ही कोशिका प्लेट परिपक्व होती है, बड़ी मात्रा में झिल्ली सामग्री क्लैथ्रिन-मध्यस्थता वाले एंडोसाइटोसिस के माध्यम से हटा दी जाती है [7] आखिरकार, कोशिका प्लेट के किनारे माता-पिता की प्लाज्मा झिल्ली के साथ मिल जाते हैं, अक्सर एक विषम तरीके से,[17] इस प्रकार साइटोकिन्सिस को पूरा करना। शेष फ़नेस्ट्रे में उनके माध्यम से गुजरने वाले अन्तः प्रदव्ययी जलिका की किस्में होती हैं, और उन्हें plasmodesmata के पूर्ववर्ती माना जाता है [8]</उप>।
नई कोशिका भित्ति का निर्माण युवा कोशिका प्लेट की संकरी नलिकाओं के लुमेन के भीतर शुरू होता है। जिस क्रम में विभिन्न कोशिका दीवार घटकों को जमा किया जाता है वह काफी हद तक इम्यूनो-इलेक्ट्रॉन माइक्रोस्कोपी द्वारा निर्धारित किया गया है। आने वाले पहले घटक पेक्टिन, हेमिकेलुलोज और अरेबिनोगैलेक्टन प्रोटीन हैं जो स्रावी पुटिकाओं द्वारा ले जाए जाते हैं जो सेल प्लेट बनाने के लिए फ्यूज हो जाते हैं।[18] जोड़ा जाने वाला अगला घटक कॉलोज़ है, जो सीधे सेल प्लेट पर कॉलोज़ सिंथेस द्वारा पोलीमराइज़ किया जाता है। जैसे-जैसे कोशिका प्लेट परिपक्व होती जाती है और माता-पिता की प्लाज्मा झिल्ली के साथ फ़्यूज़ हो जाती है, कॉलोज़ को धीरे-धीरे सेल्युलोज़ से बदल दिया जाता है, जो एक परिपक्व कोशिका भित्ति का प्राथमिक घटक होता है।
[6]</उप>। मध्य लैमेला (पेक्टिन युक्त एक गोंद जैसी परत) सेल प्लेट से विकसित होती है, जो आसन्न कोशिकाओं की सेल की दीवारों को एक साथ बांधने के लिए काम करती है।[19][20]
बल
पशु कोशिकाएं
साइटोकाइनेटिक फ़रो अंतर्ग्रहण टाइप II मायोसिन ATPase द्वारा संचालित है। चूंकि मायोसिन को मध्य क्षेत्र में भर्ती किया जाता है, इसलिए कोर्टेक्स पर काम करने वाली संकुचन शक्ति एक 'पर्स स्ट्रिंग' कसना के समान होती है जो अंदर की ओर खींचती है। इससे आन्तरिक संकुचन होता है। क्रॉसलिंकर प्रोटीन के माध्यम से कॉर्टेक्स के साथ घनिष्ठ संबंध के आधार पर प्लाज्मा झिल्ली [21] विदलन खांचे के संकुचन के लिए, एक्सोसाइटोसिस </ref> के माध्यम से प्लाज़्मा झिल्ली की आपूर्ति करके कुल सतह क्षेत्र को बढ़ाया जाना चाहिए।[22]
साइटोकाइनेसिस में शामिल प्रोटीन
CEP55 एक माइटोटिक फॉस्फोप्रोटीन है जो कोशिका विभाजन के अंतिम चरण साइटोकाइनेसिस में महत्वपूर्ण भूमिका निभाता है।[23][24]
नैदानिक महत्व
कुछ मामलों में, एक कोशिका अपनी आनुवंशिक सामग्री को विभाजित कर सकती है और आकार में बढ़ सकती है, लेकिन साइटोकाइनेसिस से गुजरने में विफल रहती है। इसका परिणाम एक से अधिक नाभिक वाली बड़ी कोशिकाओं में होता है। आमतौर पर यह एक अवांछित विपथन है और यह कैंसर कोशिकाओं का संकेत हो सकता है।[25]
यह भी देखें
संदर्भ
- ↑ Schmerler Samuel, Wessel Gary (January 2011). "ध्रुवीय निकाय - सम्मान की कमी से अधिक समझ की कमी". Mol Reprod Dev. 78 (1): 3–8. doi:10.1002/mrd.21266. PMC 3164815. PMID 21268179.
- ↑ "cytokinesis". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 2020-03-22.
- ↑ "cytokinesis". Merriam-Webster Dictionary. Retrieved 2016-01-21.
- ↑ Battaglia, Emilio (2009). Caryoneme alternative to chromosome and a new caryological nomenclature. Caryologia 62 (4): 1–80. link.
- ↑ 5.0 5.1 5.2 5.3 Fededa JP, Gerlich DW (May 2012). "पशु कोशिका साइटोकाइनेसिस का आणविक नियंत्रण". Nat. Cell Biol. 14 (5): 440–7. doi:10.1038/ncb2482. PMID 22552143. S2CID 3355851.
- ↑ 6.0 6.1 6.2 6.3 Morgan, David (2007). सेल चक्र. New Science Press. pp. 157–173.
- ↑ Kucera, Ondrej; Siahaan, Valerie; Janda, Daniel; Dijkstra, Sietske H; Pilatova, Eliska; Zatecka, Eva; Diez, Stefan; Braun, Marcus; Lansky, Zdenek (2021). "एनिलिन एक्टिन रिंग्स के मायोसिन-स्वतंत्र संकुचन को प्रेरित करता है". Nature Communications. 12 (1): 4595. Bibcode:2021NatCo..12.4595K. doi:10.1038/s41467-021-24474-1. PMC 8319318. PMID 34321459.
- ↑ "साइटोकिनेटिक पुल". proteinatlas.org. Retrieved 28 August 2019.
- ↑ Mishima M, Pavicic V, Grüneberg U, Nigg EA, Glotzer M (August 2004). "सेंट्रल स्पिंडल असेंबली का सेल चक्र विनियमन". Nature. 430 (7002): 908–13. Bibcode:2004Natur.430..908M. doi:10.1038/nature02767. PMID 15282614. S2CID 4418281.
- ↑ Petronczki M, Glotzer M, Kraut N, Peters JM (May 2007). "Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle". Dev. Cell. 12 (5): 713–25. doi:10.1016/j.devcel.2007.03.013. PMID 17488623.
- ↑ Otegui M, Staehelin LA (December 2000). "Cytokinesis in flowering plants: more than one way to divide a cell". Curr. Opin. Plant Biol. 3 (6): 493–502. doi:10.1016/s1369-5266(00)00119-9. PMID 11074381.
- ↑ Samuels AL, Giddings TH, Staehelin LA (September 1995). "Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants". J. Cell Biol. 130 (6): 1345–57. doi:10.1083/jcb.130.6.1345. PMC 2120572. PMID 7559757.
- ↑ Otegui MS, Mastronarde DN, Kang BH, Bednarek SY, Staehelin LA (September 2001). "उच्च रिज़ॉल्यूशन इलेक्ट्रॉन टोमोग्राफी द्वारा देखे गए एंडोस्पर्म सेल्युलराइज़ेशन के दौरान सिंकिटियल-प्रकार सेल प्लेटों का त्रि-आयामी विश्लेषण". Plant Cell. 13 (9): 2033–51. doi:10.1105/tpc.13.9.2033. PMC 139450. PMID 11549762.
- ↑ Seguí-Simarro JM, Austin JR, White EA, Staehelin LA (April 2004). "उच्च दबाव ठंड द्वारा संरक्षित अरबिडोप्सिस की मेरिस्टेमेटिक कोशिकाओं में दैहिक सेल प्लेट के गठन का इलेक्ट्रॉन टोमोग्राफिक विश्लेषण". Plant Cell. 16 (4): 836–56. doi:10.1105/tpc.017749. PMC 412860. PMID 15020749.
- ↑ Baluska F, Liners F, Hlavacka A, Schlicht M, Van Cutsem P, McCurdy DW, Menzel D (October 2005). "सेल वॉल पेक्टिन और जाइलोग्लुकेन्स को जड़ कोशिकाओं को विभाजित करने और साइटोकाइनेसिस के दौरान सेल प्लेटों के भीतर जमा करने के लिए आंतरिक रूप दिया जाता है।". Protoplasma. 225 (3–4): 141–55. doi:10.1007/s00709-005-0095-5. PMID 16228896. S2CID 11881080.
- ↑ Dhonukshe P, Baluska F, Schlicht M, Hlavacka A, Samaj J, Friml J, Gadella TW (January 2006). "सेल की सतह सामग्री का एंडोसाइटोसिस प्लांट साइटोकाइनेसिस के दौरान सेल प्लेट के गठन की मध्यस्थता करता है". Dev. Cell. 10 (1): 137–50. doi:10.1016/j.devcel.2005.11.015. PMID 16399085.
- ↑ Cutler SR, Ehrhardt DW (March 2002). "अरबिडोप्सिस की वैक्यूलेट कोशिकाओं में ध्रुवीकृत साइटोकाइनेसिस". Proc. Natl. Acad. Sci. U.S.A. 99 (5): 2812–7. Bibcode:2002PNAS...99.2812C. doi:10.1073/pnas.052712299. PMC 122430. PMID 11880633.
- ↑ Staehelin LA, Moore I (1995). "The Plant Golgi Apparatus: Structure, Functional Organization and Trafficking Mechanisms". Annual Review of Plant Physiology and Plant Molecular Biology. 46 (1): 261–288. doi:10.1146/annurev.pp.46.060195.001401. ISSN 1040-2519.
- ↑ Charles E. Allen (July 1901). "मध्य लैमेला की उत्पत्ति और प्रकृति पर". Botanical Gazette. 32 (1): 1–34. doi:10.1086/328131. JSTOR 2464904. S2CID 84936099.
- ↑ Evert RF, Eichorn S (2006-09-18). Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. John Wiley & Sons. ISBN 978-0-470-04737-8.
- ↑ Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008-06-18). "Cross-linking Proteins with Distinct Properties Organize Different Assemblies of Actin Filaments" - Molecular Biology of the Cell, 4th Ed, 2002: Cell. Garland Science. pp. 1006–. ISBN 978-0-8153-3218-3.
- ↑ Tanaka M, Fujimoto K, Yumura S (April 2020). "डिक्टियोस्टेलियम कोशिकाओं को विभाजित करने में कुल सेल सतह क्षेत्र का विनियमन". Front Cell Dev Biol. 8: 238. doi:10.3389/fcell.2020.00238. PMC 7156592. PMID 32322581.
- ↑ van der Horst A, Simmons J, Khanna KK (November 2009). "Cep55 stabilization is required for normal execution of cytokinesis". Cell Cycle. 8 (22): 3742–9. doi:10.4161/cc.8.22.10047. PMID 19855176.
- ↑ Behnam Rashidieh,Belal Shohayeb,Amanda Louise Bain,Patrick R. J. Fortuna,Debottam Sinha,Andrew Burgess,Richard Mills,Rachael C. Adams,J. Alejandro Lopez,Peter Blumbergs,John Finnie,Murugan Kalimutho,Michael Piper,James Edward Hudson,Dominic C. H. Ng ,Kum Kum Khanna. (October 2021). "Cep55 regulation of PI3K/Akt signaling is required for neocortical development and ciliogenesis". PLOS Genetics. 17 (10): e1009334. doi:10.1371/journal.pgen.1009334. PMID 34710087.
{{cite journal}}: CS1 maint: uses authors parameter (link) - ↑
This article incorporates text available under the CC BY 4.0 license. Betts, J Gordon; Desaix, Peter; Johnson, Eddie; Johnson, Jody E; Korol, Oksana; Kruse, Dean; Poe, Brandon; Wise, James; Womble, Mark D; Young, Kelly A (June 8, 2023). Anatomy & Physiology. Houston: OpenStax CNX. 3.5 Cell Growth and Division. ISBN 978-1-947172-04-3.
अग्रिम पठन
- The Molecular Requirements for Cytokinesis by M. Glotzer (2005), Science 307, 1735
- "Animal Cytokinesis: from parts list to mechanism" by Eggert, U.S., Mitchison, T.J., Field, C.M. (2006), Annual Review of Cell Biology 75, 543-66
- Campbell Biology (2010), 580-582
- More description and nice images of cell division in plants, with a focus on fluorescence microscopy
- Nanninga N (June 2001). "Cytokinesis in Prokaryotes and Eukaryotes: Common Principles and Different Solutions". Microbiol. Mol. Biol. Rev. 65 (2): 319–33. doi:10.1128/MMBR.65.2.319-333.2001. PMC 99029. PMID 11381104.