लेवल सेंसर

From Vigyanwiki
Revision as of 01:34, 11 August 2023 by alpha>Indicwiki (Created page with "{{short description|Sensor to detect the level of substances that flow}} {{Distinguish|Tilt sensor|Dumpy level|Level of measurement}} लेवल सेंसर तरल...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

लेवल सेंसर तरल स्तर और अन्य तरल पदार्थ और तरलीकृत ठोस पदार्थों का पता लगाते हैं, जिनमें घोल, दानेदार सामग्री और विकट: पाउडर शामिल हैं जो एक ऊपरी मुक्त सतह प्रदर्शित करते हैं। जो पदार्थ प्रवाहित होते हैं वे गुरुत्वाकर्षण के कारण अपने कंटेनरों (या अन्य भौतिक सीमाओं) में अनिवार्य रूप से क्षैतिज विमान बन जाते हैं जबकि अधिकांश थोक ठोस एक शिखर के विश्राम के कोण पर ढेर हो जाते हैं। मापा जाने वाला पदार्थ किसी कंटेनर के अंदर हो सकता है या अपने प्राकृतिक रूप में हो सकता है (जैसे, नदी या झील)। स्तर माप या तो सतत या बिंदु मान हो सकता है। सतत स्तर सेंसर एक निर्दिष्ट सीमा के भीतर स्तर को मापते हैं और एक निश्चित स्थान पर पदार्थ की सटीक मात्रा निर्धारित करते हैं, जबकि बिंदु-स्तर सेंसर केवल यह संकेत देते हैं कि पदार्थ संवेदन बिंदु से ऊपर या नीचे है। आम तौर पर उत्तरार्द्ध उन स्तरों का पता लगाता है जो अत्यधिक उच्च या निम्न हैं।

ऐसे कई भौतिक और अनुप्रयोग चर हैं जो औद्योगिक और वाणिज्यिक प्रक्रियाओं के लिए इष्टतम स्तर की निगरानी पद्धति के चयन को प्रभावित करते हैं।[1] चयन मानदंड में भौतिक शामिल हैं: चरण (पदार्थ) (तरल, ठोस या घोल), तापमान, दबाव या खालीपन , रसायन विज्ञान, संचरण माध्यम का ढांकता हुआ स्थिरांक, माध्यम का घनत्व (विशिष्ट गुरुत्व), आंदोलन (क्रिया), ध्वनिक या विद्युत शोर , कंपन, झटका (यांत्रिकी), टैंक या बिन का आकार और आकार। अनुप्रयोग बाधाएँ भी महत्वपूर्ण हैं: मूल्य, सटीकता, उपस्थिति, प्रतिक्रिया दर, अंशांकन या गणितीय प्रोग्रामिंग में आसानी, उपकरण का भौतिक आकार और माउंटिंग, निरंतर या असतत (बिंदु) स्तरों की निगरानी या नियंत्रण। संक्षेप में, लेवल सेंसर बहुत महत्वपूर्ण सेंसरों में से एक हैं और विभिन्न उपभोक्ता/औद्योगिक अनुप्रयोगों में बहुत महत्वपूर्ण भूमिका निभाते हैं। अन्य प्रकार के सेंसरों की तरह, लेवल सेंसर भी उपलब्ध हैं या विभिन्न प्रकार के सेंसिंग सिद्धांतों का उपयोग करके डिज़ाइन किए जा सकते हैं। अनुप्रयोग की आवश्यकता के अनुरूप उपयुक्त प्रकार के सेंसर का चयन बहुत महत्वपूर्ण है।

ठोस पदार्थों के लिए बिंदु और सतत स्तर का पता लगाना

ठोस पदार्थों का बिंदु स्तर पर पता लगाने के लिए विभिन्न प्रकार के सेंसर उपलब्ध हैं। इनमें वाइब्रेटिंग, रोटेटिंग पैडल, मैकेनिकल (डायाफ्राम (मैकेनिकल डिवाइस)), माइक्रोवेव (राडार), कैपेसिटेंस, ऑप्टिकल, स्पंदित-अल्ट्रासोनिक और अतिध्वनि संवेदक लेवल सेंसर शामिल हैं।

कंपन बिंदु

कंपन बिंदु जांच का सिद्धांत

ये बहुत महीन पाउडर के स्तर का पता लगाते हैं (थोक घनत्व: 0.02–0.2 g/cm3), महीन चूर्ण (थोक घनत्व: 0.2–0.5 g/cm3), और दानेदार ठोस (थोक घनत्व: 0.5 g/cm3 या बड़ा)। कंपन आवृत्ति के उचित चयन और उपयुक्त संवेदनशीलता समायोजन के साथ, वे अत्यधिक द्रवयुक्त पाउडर और इलेक्ट्रोस्टैटिक सामग्री के स्तर को भी समझ सकते हैं।

एकल-जांच कंपन स्तर सेंसर थोक पाउडर स्तर के लिए आदर्श हैं। चूंकि केवल एक सेंसिंग तत्व पाउडर से संपर्क करता है, दो जांच तत्वों के बीच ब्रिजिंग समाप्त हो जाती है और मीडिया बिल्ड-अप कम से कम हो जाता है। जांच का कंपन जांच तत्व पर सामग्री के निर्माण को समाप्त कर देता है। कंपन स्तर सेंसर धूल, ढांकता हुआ पाउडर से स्थिर चार्ज निर्माण, या चालकता, तापमान, दबाव, आर्द्रता या नमी सामग्री में परिवर्तन से प्रभावित नहीं होते हैं। ट्यूनिंग-फोर्क शैली कंपन सेंसर एक अन्य विकल्प हैं। वे कम महंगे होते हैं, लेकिन टीन्स के बीच सामग्री जमा होने का खतरा होता है,

घूमने वाला चप्पू

घूमने वाले पैडल लेवल सेंसर बल्क सॉलिड पॉइंट लेवल इंडिकेशन के लिए एक बहुत पुरानी और स्थापित तकनीक है। तकनीक एक कम गति वाली गियर मोटर का उपयोग करती है जो पैडल व्हील को घुमाती है। जब पैडल को ठोस पदार्थों द्वारा रोक दिया जाता है, तो मोटर अपने शाफ्ट पर अपने स्वयं के टॉर्क द्वारा तब तक घूमती रहती है जब तक कि मोटर पर लगा एक फ्लैंज एक यांत्रिक स्विच से संपर्क नहीं कर लेता। पैडल का निर्माण विभिन्न सामग्रियों से किया जा सकता है, लेकिन पैडल पर चिपचिपा पदार्थ जमा नहीं होने देना चाहिए। यदि हॉपर में उच्च नमी के स्तर या उच्च परिवेशीय आर्द्रता के कारण प्रक्रिया सामग्री चिपचिपी हो जाती है, तो बिल्ड-अप हो सकता है। प्रति यूनिट आयतन में बहुत कम वजन वाली सामग्री जैसे कि पर्लाइट, बेंटोनाइट या फ्लाई ऐश के लिए, विशेष पैडल डिज़ाइन और कम-टोक़ मोटर्स का उपयोग किया जाता है। हॉपर या बिन में पैडल को उचित स्थान पर रखकर और उचित सील का उपयोग करके महीन कणों या धूल को शाफ्ट बीयरिंग और मोटर में प्रवेश करने से रोका जाना चाहिए।

प्रवेश-प्रकार

प्रवेश में परिवर्तन को मापने के लिए एक आरएफ प्रवेश स्तर सेंसर एक रॉड जांच और आरएफ स्रोत का उपयोग करता है। जमीन पर केबल कैपेसिटेंस बदलने के प्रभावों को खत्म करने के लिए जांच को एक परिरक्षित समाक्षीय केबल के माध्यम से संचालित किया जाता है। जब जांच के चारों ओर स्तर बदलता है, तो ढांकता हुआ में एक समान परिवर्तन देखा जाता है। इससे इस अपूर्ण संधारित्र की स्वीकार्यता बदल जाती है और इस परिवर्तन को स्तर में परिवर्तन का पता लगाने के लिए मापा जाता है।[2]


तरल पदार्थ का बिंदु स्तर पता लगाना

तरल पदार्थों में बिंदु स्तर का पता लगाने के लिए विशिष्ट प्रणालियों में चुंबकीय और यांत्रिक फ्लोट, दबाव सेंसर, इलेक्ट्रोकंडक्टिव सेंसिंग या इलेक्ट्रोस्टैटिक (कैपेसिटेंस या इंडक्टेंस) डिटेक्टर शामिल हैं - और इलेक्ट्रोमैग्नेटिक (जैसे मैग्नेटोस्ट्रिक्टिव) के माध्यम से द्रव सतह पर सिग्नल की उड़ान के समय को मापकर ), अल्ट्रासोनिक, रडार या ऑप्टिकल सेंसर।[3][4]

चुंबकीय और यांत्रिक फ्लोट

चुंबकीय, यांत्रिक, केबल और अन्य फ्लोट स्तर सेंसर के पीछे के सिद्धांत में अक्सर यांत्रिक स्विच को खोलना या बंद करना शामिल होता है, या तो स्विच के सीधे संपर्क के माध्यम से, या रीड के चुंबकीय संचालन के माध्यम से। अन्य उदाहरणों में, जैसे मैग्नेटोस्ट्रिक्टिव सेंसर, फ्लोट सिद्धांत का उपयोग करके निरंतर निगरानी संभव है।

चुंबकीय रूप से सक्रिय फ्लोट सेंसर के साथ, स्विचिंग तब होती है जब फ्लोट के अंदर सील किया गया एक स्थायी चुंबक सक्रियण स्तर तक बढ़ जाता है या गिर जाता है। यंत्रवत् सक्रिय फ्लोट के साथ, एक लघु (सूक्ष्म) स्विच के विरुद्ध फ्लोट की गति के परिणामस्वरूप स्विचिंग होती है। चुंबकीय और यांत्रिक फ्लोट स्तर सेंसर दोनों के लिए, रासायनिक अनुकूलता, तापमान, विशिष्ट गुरुत्व (घनत्व), उछाल और चिपचिपाहट स्टेम और फ्लोट के चयन को प्रभावित करती है। उदाहरण के लिए, उछाल बनाए रखते हुए 0.5 जितनी कम विशिष्ट गुरुत्व वाले तरल पदार्थों के साथ बड़े फ्लोट्स का उपयोग किया जा सकता है। फ्लोट सामग्री की पसंद विशिष्ट गुरुत्व और चिपचिपाहट में तापमान-प्रेरित परिवर्तनों से भी प्रभावित होती है - परिवर्तन जो सीधे उछाल को प्रभावित करते हैं।[5] फ्लोट-प्रकार के सेंसरों को डिज़ाइन किया जा सकता है ताकि एक ढाल फ्लोट को अशांति और तरंग गति से बचाए। फ्लोट सेंसर संक्षारक सहित विभिन्न प्रकार के तरल पदार्थों में अच्छी तरह से काम करते हैं। हालाँकि, जब कार्बनिक सॉल्वैंट्स के लिए उपयोग किया जाता है, तो किसी को यह सत्यापित करने की आवश्यकता होगी कि ये तरल पदार्थ सेंसर के निर्माण के लिए उपयोग की जाने वाली सामग्रियों के साथ रासायनिक रूप से संगत हैं। फ्लोट-स्टाइल सेंसर का उपयोग उच्च चिपचिपाहट (मोटी) तरल पदार्थ, कीचड़ या तरल पदार्थ के साथ नहीं किया जाना चाहिए जो स्टेम या फ्लोट से चिपकते हैं, या ऐसी सामग्री जिसमें धातु चिप्स जैसे दूषित पदार्थ होते हैं; अन्य सेंसिंग प्रौद्योगिकियाँ इन अनुप्रयोगों के लिए बेहतर अनुकूल हैं।

फ्लोट-प्रकार सेंसर का एक विशेष अनुप्रयोग तेल-जल पृथक्करण प्रणालियों में इंटरफ़ेस स्तर का निर्धारण है। एक ओर तेल के विशिष्ट गुरुत्व और दूसरी ओर पानी के विशिष्ट गुरुत्व से मेल खाने के लिए प्रत्येक फ्लोट के आकार के साथ दो फ्लोट का उपयोग किया जा सकता है। स्टेम टाइप फ्लोट स्विच का एक अन्य विशेष अनुप्रयोग मल्टी-पैरामीटर सेंसर बनाने के लिए तापमान या दबाव सेंसर की स्थापना है। चुंबकीय फ्लोट स्विच अपनी सादगी, विश्वसनीयता और कम लागत के लिए लोकप्रिय हैं।

चुंबकीय संवेदन का एक रूप हॉल इफ़ेक्ट सेंसर है जो यांत्रिक गेज के संकेतों के चुंबकीय संवेदन का उपयोग करता है। एक विशिष्ट अनुप्रयोग में, एक चुंबकत्व-संवेदनशील हॉल प्रभाव सेंसर को एक यांत्रिक टैंक गेज से चिपका दिया जाता है जिसमें एक चुंबकीय संकेतक सुई होती है, ताकि गेज की सुई की संकेत स्थिति का पता लगाया जा सके। चुंबकीय सेंसर संकेतक सुई की स्थिति को विद्युत सिग्नल में बदल देता है, जिससे अन्य (आमतौर पर दूरस्थ) संकेत या सिग्नलिंग की अनुमति मिलती है।[3]


वायवीय

वायवीय स्तर सेंसर का उपयोग वहां किया जाता है जहां खतरनाक स्थितियां मौजूद होती हैं, जहां कोई विद्युत शक्ति नहीं है या इसका उपयोग प्रतिबंधित है, या भारी कीचड़ या घोल वाले अनुप्रयोगों में। चूंकि एक डायाफ्राम के खिलाफ हवा के एक स्तंभ के संपीड़न का उपयोग एक स्विच को सक्रिय करने के लिए किया जाता है, कोई भी प्रक्रिया तरल सेंसर के चलने वाले हिस्सों से संपर्क नहीं करती है। ये सेंसर अत्यधिक चिपचिपे तरल पदार्थ जैसे ग्रीस, साथ ही पानी आधारित और संक्षारक तरल पदार्थ के साथ उपयोग के लिए उपयुक्त हैं। बिंदु स्तर की निगरानी के लिए अपेक्षाकृत कम लागत वाली तकनीक होने का इसका अतिरिक्त लाभ है। इस तकनीक का एक रूप बब्बलर है, जो हवा को एक ट्यूब में टैंक के नीचे तक संपीड़ित करता है, जब तक कि दबाव में वृद्धि रुक ​​न जाए क्योंकि हवा का दबाव ट्यूब के नीचे से हवा के बुलबुले को बाहर निकालने के लिए पर्याप्त हो जाता है, जिससे वहां दबाव पर काबू पा लिया जाता है। स्थिर वायु दबाव का माप टैंक के तल पर दबाव को इंगित करता है, और, इसलिए, ऊपर तरल पदार्थ का द्रव्यमान।[6][7][8][9][3][4]


प्रवाहकीय

प्रवाहकीय स्तर सेंसर पानी जैसे प्रवाहकीय तरल पदार्थों की एक विस्तृत श्रृंखला के बिंदु स्तर का पता लगाने के लिए आदर्श हैं, और विशेष रूप से कास्टिक सोडा, हाइड्रोक्लोरिक एसिड, नाइट्रिक एसिड, फेरिक क्लोराइड और इसी तरह के तरल पदार्थों जैसे अत्यधिक संक्षारक तरल पदार्थों के लिए उपयुक्त हैं। उन प्रवाहकीय तरल पदार्थों के लिए जो संक्षारक हैं, सेंसर के इलेक्ट्रोड को टाइटेनियम, हास्टेलॉय बी या सी, या 316 स्टेनलेस स्टील से निर्मित किया जाना चाहिए और स्पेसर, विभाजक या सिरेमिक, पॉलीथीन और टेफ्लॉन-आधारित सामग्री के धारकों के साथ इन्सुलेट किया जाना चाहिए। उनके डिज़ाइन के आधार पर, एक धारक के साथ अलग-अलग लंबाई के कई इलेक्ट्रोड का उपयोग किया जा सकता है। चूंकि तापमान और दबाव बढ़ने पर संक्षारक तरल पदार्थ अधिक आक्रामक हो जाते हैं, इसलिए इन सेंसरों को निर्दिष्ट करते समय इन चरम स्थितियों पर विचार करने की आवश्यकता होती है।

प्रवाहकीय स्तर के सेंसर अलग-अलग इलेक्ट्रोडों पर लागू कम-वोल्टेज, वर्तमान-सीमित शक्ति स्रोत का उपयोग करते हैं। बिजली की आपूर्ति तरल की चालकता से मेल खाती है, उच्च वोल्टेज संस्करणों को कम प्रवाहकीय (उच्च प्रतिरोध) माध्यमों में संचालित करने के लिए डिज़ाइन किया गया है। बिजली स्रोत में अक्सर नियंत्रण के कुछ पहलू शामिल होते हैं, जैसे उच्च-निम्न या वैकल्पिक पंप नियंत्रण। सबसे लंबी जांच (सामान्य) और छोटी जांच (रिटर्न) दोनों से संपर्क करने वाला एक प्रवाहकीय तरल एक प्रवाहकीय सर्किट पूरा करता है। प्रवाहकीय सेंसर बेहद सुरक्षित हैं क्योंकि वे कम वोल्टेज और धाराओं का उपयोग करते हैं। चूंकि उपयोग किया जाने वाला करंट और वोल्टेज स्वाभाविक रूप से छोटा है, व्यक्तिगत सुरक्षा कारणों से, तकनीक खतरनाक क्षेत्रों में विद्युत उपकरणों के लिए अंतरराष्ट्रीय मानकों को पूरा करने के लिए आंतरिक सुरक्षा बनाने में भी सक्षम है। प्रवाहकीय जांच में ठोस-अवस्था वाले उपकरण होने का अतिरिक्त लाभ होता है और इन्हें स्थापित करना और उपयोग करना बहुत आसान होता है। कुछ तरल पदार्थों और अनुप्रयोगों में, रखरखाव एक मुद्दा हो सकता है। जांच निरंतर जारी रहनी चाहिए. यदि बिल्डअप जांच को माध्यम से अलग कर देता है, तो यह ठीक से काम करना बंद कर देगा। जांच के एक साधारण निरीक्षण के लिए संदिग्ध जांच और ग्राउंड संदर्भ से जुड़े एक ओममीटर की आवश्यकता होगी।

आमतौर पर, अधिकांश पानी और अपशिष्ट जल के कुओं में, सीढ़ी, पंप और अन्य धातु प्रतिष्ठानों के साथ कुआं खुद ही जमीन पर वापसी प्रदान करता है। हालाँकि, रासायनिक टैंकों और अन्य गैर-ग्राउंडेड कुओं में, इंस्टॉलर को ग्राउंड रिटर्न, आमतौर पर एक अर्थ रॉड की आपूर्ति करनी होगी।

राज्य आश्रित आवृत्ति मॉनिटर

एक माइक्रोप्रोसेसर नियंत्रित आवृत्ति स्थिति परिवर्तन का पता लगाने की विधि अलग-अलग लंबाई के कई सेंसर जांच पर उत्पन्न कम आयाम सिग्नल का उपयोग करती है। प्रत्येक जांच की आवृत्ति सरणी में अन्य सभी जांचों से अलग होती है और पानी से छूने पर स्वतंत्र रूप से स्थिति बदलती है। प्रत्येक जांच पर आवृत्ति के राज्य परिवर्तन की निगरानी एक माइक्रोप्रोसेसर द्वारा की जाती है जो कई जल स्तर नियंत्रण कार्य कर सकता है।

राज्य पर निर्भर आवृत्ति निगरानी की एक ताकत सेंसिंग जांच की दीर्घकालिक स्थिरता है। दूषित पानी में इलेक्ट्रोलिसिस के कारण सेंसर में खराबी, गिरावट या गिरावट का कारण बनने के लिए सिग्नल की शक्ति पर्याप्त नहीं है। सेंसर की सफाई की आवश्यकताएं न्यूनतम या समाप्त हो गई हैं। विभिन्न लंबाई की कई सेंसिंग छड़ों का उपयोग उपयोगकर्ता को विभिन्न जल ऊंचाइयों पर सहजता से नियंत्रण स्विच स्थापित करने की अनुमति देता है।

राज्य पर निर्भर आवृत्ति मॉनिटर में माइक्रोप्रोसेसर बहुत कम बिजली की खपत के साथ वाल्व और/या बड़े पंपों को सक्रिय कर सकता है। माइक्रोप्रोसेसर का उपयोग करके जटिल, एप्लिकेशन विशिष्ट कार्यक्षमता प्रदान करते हुए एकाधिक स्विच नियंत्रणों को छोटे पैकेज में बनाया जा सकता है। नियंत्रणों की कम बिजली खपत बड़े और छोटे क्षेत्र के अनुप्रयोगों में सुसंगत है। इस सार्वभौमिक तकनीक का उपयोग व्यापक तरल गुणवत्ता वाले अनुप्रयोगों में किया जाता है।

बिंदु स्तर का पता लगाने और निरंतर निगरानी दोनों के लिए सेंसर

अल्ट्रासोनिक

जल उपचार संयंत्र में उपयोग किया जाने वाला अल्ट्रासोनिक स्तर सेंसर

अल्ट्रासाउंड लेवल सेंसर का उपयोग अत्यधिक चिपचिपे तरल पदार्थों के साथ-साथ थोक ठोस पदार्थों के गैर-संपर्क स्तर के सेंसिंग के लिए किया जाता है। पंप नियंत्रण और खुले चैनल प्रवाह माप के लिए जल उपचार अनुप्रयोगों में भी इनका व्यापक रूप से उपयोग किया जाता है। सेंसर उच्च आवृत्ति (20 किलोहर्ट्ज़ से 200 किलोहर्ट्ज़) ध्वनि तरंगें उत्सर्जित करते हैं जो वापस परावर्तित होती हैं और उत्सर्जक ट्रांसड्यूसर द्वारा पता लगाई जाती हैं।[3]

नमी, तापमान और दबाव के कारण ध्वनि की बदलती गति से अल्ट्रासोनिक स्तर के सेंसर भी प्रभावित होते हैं। माप की सटीकता में सुधार के लिए सुधार कारकों को स्तर माप पर लागू किया जा सकता है।

अशांति, फोम, भाप, रासायनिक धुंध (वाष्प), और प्रक्रिया सामग्री की एकाग्रता में परिवर्तन भी अल्ट्रासोनिक सेंसर की प्रतिक्रिया को प्रभावित करते हैं। अशांति और फोम ध्वनि तरंग को सेंसर पर ठीक से प्रतिबिंबित होने से रोकते हैं; भाप और रासायनिक धुंध और वाष्प ध्वनि तरंग को विकृत या अवशोषित करते हैं; और एकाग्रता में भिन्नता के कारण ध्वनि तरंग में ऊर्जा की मात्रा में परिवर्तन होता है जो सेंसर पर वापस परावर्तित होती है। इन कारकों के कारण होने वाली त्रुटियों को रोकने के लिए स्टिलिंग वेल्स और वेवगाइड का उपयोग किया जाता है।

परावर्तित ध्वनि के प्रति सर्वोत्तम प्रतिक्रिया सुनिश्चित करने के लिए ट्रांसड्यूसर का उचित माउंटिंग आवश्यक है। इसके अलावा, झूठे रिटर्न और परिणामी गलत प्रतिक्रिया को कम करने के लिए हॉपर, बिन, या टैंक को वेल्डमेंट, ब्रैकेट या सीढ़ी जैसी बाधाओं से अपेक्षाकृत मुक्त होना चाहिए, हालांकि अधिकांश आधुनिक प्रणालियों में इंजीनियरिंग परिवर्तनों को काफी हद तक अनावश्यक बनाने के लिए पर्याप्त बुद्धिमान इको प्रोसेसिंग है। जहां एक घुसपैठ ट्रांसड्यूसर की लक्ष्य तक दृष्टि की रेखा को अवरुद्ध कर देती है। चूँकि अल्ट्रासोनिक ट्रांसड्यूसर का उपयोग ध्वनिक ऊर्जा संचारित करने और प्राप्त करने दोनों के लिए किया जाता है, यह यांत्रिक कंपन की अवधि के अधीन होता है जिसे रिंगिंग कहा जाता है। प्रतिध्वनि सिग्नल को संसाधित करने से पहले इस कंपन को कम करना (रोकना) चाहिए। शुद्ध परिणाम ट्रांसड्यूसर के चेहरे से एक दूरी है जो अंधा है और किसी वस्तु का पता नहीं लगा सकता है। ट्रांसड्यूसर की सीमा के आधार पर, इसे ब्लैंकिंग ज़ोन के रूप में जाना जाता है, आमतौर पर 150 मिमी से 1 मीटर तक।

इलेक्ट्रॉनिक सिग्नल प्रोसेसिंग सर्किटरी की आवश्यकता का उपयोग अल्ट्रासोनिक सेंसर को एक बुद्धिमान उपकरण बनाने के लिए किया जा सकता है। अल्ट्रासोनिक सेंसर को बिंदु स्तर पर नियंत्रण, निरंतर निगरानी या दोनों प्रदान करने के लिए डिज़ाइन किया जा सकता है। माइक्रोप्रोसेसर की उपस्थिति और अपेक्षाकृत कम बिजली की खपत के कारण, अन्य कंप्यूटिंग उपकरणों से सीरियल संचार की क्षमता भी है, जिससे यह सेंसर सिग्नल, रिमोट वायरलेस मॉनिटरिंग या प्लांट नेटवर्क संचार के अंशांकन और फ़िल्टरिंग को समायोजित करने के लिए एक अच्छी तकनीक बन जाती है। कम कीमत और उच्च कार्यक्षमता के शक्तिशाली मिश्रण के कारण अल्ट्रासोनिक सेंसर व्यापक लोकप्रियता प्राप्त करता है।

समाई

Capacitive sensors NOG.jpg

कैपेसिटेंस लेवल सेंसर विभिन्न प्रकार के ठोस, जलीय और कार्बनिक तरल पदार्थ और घोल की उपस्थिति को महसूस करने में उत्कृष्टता प्राप्त करते हैं।[10] कैपेसिटेंस सर्किट पर लागू रेडियो फ्रीक्वेंसी सिग्नल के लिए तकनीक को अक्सर आरएफ के रूप में जाना जाता है। सेंसरों को कम से कम 1.1 (कोक और फ्लाई ऐश) और अधिकतम 88 (पानी) या अधिक ढांकता हुआ स्थिरांक वाली सामग्री को समझने के लिए डिज़ाइन किया जा सकता है। कीचड़ और घोल जैसे निर्जलित केक और सीवेज घोल (ढांकता हुआ स्थिरांक लगभग 50) और तरल रसायन जैसे कि बुझा हुआ चूना (ढांकता हुआ स्थिरांक लगभग 90) को भी महसूस किया जा सकता है।[3]दोहरे जांच कैपेसिटेंस लेवल सेंसर का उपयोग दो अलग-अलग ढांकता हुआ स्थिरांक के साथ दो अमिश्रणीय तरल पदार्थों के बीच इंटरफेस को समझने के लिए भी किया जा सकता है, जो तेल-पानी इंटरफ़ेस एप्लिकेशन के लिए उपरोक्त चुंबकीय फ्लोट स्विच के लिए एक ठोस राज्य विकल्प प्रदान करता है।

चूंकि कैपेसिटेंस लेवल सेंसर इलेक्ट्रॉनिक उपकरण हैं, चरण मॉड्यूलेशन और उच्च आवृत्तियों का उपयोग सेंसर को उन अनुप्रयोगों के लिए उपयुक्त बनाता है जिनमें ढांकता हुआ स्थिरांक समान होते हैं। सेंसर में कोई हिलने वाला भाग नहीं है, यह मजबूत है, उपयोग में आसान है और साफ करने में आसान है, और इसे उच्च तापमान और दबाव अनुप्रयोगों के लिए डिज़ाइन किया जा सकता है। कम ढांकता हुआ सामग्रियों की रगड़ और गति के परिणामस्वरूप उच्च-वोल्टेज स्थैतिक चार्ज के निर्माण और निर्वहन से खतरा मौजूद है, लेकिन इस खतरे को उचित डिजाइन और ग्राउंडिंग के साथ समाप्त किया जा सकता है।

जांच सामग्री का उचित चयन घर्षण और क्षरण के कारण होने वाली समस्याओं को कम या समाप्त कर देता है। चिपकने वाले पदार्थों और तेल और ग्रीस जैसी उच्च-चिपचिपापन सामग्री की बिंदु स्तर की जांच के परिणामस्वरूप जांच पर सामग्री का निर्माण हो सकता है; हालाँकि, सेल्फ-ट्यूनिंग सेंसर का उपयोग करके इसे कम किया जा सकता है। झाग बनने वाले तरल पदार्थों और छींटों या अशांति की संभावना वाले अनुप्रयोगों के लिए, कैपेसिटेंस लेवल सेंसर को अन्य उपकरणों के बीच स्प्लैशगार्ड या स्टिलिंग कुओं के साथ डिजाइन किया जा सकता है।

कैपेसिटेंस जांच के लिए एक महत्वपूर्ण सीमा बड़े पैमाने पर ठोस पदार्थों के भंडारण के लिए उपयोग किए जाने वाले लंबे डिब्बे में है। एक प्रवाहकीय जांच की आवश्यकता जो मापी गई सीमा के नीचे तक फैली हो, समस्याग्रस्त है। बिन या साइलो में निलंबित लंबी प्रवाहकीय केबल जांच (20 से 50 मीटर लंबी), साइलो में थोक पाउडर के वजन और केबल पर लगाए गए घर्षण के कारण जबरदस्त यांत्रिक तनाव के अधीन होती है। इस तरह के इंस्टॉलेशन के परिणामस्वरूप अक्सर केबल टूट जाएगी।

ऑप्टिकल इंटरफ़ेस

ऑप्टिकल सेंसर का उपयोग तलछट, निलंबित ठोस पदार्थों वाले तरल पदार्थ और तरल-तरल इंटरफेस के बिंदु स्तर सेंसिंग के लिए किया जाता है। ये सेंसर इन्फ्रारेड डायोड (एलईडी) से उत्सर्जित इन्फ्रारेड प्रकाश के संचरण में कमी या बदलाव को महसूस करते हैं। निर्माण सामग्री और बढ़ते स्थान के उचित चयन के साथ, इन सेंसरों का उपयोग जलीय, कार्बनिक और संक्षारक तरल पदार्थों के साथ किया जा सकता है।

किफायती इन्फ्रारेड-आधारित ऑप्टिकल इंटरफ़ेस पॉइंट लेवल सेंसर का एक सामान्य अनुप्रयोग बसे हुए तालाबों में कीचड़/पानी इंटरफ़ेस का पता लगाना है। पल्स मॉड्यूलेशन तकनीक और एक उच्च शक्ति इन्फ्रारेड डायोड का उपयोग करके, कोई परिवेश प्रकाश से हस्तक्षेप को खत्म कर सकता है, एलईडी को उच्च लाभ पर संचालित कर सकता है, और जांच पर बिल्ड-अप के प्रभाव को कम कर सकता है।

निरंतर ऑप्टिकल स्तर संवेदन के लिए एक वैकल्पिक दृष्टिकोण में लेजर का उपयोग शामिल है। लेज़र प्रकाश अधिक संकेंद्रित होता है और इसलिए धूल भरे या भाप वाले वातावरण में प्रवेश करने में अधिक सक्षम होता है। लेज़र प्रकाश अधिकांश ठोस, तरल सतहों से परावर्तित होगा। सेंसर से सतह की सीमा या दूरी निर्धारित करने के लिए, उड़ान के समय को सटीक टाइमिंग सर्किटरी से मापा जा सकता है। लागत और रखरखाव की चिंता के कारण औद्योगिक अनुप्रयोगों में लेजर का उपयोग सीमित है। प्रदर्शन को बनाए रखने के लिए प्रकाशिकी को बार-बार साफ किया जाना चाहिए।

माइक्रोवेव

माइक्रोवेव सेंसर नम, वाष्पशील और धूल भरे वातावरण के साथ-साथ उन अनुप्रयोगों में उपयोग के लिए आदर्श होते हैं जिनमें तापमान और दबाव भिन्न होते हैं। माइक्रोवेव (जिन्हें अक्सर रडार के रूप में भी वर्णित किया जाता है), तापमान और वाष्प परतों में प्रवेश करेंगे जो अल्ट्रासोनिक जैसी अन्य तकनीकों के लिए समस्याएं पैदा कर सकते हैं।[3]माइक्रोवेव विद्युत चुम्बकीय ऊर्जा हैं और इसलिए उन्हें ऊर्जा संचारित करने के लिए वायु अणुओं की आवश्यकता नहीं होती है जिससे वे निर्वात में उपयोगी हो जाते हैं। माइक्रोवेव, विद्युत चुम्बकीय ऊर्जा के रूप में, धातु और प्रवाहकीय पानी जैसी उच्च प्रवाहकीय गुणों वाली वस्तुओं से परावर्तित होते हैं। वैकल्पिक रूप से, उन्हें 'कम ढांकता हुआ' या प्लास्टिक, कांच, कागज, कई पाउडर और खाद्य सामग्री और अन्य ठोस जैसे इन्सुलेशन माध्यमों द्वारा विभिन्न डिग्री में अवशोषित किया जाता है।

माइक्रोवेव सेंसर विभिन्न प्रकार की तकनीकों में निष्पादित किए जाते हैं। दो बुनियादी सिग्नल प्रोसेसिंग तकनीकों को लागू किया जाता है, जिनमें से प्रत्येक अपने स्वयं के फायदे पेश करती है: स्पंदित या टाइम-डोमेन रिफ्लेक्टोमेट्री (टीडीआर) जो माध्यम में विद्युत चुम्बकीय तरंगों की गति (प्रकाश की गति को वर्गमूल से विभाजित करके उड़ान के समय का माप है) माध्यम के ढांकता हुआ स्थिरांक का [11]), अल्ट्रासोनिक स्तर सेंसर और एफएमसीडब्ल्यू तकनीकों को नियोजित करने वाले डॉपलर सिस्टम के समान। अल्ट्रासोनिक स्तर के सेंसर की तरह, माइक्रोवेव सेंसर 1 गीगाहर्ट्ज से 60 गीगाहर्ट्ज तक विभिन्न आवृत्तियों पर निष्पादित होते हैं।[12] आम तौर पर, जितनी अधिक आवृत्ति, उतना अधिक सटीक और अधिक महंगा। माइक्रोवेव को गैर-संपर्क तकनीक से क्रियान्वित किया जाता है या निर्देशित किया जाता है। पहला एक माइक्रोवेव सिग्नल की निगरानी करके किया जाता है जो मुक्त स्थान (वैक्यूम समेत) के माध्यम से प्रसारित होता है और वापस प्रतिबिंबित होता है, या तार तकनीक पर रडार के रूप में निष्पादित किया जा सकता है, जिसे आम तौर पर निर्देशित तरंग रडार या निर्देशित माइक्रोवेव रडार के रूप में जाना जाता है। बाद की तकनीक में, आम तौर पर पाउडर और कम ढांकता हुआ मीडिया में प्रदर्शन में सुधार होता है जो शून्य के माध्यम से प्रसारित विद्युत चुम्बकीय ऊर्जा के अच्छे परावर्तक नहीं होते हैं (जैसा कि गैर-संपर्क माइक्रोवेव सेंसर में)। यह तकनीक अधिक सटीक परिणाम या सेंसर अनुप्रयोग के लिए आवश्यक अतिरिक्त जानकारी प्राप्त करने के लिए एप्लिकेशन विशिष्ट वेवगाइड का उपयोग कर सकती है (उदाहरण के लिए, कुछ सेंसर टैंक भागों या अन्य उपकरणों को वेवगाइड या उसके हिस्से के रूप में उपयोग कर सकते हैं)।[13] जब वेवगाइड इलेक्ट्रॉनिक भाग से दूर होता है (आमतौर पर कठोर परिस्थितियों, विकिरण, या उच्च दबाव वाले तरल पदार्थ/गैसों आदि के तहत उबलते जलाशयों के लिए) तो रिमोट वेवगाइड का उपयोग करना आम बात है। लेकिन निर्देशित तकनीक के साथ वही यांत्रिक बाधाएं मौजूद हैं जो पोत में जांच करके पहले उल्लिखित कैपेसिटेंस (आरएफ) तकनीकों के लिए समस्याएं पैदा करती हैं।

गैर-संपर्क माइक्रोवेव-आधारित रडार सेंसर कम चालकता वाले 'माइक्रोवेव-पारदर्शी' (गैर-प्रवाहकीय) ग्लास/प्लास्टिक की खिड़कियों या बर्तन की दीवारों के माध्यम से देखने में सक्षम हैं, जिसके माध्यम से माइक्रोवेव बीम को पारित किया जा सकता है और 'माइक्रोवेव परावर्तक' (प्रवाहकीय) तरल को माप सकते हैं। अंदर (उसी तरह जैसे माइक्रोवेव ओवन में प्लास्टिक के कटोरे का उपयोग करते हैं)। वे उच्च तापमान, दबाव, निर्वात या कंपन से भी काफी हद तक अप्रभावित रहते हैं। चूंकि इन सेंसरों को प्रक्रिया सामग्री के साथ भौतिक संपर्क की आवश्यकता नहीं होती है, इसलिए ट्रांसमीटर/रिसीवर को प्रक्रिया के ऊपर/बाहर एक सुरक्षित दूरी पर लगाया जा सकता है, यहां तक ​​कि तापमान को कम करने के लिए कई मीटर के एंटीना विस्तार के साथ भी, फिर भी स्तर में परिवर्तन पर प्रतिक्रिया करता है। या दूरी परिवर्तन उदा. वे 1200 डिग्री सेल्सियस से अधिक तापमान पर पिघले धातु उत्पादों के माप के लिए आदर्श हैं। माइक्रोवेव ट्रांसमीटर भी अल्ट्रासोनिक्स का वही मुख्य लाभ प्रदान करते हैं: सिग्नल को संसाधित करने के लिए एक माइक्रोप्रोसेसर की उपस्थिति, कई निगरानी, ​​​​नियंत्रण, संचार, सेटअप और नैदानिक ​​​​क्षमताएं प्रदान करते हैं और बदलते घनत्व, चिपचिपाहट और विद्युत गुणों से स्वतंत्र होते हैं। इसके अतिरिक्त, वे अल्ट्रासोनिक्स की कुछ अनुप्रयोग सीमाओं को हल करते हैं: उच्च दबाव और वैक्यूम, उच्च तापमान, धूल, तापमान और वाष्प परतों में संचालन। गाइडेड वेव रडार संकीर्ण सीमित स्थानों में बहुत सफलतापूर्वक माप सकते हैं, क्योंकि गाइड तत्व मापा तरल से और तक सही संचरण सुनिश्चित करता है। इनसाइड स्टिलिंग ट्यूब या बाहरी ब्रिडल्स या पिंजरे जैसे अनुप्रयोग, फ्लोट या विस्थापन उपकरणों के लिए एक उत्कृष्ट विकल्प प्रदान करते हैं, क्योंकि वे किसी भी चलने वाले हिस्से या लिंकेज को हटा देते हैं और घनत्व परिवर्तन या निर्माण से अप्रभावित रहते हैं। वे तरल गैसों (एलएनजी, एलपीजी, अमोनिया) जैसे बहुत कम माइक्रोवेव परावर्तन उत्पादों के साथ भी उत्कृष्ट हैं, जिन्हें कम तापमान/उच्च दबाव पर संग्रहीत किया जाता है, हालांकि सीलिंग व्यवस्था और खतरनाक क्षेत्र अनुमोदन पर देखभाल की आवश्यकता होती है। थोक ठोस पदार्थों और पाउडर पर, जीडब्ल्यूआर रडार या अल्ट्रासोनिक सेंसर का एक बढ़िया विकल्प प्रदान करता है, लेकिन उत्पाद की गति के कारण केबल के घिसाव और छत पर लोडिंग पर कुछ ध्यान देने की आवश्यकता होती है।

स्तर की निगरानी के लिए माइक्रोवेव या रडार तकनीकों का एक बड़ा नुकसान ऐसे सेंसर और जटिल सेट अप की अपेक्षाकृत उच्च कीमत है। हालाँकि, पिछले कुछ वर्षों में कीमतों में काफी कमी आई है, लंबी दूरी के अल्ट्रासोनिक्स की तुलना में, दोनों तकनीकों के सरलीकृत सेट-अप के साथ-साथ उपयोग में आसानी में भी सुधार हुआ है।

तरल पदार्थों का निरंतर स्तर माप

चुंबकीय विरूपण

मैग्नेटोस्ट्रिक्टिव लेवल सेंसर फ्लोट प्रकार के सेंसर के समान होते हैं, जिसमें एक फ्लोट के अंदर सील किया गया एक स्थायी चुंबक एक स्टेम में ऊपर और नीचे यात्रा करता है जिसमें एक मैग्नेटोस्ट्रिक्टिव तार सील होता है। भंडारण और शिपिंग कंटेनरों में विभिन्न प्रकार के तरल पदार्थों की उच्च सटीकता, निरंतर स्तर माप के लिए आदर्श, इन सेंसरों को तरल के विशिष्ट गुरुत्व के आधार पर फ्लोट के उचित विकल्प की आवश्यकता होती है। मैग्नेटोस्ट्रिक्टिव लेवल सेंसर के लिए फ्लोट और स्टेम सामग्री चुनते समय, चुंबकीय और मैकेनिकल फ्लोट लेवल सेंसर के लिए वर्णित समान दिशानिर्देश लागू होते हैं।

मैग्नेटोस्ट्रिक्टिव स्तर और स्थिति उपकरण मैग्नेटोस्ट्रिक्टिव तार को विद्युत प्रवाह से चार्ज करते हैं, जब क्षेत्र फ्लोट के चुंबकीय क्षेत्र को काटता है तो एक यांत्रिक मोड़ या पल्स उत्पन्न होता है, यह ध्वनि की गति से तार के नीचे वापस जाता है, जैसे अल्ट्रासाउंड या रडार दूरी को मापा जाता है पल्स से रिटर्न पल्स रजिस्ट्री तक उड़ान के समय के अनुसार। उड़ान का समय रिटर्न पल्स का पता लगाने वाले सेंसर से दूरी से मेल खाता है।

मैग्नेटोस्ट्रिक्टिव तकनीक से संभव सटीकता के कारण, यह हिरासत-हस्तांतरण अनुप्रयोगों के लिए लोकप्रिय है। वाणिज्यिक लेनदेन के संचालन के लिए वजन और माप की एजेंसी द्वारा इसकी अनुमति दी जा सकती है। इसे अक्सर चुंबकीय दृष्टि गेज पर भी लगाया जाता है। इस भिन्नता में, चुंबक को एक फ्लोट में स्थापित किया जाता है जो गेज ग्लास या ट्यूब के अंदर जाता है। चुंबक सेंसर पर काम करता है जो गेज पर बाहरी रूप से लगा होता है। बॉयलर और अन्य उच्च तापमान या दबाव अनुप्रयोग इस प्रदर्शन गुणवत्ता का लाभ उठाते हैं

प्रतिरोधक श्रृंखला

प्रतिरोधक श्रृंखला स्तर सेंसर चुंबकीय फ्लोट स्तर सेंसर के समान होते हैं, जिसमें एक फ्लोट के अंदर सील किया गया एक स्थायी चुंबक एक स्टेम के ऊपर और नीचे चलता रहता है जिसमें निकट दूरी वाले स्विच और प्रतिरोधक सील होते हैं। जब स्विच बंद हो जाते हैं, तो प्रतिरोध को जोड़ दिया जाता है और वर्तमान या वोल्टेज संकेतों में परिवर्तित कर दिया जाता है जो तरल के स्तर के समानुपाती होते हैं।

फ्लोट और स्टेम सामग्री का चुनाव रासायनिक अनुकूलता के साथ-साथ विशिष्ट गुरुत्व और उछाल को प्रभावित करने वाले अन्य कारकों के संदर्भ में तरल पर निर्भर करता है। ये सेंसर समुद्री, रासायनिक प्रसंस्करण, फार्मास्यूटिकल्स, खाद्य प्रसंस्करण, अपशिष्ट उपचार और अन्य अनुप्रयोगों में तरल स्तर माप के लिए अच्छी तरह से काम करते हैं। दो फ्लोट्स के उचित विकल्प के साथ, प्रतिरोधक श्रृंखला स्तर सेंसर का उपयोग दो अमिश्रणीय तरल पदार्थों के बीच एक इंटरफेस की उपस्थिति की निगरानी के लिए भी किया जा सकता है, जिनकी विशिष्ट गुरुत्वाकर्षण 0.6 से अधिक है, लेकिन 0.1 इकाई से कम भिन्न है।

चुंबकप्रतिरोधक

मैग्नेटोरेसिस्टिव लेवल सेंसर

magnetoresistance फ्लोट लेवल सेंसर फ्लोट लेवल सेंसर के समान होते हैं, हालांकि फ्लोट आर्म पिवट के अंदर एक स्थायी चुंबक जोड़ी को सील कर दिया जाता है। जैसे-जैसे फ्लोट ऊपर बढ़ता है, गति और स्थान चुंबकीय क्षेत्र की कोणीय स्थिति के रूप में प्रसारित होते हैं। यह पहचान प्रणाली 0.02° गति तक अत्यधिक सटीक है। फ़ील्ड कंपास स्थान फ़्लोट स्थिति का भौतिक स्थान प्रदान करता है। फ्लोट और स्टेम सामग्री का चुनाव रासायनिक अनुकूलता के साथ-साथ विशिष्ट गुरुत्व और फ्लोट की उछाल को प्रभावित करने वाले अन्य कारकों के संदर्भ में तरल पर निर्भर करता है। इलेक्ट्रॉनिक निगरानी प्रणाली तरल पदार्थ के संपर्क में नहीं आती है और इसे आंतरिक सुरक्षा या विस्फोट प्रूफ माना जाता है। ये सेंसर समुद्री, वाहन, विमानन, रासायनिक प्रसंस्करण, फार्मास्यूटिकल्स, खाद्य प्रसंस्करण, अपशिष्ट उपचार और अन्य अनुप्रयोगों में तरल स्तर माप के लिए अच्छी तरह से काम करते हैं।

माइक्रोप्रोसेसर की उपस्थिति और कम बिजली की खपत के कारण, अन्य कंप्यूटिंग उपकरणों से क्रमिक संचार की क्षमता भी है, जो सेंसर सिग्नल के अंशांकन और फ़िल्टरिंग को समायोजित करने के लिए एक अच्छी तकनीक है।

हाइड्रोस्टैटिक दबाव

हाइड्रोस्टैटिक प्रेशर लेवल सेंसर सबमर्सिबल या बाहरी रूप से लगे दाबानुकूलित संवेदक होते हैं जो गहरे टैंकों या जलाशयों में पानी में संक्षारक तरल पदार्थ के स्तर को मापने के लिए उपयुक्त होते हैं। आमतौर पर, द्रव का स्तर द्रव सामग्री (टैंक या जलाशय) के तल पर दबाव से निर्धारित होता है; तल पर दबाव, द्रव के घनत्व/विशिष्ट गुरुत्व के लिए समायोजित, द्रव की गहराई को इंगित करता है।[3]इन सेंसरों के लिए, उचित प्रदर्शन सुनिश्चित करने के लिए रासायनिक रूप से संगत सामग्रियों का उपयोग करना महत्वपूर्ण है। व्यावसायिक तौर पर 10 एमबार से लेकर 1000 बार तक के सेंसर उपलब्ध हैं।

चूंकि ये सेंसर गहराई के साथ बढ़ते दबाव को महसूस करते हैं और क्योंकि तरल पदार्थों का विशिष्ट गुरुत्वाकर्षण अलग-अलग होता है, इसलिए प्रत्येक एप्लिकेशन के लिए सेंसर को ठीक से कैलिब्रेट किया जाना चाहिए। इसके अलावा, तापमान में बड़े बदलाव के कारण विशिष्ट गुरुत्व में परिवर्तन होता है जिसे दबाव के स्तर में परिवर्तित होने पर ध्यान में रखा जाना चाहिए। इन सेंसरों को डायाफ्राम को संदूषण या निर्माण से मुक्त रखने के लिए डिज़ाइन किया जा सकता है, इस प्रकार उचित संचालन और सटीक हाइड्रोस्टैटिक दबाव स्तर माप सुनिश्चित किया जा सकता है।

खुली हवा के अनुप्रयोगों में उपयोग के लिए, जहां सेंसर को टैंक या उसके पाइप के नीचे नहीं लगाया जा सकता है, हाइड्रोस्टैटिक दबाव स्तर सेंसर का एक विशेष संस्करण, एक स्तर जांच, एक केबल से टैंक में निचले बिंदु तक निलंबित किया जा सकता है जिसे मापा जाना है.[3]सेंसर को विशेष रूप से तरल वातावरण से इलेक्ट्रॉनिक्स को सील करने के लिए डिज़ाइन किया जाना चाहिए। छोटे हेड प्रेशर (100 INWC से कम) वाले टैंकों में, सेंसर गेज के पिछले हिस्से को वायुमंडलीय दबाव में वेंट करना बहुत महत्वपूर्ण है। अन्यथा, बैरोमीटर के दबाव में सामान्य परिवर्तन सेंसर आउटपुट सिग्नल में बड़ी त्रुटि उत्पन्न करेगा। इसके अलावा, अधिकांश सेंसरों को द्रव में तापमान परिवर्तन के लिए मुआवजा देने की आवश्यकता होती है।

ऑपरेशन

दबाव स्तर की जांच सीधे तरल में डूबी होती है और टैंक तल के ऊपर स्थायी रूप से तैरती रहती है। माप हाइड्रोस्टेटिक सिद्धांत के अनुसार किया जाता है। तरल स्तंभ का हाइड्रोस्टैटिक दबाव दबाव-संवेदनशील सेंसर तत्व के विस्तार का कारण बनता है, जो मापा दबाव को विद्युत मानक सिग्नल में परिवर्तित करता है। लेवल प्रोब के कनेक्टिंग केबल को कई कार्य पूरे करने होते हैं। बिजली की आपूर्ति और सिग्नल अग्रेषण के अलावा, लेवल सेंसर को केबल द्वारा जगह पर रखा जाता है। केबल में एक पतली वायु ट्यूब भी शामिल है जो परिवेशी वायु दबाव को स्तर जांच तक निर्देशित करती है। इसलिए लेवल जांच को आमतौर पर सापेक्ष दबाव सेंसर के रूप में डिज़ाइन किया जाता है, जो वर्तमान परिवेश दबाव को उनकी मापने की सीमा के शून्य बिंदु के रूप में उपयोग करते हैं।

इस तथाकथित सापेक्ष दबाव मुआवजे के बिना, स्तर जांच न केवल हाइड्रोस्टैटिक दबाव को मापेगी बल्कि तरल स्तंभ पर हवा के दबाव को भी मापेगी। समुद्र तल पर, यह लगभग 1013 एमबार है - जो दस मीटर ऊंचे पानी के स्तंभ द्वारा लगाए गए दबाव के अनुरूप होगा। इसके अलावा, परिवर्तनशील वायु दबाव माप परिणाम को प्रभावित करेगा। सामान्य वायुदाब में लगभग +/- 20 एमबार का उतार-चढ़ाव, जो +/- 20 सेमीडब्ल्यू (जल स्तंभ) के अनुरूप होता है।

गहरे कुएं के डिजाइन के लिए, सीलबंद गेज मापने के सिद्धांत का भी उपयोग किया जाता है। लगभग की गहराई से. 20 मीटर, सापेक्ष दबाव की भरपाई केवल पतली नली द्वारा एक सीमित सीमा तक ही की जा सकती है। लेवल सेंसर को तब एक पूर्ण दबाव ट्रांसमीटर के रूप में डिज़ाइन किया गया है जिसका शून्य बिंदु उपयोग के स्थान के आधार पर वांछित औसत वायु दबाव पर समायोजित किया जाता है। इसका मतलब यह है कि लेवल सेंसर का अब वायुमंडल से कोई संबंध नहीं है। हवा के दबाव में संभावित उतार-चढ़ाव का माप परिणाम पर प्रभाव पड़ सकता है, लेकिन वे गहरे कुओं में एक छोटी भूमिका निभाते हैं।

निरूपण

हाइड्रोस्टैटिक दबाव, गुरुत्वाकर्षण दबाव या गुरुत्वाकर्षण दबाव, एक स्थिर तरल पदार्थ के भीतर होता है। यह गुरुत्वाकर्षण के कारण होता है और तरल स्तंभ के घनत्व और ऊंचाई पर निर्भर करता है। द्रव का द्रव्यमान कोई मायने नहीं रखता - हाइड्रोस्टैटिक विरोधाभास भी देखें - i. इ। कंटेनर में तरल का कुल वजन नहीं, बल्कि भरने का स्तर निर्णायक होता है।

कहाँ:

= घनत्व [पानी के लिए: ≈ 1.000 किग्रा/वर्ग मीटर]
= गुरुत्वाकर्षण स्थिरांक [: ≈ 9,81 मी/से²]
= द्रव स्तंभ की ऊंचाई
=परिवेशी वायुदाब
= हाइड्रोस्टेटिक दबाव

न्यूनतम स्तर को मापना लेवल सेंसर के मुख्य सिरे के पास मापने वाले तत्व के पूर्ण आवरण से शुरू होता है। स्तर जांच के नीचे भरने के स्तर का पता नहीं चला है। इसलिए, अनुप्रयोग और माउंटिंग ऊंचाई के आधार पर, ऑफसेट सेटिंग के साथ मूल्यांकन इकाई में स्तर को संबंधित माउंटिंग ऊंचाई पर समायोजित करना आवश्यक है।

डिज़ाइन प्रकार

साइट की आवश्यकताओं के आधार पर, स्तरीय जांच विभिन्न सुविधाएँ प्रदान करती हैं:

सुरक्षात्मक टोपी
खुलेपन/छेदों का आकार और संख्या

आवास सामग्री: स्टेनलेस स्टील, टाइटेनियम, PTFE

केबल सामग्री
पीई, एफईपी, शुद्ध ईपीआर, पीए

मापने का सिद्धांत: सापेक्ष या सीलबंद गेज

सेंसर प्रौद्योगिकी
पीज़ोरेसिस्टिव सिलिकॉन सेंसर, सिरेमिक मोटी-फिल्म सेंसर, सिरेमिक कैपेसिटिव

एयर बब्बलर

एक एयर बब्बलर प्रणाली तरल स्तर की सतह के नीचे एक उद्घाटन के साथ एक ट्यूब का उपयोग करती है। हवा का एक निश्चित प्रवाह ट्यूब के माध्यम से पारित किया जाता है। ट्यूब में दबाव ट्यूब के आउटलेट पर तरल की गहराई (और घनत्व) के समानुपाती होता है।[3]

एयर बब्बलर सिस्टम में कोई हिलने वाला भाग नहीं होता है, जो उन्हें सीवेज, जल निकासी जल, सीवेज कीचड़, रात की मिट्टी, या बड़ी मात्रा में निलंबित ठोस पदार्थों वाले पानी के स्तर को मापने के लिए उपयुक्त बनाता है। सेंसर का एकमात्र हिस्सा जो तरल से संपर्क करता है वह एक बबल ट्यूब है जो उस सामग्री के साथ रासायनिक रूप से संगत है जिसका स्तर मापा जाना है। चूंकि माप के बिंदु पर कोई विद्युत घटक नहीं है, इसलिए तकनीक वर्गीकृत खतरनाक क्षेत्रों के लिए एक अच्छा विकल्प है। सिस्टम का नियंत्रण भाग सुरक्षित रूप से दूर स्थित किया जा सकता है, जिसमें वायवीय पाइपलाइन खतरनाक क्षेत्र को सुरक्षित क्षेत्र से अलग करती है।

वायुमंडलीय दबाव पर खुले टैंकों के लिए एयर बब्बलर सिस्टम एक अच्छा विकल्प है और इसे इस तरह बनाया जा सकता है कि उच्च दबाव वाली हवा को बाईपास वाल्व के माध्यम से ठोस पदार्थों को हटाने के लिए भेजा जाता है जो बबल ट्यूब को रोक सकते हैं। यह तकनीक स्वाभाविक रूप से स्व-सफाई है। तरल स्तर माप अनुप्रयोगों के लिए इसकी अत्यधिक अनुशंसा की जाती है जहां अल्ट्रासोनिक, फ्लोट या माइक्रोवेव तकनीक भरोसेमंद साबित हुई हैं। माप के दौरान सिस्टम को हवा की निरंतर आपूर्ति की आवश्यकता होगी। ट्यूब को कीचड़ से अवरुद्ध होने से बचाने के लिए ट्यूब का सिरा एक निश्चित ऊंचाई से ऊपर होना चाहिए।

गामा किरण

एक परमाणु स्तर गेज या गामा किरण गेज एक प्रक्रिया पोत से गुजरने वाली गामा किरणों के क्षीणन द्वारा स्तर को मापता है।[14] इस तकनीक का उपयोग इस्पात निर्माण की सतत ढलाई प्रक्रिया में पिघले हुए इस्पात के स्तर को विनियमित करने के लिए किया जाता है। वाटर-कूल्ड मोल्ड को एक तरफ विकिरण के स्रोत, जैसे कोबाल्ट-60 -60 या सीज़ियम-137 -137, और दूसरी तरफ एक संवेदनशील डिटेक्टर जैसे जगमगाहट काउंटर के साथ व्यवस्थित किया जाता है। जैसे-जैसे मोल्ड में पिघले हुए स्टील का स्तर बढ़ता है, सेंसर द्वारा कम गामा विकिरण का पता लगाया जाता है। यह तकनीक गैर-संपर्क माप की अनुमति देती है जहां पिघली हुई धातु की गर्मी संपर्क तकनीकों और यहां तक ​​कि कई गैर-संपर्क तकनीकों को अव्यावहारिक बना देती है।

न्यूक्लियोनिक लेवल सेंसर का उपयोग अक्सर खनिज क्रशिंग सर्किट में किया जाता है, जहां अयस्क से भरे होने की तुलना में गामा किरण का पता लगाने में वृद्धि एक शून्य को इंगित करती है।[15]


यह भी देखें

संदर्भ

  1. EngineersGarage (18 September 2012). "लेवल सेंसर". www.engineersgarage.com (in English). Retrieved 2018-09-16.
  2. Sapcon Instruments. "फ्लाई ऐश स्तर का पता लगाना". Retrieved 2016-09-22.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 made-tank-monitors-and-tank-monitoring-systems/tabk-sensor/ टैंक सेंसर और जांच , इलेक्ट्रॉनिक सेंसर्स, इंक., 8 अगस्त 2018 को पुनःप्राप्त
  4. 4.0 4.1 हेनरी हॉपर, द्रव स्तर मापने के एक दर्जन तरीके और वे कैसे काम करते हैं, 1 दिसंबर, 2018, सेंसर्स मैगज़ीन, 29 अगस्त, 2018 को पुनःप्राप्त
  5. Deeter. "फ्लोट लेवल सेंसर". Retrieved 2009-05-05.
  6. G. J. Roy (22 October 2013). इंस्ट्रुमेंटेशन और नियंत्रण पर नोट्स. Elsevier. pp. 23–. ISBN 978-1-4831-0491-1.
  7. "तरल स्तर निर्धारित करने के लिए उपकरण". google.com.
  8. रासायनिक युग. Morgan-Grampian. 1934.
  9. "मोटरबोटिंग". Motor Boating: 2–. January 1927. ISSN 1531-2623.
  10. "कैपेसिटिव लेवल सेंसर". Level Sensor Solutions. elobau.
  11. Zivenko, Oleksiy (2019). "इसके भंडारण और परिवहन के दौरान एलपीजी लेखांकन विशिष्टता". Measuring Equipment and Metrology (in English). 80 (3): 21–27. doi:10.23939/istcmtm2019.03.021. ISSN 0368-6418. S2CID 211776025.
  12. "60GHz FMCW Cloud Level Radar - Staal Instruments B.V." www.senz2.com.
  13. Zhukov, Yuriy D.; Zivenko, Oleksii V.; Gudyma, Yevgen A.; Raieva, Anna N. (2019). "निर्देशित तरंग रडार एलपीजी स्तर माप सेंसर के लिए सुधार तकनीक" (PDF). Shipbuilding & Marine Infrastructure. 2 (12): 27–34. doi:10.15589/smi2019.2(12).3. S2CID 213556435.
  14. Falahati, M. (2018). "द्रव स्तर को मापने के लिए एक सतत परमाणु गेज का डिजाइन, मॉडलिंग और निर्माण". Journal of Instrumentation. 13 (2): P02028. Bibcode:2018JInst..13P2028F. doi:10.1088/1748-0221/13/02/P02028.
  15. "न्यूक्लियोनिक गेज पर तकनीकी डेटा" (PDF). International Atomic Energy Agency. July 2005. pp. 34–39. Retrieved 9 February 2023.