इंसुलेटेड गेट बाईपोलर ट्रांजिस्टर

From Vigyanwiki
Insulated-gate bipolar transistor
IGBT 3300V 1200A Mitsubishi.jpg
IGBT module (IGBTs and freewheeling diodes) with a rated current of 1200 A and a maximum voltage of 3300 V
Working principleSemiconductor
आविष्कार किया1959
Electronic symbol
IGBT symbol.svg
IGBT schematic symbol

इंसुलेटेड-गेट बाइपोलर ट्रांजिस्टर (IGBT) एक तीन-टर्मिनल पावर अर्धचालक उपकरण है जो मुख्य रूप से इलेक्ट्रॉनिक स्विच के रूप में उपयोग किया जाता है, जो कि उच्च दक्षता और तेज़ स्विचिंग को संयोजित करने के लिए विकसित किया गया था। इसमें चार वैकल्पिक परतें (P-N-P-N) होती हैं जो धातु-ऑक्साइड-अर्धचालक (MOS) गेट संरचना द्वारा नियंत्रित होती हैं।

यद्यपि IGBT की संरचना टोपोलॉजिकल रूप से "MOS" गेट (MOS-गेट थाइरिस्टर) एक थाइरिस्टर के समान है, थाइरिस्टर क्रिया पूरी तरह से दबा दी गई है, और पूरे डिवाइस ऑपरेशन रेंज में केवल प्रतिरोधान्तरित्र कार्रवाई की अनुमति है। इसका उपयोग उच्च-शक्ति अनुप्रयोगों में बिजली की आपूर्ति को स्विच करने में किया जाता है: चर-आवृत्ति ड्राइव (वीएफडी), इलेक्ट्रिक कार, ट्रेनें, चर-गति रेफ्रिजरेटर, लैंप रोले, आर्क-वेल्डिंग मशीन और एयर कंडीशनर है।

चूंकि इसे तेजी से चालू और बंद करने के लिए डिज़ाइन किया गया है, IGBT जटिल तरंगों को पल्स-चौड़ाई मॉड्यूलेशन और कम-पास फिल्टर के साथ संश्लेषित कर सकता है, इसलिए इसका उपयोग ध्वनि प्रणालियों और औद्योगिक नियंत्रण प्रणालियों में प्रवर्धकों को स्विच करने में भी किया जाता है। स्विचिंग एप्लिकेशन में आधुनिक उपकरणों में अल्ट्रासोनिक-रेंज आवृत्तियों में पल्स रीपेटिशन दरों को अच्छी तरह से पेश किया जाता है, जो एनालॉग ऑडियो प्रवर्धक के रूप में उपयोग किए जाने पर डिवाइस द्वारा संभाले गए ऑडियो आवृत्तियों की तुलना में कम से कम दस गुना अधिक होते हैं। 2010 तक, MOSFET के बाद IGBT दूसरा सबसे व्यापक रूप से इस्तेमाल किया जाने वाला पावर प्रतिरोधान्तरित्र है।[citation needed].

IGBT तुलना तालिका[1]
उपकरण विशेषता पावर बाइपोलर पावर MOSFET IGBT
वोल्टेज आकड़ा उच्च <1 kV उच्च <1 kV बहुत अधिक >1 kV
धारा मूल्यांकन उच्च <500 A कम <200 A उच्च >500 A
इनपुट ड्राइव वर्तमान अनुपात
hFE ~ 20–200
वोल्टेज
VGS ~ 3–10 V
वोल्टेज
VGE ~ 4–8 V
इनपुट उपस्थिति कम उच्च उच्च
आउटपुट प्रतिबाधा कम मध्यम कम
स्विचिंग गति धीमा (µs) तेज(ns) मध्यम
लागत Low मध्यम उच्च

डिवाइस संरचना

MOSFET और द्विध्रुवी डिवाइस के आंतरिक कनेक्शन को दिखाने वाले एक विशिष्ट IGBT का क्रॉस-सेक्शन

IGBT सेल का निर्माण n-चैनल वर्टिकल-कंस्ट्रक्शन पावर MOSFET के समान किया जाता है, सिवाय n+ ड्रेन को p+ कलेक्टर लेयर से बदल दिया जाता है, इस प्रकार एक वर्टिकल PNP बाइपोलर जंक्शन प्रतिरोधान्तरित्र बनता है। यह अतिरिक्त p क्षेत्र सतह n-चैनल MOSFET के साथ PNP द्विध्रुवी जंक्शन प्रतिरोधान्तरित्र का झरना कनेक्शन बनाता है।

इतिहास

एक IGBT की स्थैतिक विशेषता

मेटल-ऑक्साइड-सेमीकंडक्टर फील्ड-इफेक्ट प्रतिरोधान्तरित्र (MOSFET) का आविष्कार मोहम्मद एम. अटाला और डॉन कांग ने 1959 में बेल लैब्स में किया था।[2] ऑपरेशन का मूल IGBT मोड, जहां एक पंप प्रतिरोधान्तरित्र MOSFET द्वारा संचालित होता है, को पहली बार जापानी पेटेंट S47-21739 में मित्सुबिशी इलेक्ट्रिक के के यामागामी और Y अकागिरी द्वारा प्रस्तावित किया गया था, जिसे 1 9 68 में दायर किया गया था।[2]

1970 के दशक में बिजली MOSFETs के व्यावसायीकरण के बाद, ब।  जयंत बालिगा ने 1977 में जनरल इलेक्ट्रिक (GE) में एक पेटेंट प्रकटीकरण प्रस्तुत किया, जिसमें IGBT मोड के संचालन के साथ एक पावर सेमीकंडक्टर डिवाइस का वर्णन किया गया था, जिसमें थाइरिस्टर के MOS गेटिंग, चार-परत VMOS (V-ग्रूव MOSFET) संरचना, और चार-परत अर्धचालक उपकरण को नियंत्रित करने के लिए MOS-गेटेड संरचनाओं का उपयोग शामिल थे। उन्होंने 1978 में GE में मार्गरेट लाज़ेरी की सहायता से IGBT उपकरण का निर्माण शुरू किया और 1979 में इस परियोजना को सफलतापूर्वक पूरा किया था।[3] प्रयोगों के परिणाम 1979 में बताए गए थे।[4][5] इस पेपर में डिवाइस संरचना को "V-ग्रूव MOSFET डिवाइस के रूप में संदर्भित किया गया था जिसमें ड्रेन क्षेत्र को p-टाइप एनोड क्षेत्र और बाद में "इंसुलेटेड-गेट रेक्टिफायर" (आईजीआर) के रूप में, Cite error: Invalid <ref> tag; invalid names, e.g. too many इंसुलेटेड- गेट ट्रांजिस्टर (IGT), <चालकता-संग्राहक क्षेत्र-प्रभाव ट्रांजिस्टर (COMFET) और "द्विध्रुवीय-मोड MOSFET" बदल दिया गया था।[6][7]

1978 में बी. डब्ल्यू.शारफ और जे. डी प्लमर ने अपने लेटरल फोर-लेयर डिवाइस (SCR) के साथ एक MOS-नियंत्रित ट्राइक डिवाइस की सूचना दी थी।[8] प्लमर ने 1978 में फोर-लेयर डिवाइस (SCR) में ऑपरेशन के इस मोड के लिए एक पेटेंट आवेदन दायर किया। USP नंबर 4199774 1980 में जारी किया गया था, और B1 Re33209 1996 में फिर से जारी किया गया था।[9] फोर-लेयर डिवाइस (SCR) में ऑपरेशन का IGBT मोड थाइरिस्टर ऑपरेशन में बदल जाता है यदि कलेक्टर करंट लैच-अप करंट से अधिक हो जाता है, जिसे थाइरिस्टर के प्रसिद्ध सिद्धांत में "होल्डिंग करंट" के रूप में जाना जाता है।[citation needed]

IGBT के विकास को थाइरिस्टर ऑपरेशन या फोर-लेयर डिवाइस में लैच-अप को पूरी तरह से दबाने के प्रयासों की विशेषता थी क्योंकि लैच-अप के कारण घातक डिवाइस विफलता हुई थी। इस प्रकार, IGBTs की स्थापना तब की गई थी जब परजीवी थाइरिस्टर के लैच-अप का पूर्ण दमन प्राप्त किया गया था जैसा कि निम्नलिखित में वर्णित है।

हंस डब्ल्यू. बेके और कार्ल एफ. व्हीटली ने एक समान उपकरण विकसित किया, जिसके लिए उन्होंने 1980 में पेटेंट आवेदन दायर किया, और जिसे उन्होंने "एनोड क्षेत्र के साथ पावर MOSFET" के रूप में संदर्भित किया था।[10][11] पेटेंट ने दावा किया कि "किसी भी उपकरण के संचालन की स्थिति के तहत कोई थाइरिस्टर कार्रवाई नहीं होती है"। डिवाइस में 1979 में रिपोर्ट किए गए बालिगा के पहले IGBT डिवाइस के साथ-साथ एक समान शीर्षक के समान संरचना थी।[3]

ए नाकागावा एट अल 1984 में नॉन-लैच-अप IGBT की डिवाइस डिजाइन अवधारणा का आविष्कार किया था। [12]अविष्कार[13]की विशेषता डिवाइस डिज़ाइन द्वारा है, जो लैच-अप करंट के नीचे डिवाइस सैचुरेशन करंट को सेट करता है, जो परजीवी थाइरिस्टर को ट्रिगर करता है। इस आविष्कार ने पहली बार परजीवी थाइरिस्टर क्रिया के पूर्ण दमन का एहसास किया, क्योंकि अधिकतम संग्राहक धारा संतृप्ति धारा द्वारा सीमित थी और कभी भी कुंडी-अप धारा से अधिक नहीं थी। नॉन-लच-अप IGBT की डिवाइस डिज़ाइन अवधारणा के आविष्कार के बाद, IGBT तेजी से विकसित हुए, और गैर-लच-अप का डिज़ाइन एक वास्तविक मानक बन गया और गैर-लच-अप IGBTs का पेटेंट मूल वास्तविक उपकरणों की IGBT पेटेंट बन गया।

IGBT के प्रारंभिक विकास चरण में, सभी शोधकर्ताओं ने परजीवी थाइरिस्टर के लैच-अप को दबाने के लिए लैच-अप करंट को बढ़ाने की कोशिश की। हालाँकि, ये सभी प्रयास विफल रहे क्योंकि IGBT अत्यधिक बड़े प्रवाह का संचालन कर सकता था। लैच-अप का सफल दमन अधिकतम कलेक्टर करंट को सीमित करके संभव बनाया गया था, जिसे IGBT, अंतर्निहित MOSFET की संतृप्ति धारा को नियंत्रित/कम करके लैच-अप करंट के नीचे संचालित कर सकता था। यह नॉन-लैच-अप IGBT की अवधारणा थी। "बेक के उपकरण" को गैर-कुंडी-अप IGBT द्वारा संभव बनाया गया था।

IGBT को एक साथ उच्च वोल्टेज और बड़े प्रवाह को संभालने की क्षमता की विशेषता क्षमता है। वोल्टेज का उत्पाद और वर्तमान घनत्व जिसे IGBT संभाल सकता है, 5×105 W/cm2,[14] से अधिक तक पहुंच गया, जो बाइपोलर ट्रांजिस्टर और पावर MOSFETs जैसे मौजूदा बिजली उपकरणों के मान, 2×105 W/cm2 से कहीं अधिक था। IGBT के बड़े सुरक्षित संचालन क्षेत्र का परिणाम है। IGBTअब तक विकसित सबसे मजबूत और सबसे मजबूत बिजली उपकरण है, इस प्रकार, उपयोगकर्ताओं को डिवाइस और विस्थापित द्विध्रुवी ट्रांजिस्टर और यहां तक ​​​​कि जीटीओ का आसान उपयोग प्रदान करता है। IGBT की यह उत्कृष्ट विशेषता अचानक तब सामने आई जब 1984 में तथाकथित "लच-अप" की समस्या को हल करके गैर-लच-अप IGBT की स्थापना की गई, जो डिवाइस के विनाश या डिवाइस की विफलता का मुख्य कारण है। इससे पहले, विकसित उपकरण बहुत कमजोर थे और "लच-अप" के कारण नष्ट होना आसान था।

व्यावहारिक उपकरण

विस्तारित करंट रेंज में काम करने में सक्षम व्यावहारिक उपकरणों को सबसे पहले 1982 में बी जयंत बालिगा एट अल द्वारा रिपोर्ट किया गया था।[15] उस वर्ष IEEE इंटरनेशनल इलेक्ट्रॉन डिवाइसेस मीटिंग (आईईडीएम) में बालिगा द्वारा एक व्यावहारिक असतत ऊर्ध्वाधर IGBT डिवाइस के पहले प्रयोगात्मक प्रदर्शन की सूचना दी गई थी। जनरल इलेक्ट्रिक ने उसी वर्ष बालिगा के IGBT उपकरण का व्यावसायीकरण किया गया था।[3]IGBT के आविष्कार के लिए बालिगा को नेशनल इन्वेंटर्स हॉल ऑफ फ़ेम में शामिल किया गया था।[16]

इसी तरह का एक पेपर जेपी रसेल एट अल द्वारा 1982 में IEEE इलेक्ट्रॉन डिवाइस लेटर के लिए भी प्रस्तुत किया गया था।[6] डिवाइस के लिए अनुप्रयोगों को शुरू में पावर इलेक्ट्रॉनिक्स समुदाय द्वारा इसकी धीमी स्विचिंग गति और डिवाइस के भीतर निहित परजीवी थाइरिस्टर संरचना के लैच-अप द्वारा गंभीर रूप से प्रतिबंधित माना जाता था। हालाँकि, यह बालिगा द्वारा और ए.एम. गुडमैन एट अल द्वारा भी प्रदर्शित किया गया था। 1983 में कि इलेक्ट्रॉन विकिरण का उपयोग करके स्विचिंग गति को एक विस्तृत श्रृंखला में समायोजित किया जा सकता है।[17] इसके बाद 1985 में बलिगा द्वारा ऊंचे तापमान पर डिवाइस के संचालन का प्रदर्शन किया गया था।[18] परजीवी थाइरिस्टर के लैच-अप को दबाने के सफल प्रयासों और GE में उपकरणों की वोल्टेज रेटिंग के स्केलिंग ने 1983 में वाणिज्यिक उपकरणों की शुरूआत की अनुमति दी,[19] जिसका उपयोग विभिन्न प्रकार के अनुप्रयोगों के लिए किया जा सकता है। GE के उपकरण, IGT D94FQ/FR4, की विद्युत विशेषताओं को मार्विन डब्ल्यू स्मिथ द्वारा पीसीआई अप्रैल 1984 की कार्यवाही में विस्तार से बताया गया था।[20] मार्विन डब्ल्यू स्मिथ ने कार्यवाही के चित्र 12 में दिखाया कि 5kOhm के गेट प्रतिरोध के लिए 10 एम्पीयर से ऊपर और 1kOhm के गेट प्रतिरोध के लिए 5 एम्पीयर से ऊपर का टर्न-ऑफ सुरक्षित ऑपरेटिंग क्षेत्र को स्विच करके सीमित था, हालांकि IGT D94FQ/FR4 40 एम्पीयर के कलेक्टर करंट का संचालन करने में सक्षम था। मार्विन डब्ल्यू स्मिथ ने यह भी कहा कि स्विचिंग सेफ ऑपरेटिंग एरिया परजीवी थाइरिस्टर के लैच-अप द्वारा सीमित था।

परजीवी थाइरिस्टर कार्रवाई का पूर्ण दमन और पूरे डिवाइस ऑपरेशन रेंज के लिए परिणामी गैर-कुंडी-अप IGBT ऑपरेशन1984 मे ए नाकागावा एट अल द्वारा हासिल किया गया था।[12]गैर-कुंडी-अप डिजाइन अवधारणा अमेरिकी पेटेंट के लिए दायर की गई थी।[21]लैच-अप की कमी का परीक्षण करने के लिए, प्रोटोटाइप 1200 वी IGBT 600 वी निरंतर वोल्टेज स्रोत में बिना किसी भार के सीधे जुड़े हुए थे और 25 माइक्रोसेकंड के लिए स्विच किए गए थे। पूरे 600 V को पूरे उपकरण में गिरा दिया गया और एक बड़ा शॉर्ट सर्किट करंट प्रवाहित हुआ था। उपकरणों ने इस गंभीर स्थिति का सफलतापूर्वक सामना किया था। IGBT में तथाकथित "शॉर्ट-सर्किट-सहनशीलता-क्षमता" का यह पहला प्रदर्शन था। पहली बार पूरे डिवाइस ऑपरेशन रेंज के लिए नॉन-लैच-अप ऑपरेशन सुनिश्चित किया गया था। इस अर्थ में, हंस डब्ल्यू. बेके और कार्ल एफ. व्हीटली द्वारा प्रस्तावित गैर-लच-अप आईजीबीटी को 1984 में ए. नाकागावा एट अल द्वारा महसूस किया गया था। नॉन-लैच-अप IGBT के उत्पादों का पहली बार 1985 में तोशिबा द्वारा व्यावसायीकरण किया गया था। यह वर्तमान IGBT का वास्तविक जन्म था।

जब IGBT में गैर-लच-अप क्षमता हासिल कर ली गई, तो यह पाया गया कि IGBT ने बहुत बीहड़ और एक बहुत बड़े सुरक्षित संचालन क्षेत्र का प्रदर्शन किया था। यह प्रदर्शित किया गया था कि ऑपरेटिंग वर्तमान घनत्व और कलेक्टर वोल्टेज का उत्पाद द्विध्रुवी ट्रांजिस्टर, 2 × 105 डब्ल्यू / सेमी 2 की सैद्धांतिक सीमा से अधिक हो गया, और 5 × 105 डब्ल्यू / सेमी 2 तक पहुंच गया था।

इंसुलेटिंग सामग्री आमतौर पर ठोस पॉलिमर से बनी होती है जिसमें गिरावट की समस्या होती है। ऐसे विकास हैं जो निर्माण में सुधार और आवश्यक वोल्टेज को कम करने के लिए आयन जेल का उपयोग करते हैं।[22]

1980 और 1990 के दशक की पहली पीढ़ी के IGBT लैचअप (जिसमें डिवाइस तब तक बंद नहीं होगा जब तक करंट प्रवाहित नहीं होगा) और सेकेंडरी ब्रेकडाउन (जिसमें डिवाइस में एक स्थानीय हॉटस्पॉट जाता है) जैसे प्रभावों के माध्यम से विफलता की संभावना थी। थर्मल भगोड़ा और उच्च धाराओं में डिवाइस को जला देता है)। दूसरी पीढ़ी के उपकरणों में काफी सुधार हुआ था। वर्तमान तीसरी पीढ़ी के IGBT गति प्रतिद्वंद्वी शक्ति MOSFET, और उत्कृष्ट कठोरता और ओवरलोड की सहनशीलता के साथ और भी बेहतर हैं।[14]दूसरी और तीसरी पीढ़ी के उपकरणों की अत्यधिक उच्च पल्स रेटिंग भी उन्हें कण और प्लाज्मा भौतिकी सहित क्षेत्रों में बड़ी शक्ति दालों को उत्पन्न करने के लिए उपयोगी बनाती है, जहां वे पुराने उपकरणों जैसे कि थायराट्रॉन और ट्रिगर स्पार्क गैप को सुपरसीड करना शुरू कर रहे हैं। उच्च पल्स रेटिंग और अधिशेष बाजार पर कम कीमतें भी उन्हें उच्च-वोल्टेज शौकियों के लिए आकर्षक बनाती हैं, जो सॉलिड-स्टेट टेस्ला कॉइल और कॉइलगन जैसे उपकरणों को चलाने के लिए बड़ी मात्रा में बिजली को नियंत्रित करते हैं।

पेटेंट मुद्दे

1978 में जे। डी। प्लमर द्वारा प्रस्तावित डिवाइस (यूएस पेटेंट re.33209) एक MOS गेट के साथ एक थाइरिस्टर के रूप में एक ही संरचना है।प्लमर ने खोज की और प्रस्तावित किया कि डिवाइस का उपयोग एक ट्रांजिस्टर के रूप में किया जा सकता है, हालांकि डिवाइस उच्च वर्तमान घनत्व स्तर में एक थायरिस्टोर के रूप में संचालित होता है।[23] जे। डी। प्लमर द्वारा प्रस्तावित डिवाइस को यहां "प्लमर डिवाइस" के रूप में संदर्भित किया गया है। दूसरी ओर, हंस डब्ल्यू। बेके ने प्रस्तावित किया, 1980 में, एक अन्य उपकरण जिसमें किसी भी डिवाइस ऑपरेटिंग परिस्थितियों में थायरिस्टोर की कार्रवाई को समाप्त कर दिया जाता है, हालांकि मूल डिवाइस संरचना जे। डी। प्लमर द्वारा प्रस्तावित के समान है। हंस डब्ल्यू। बेक द्वारा विकसित डिवाइस को यहां "बेक के डिवाइस" के रूप में संदर्भित किया गया है और इसे यूएस पेटेंट 4364073 में वर्णित किया गया है। "प्लमर के डिवाइस" और "बेक के डिवाइस" के बीच का अंतर यह है कि "प्लमर के डिवाइस" में थायरिस्टोर एक्शन का मोड है जो इसके थिरिस्टोर एक्शन का मोड है, जो इसके थायरिस्टोर एक्शन का मोड है। ऑपरेशन रेंज और "बेक के डिवाइस" में कभी भी अपने संपूर्ण ऑपरेशन रेंज में थायरिस्टोर एक्शन का मोड नहीं होता है। यह एक महत्वपूर्ण बिंदु है, क्योंकि थायरिस्टोर की कार्रवाई तथाकथित "कुंडी-अप" के समान है। "कुंडी-अप" घातक उपकरण विफलता का मुख्य कारण है। इस प्रकार, सैद्धांतिक रूप से, "प्लमर का डिवाइस" कभी भी एक बीहड़ या मजबूत बिजली उपकरण का एहसास नहीं करता है जिसमें एक बड़ा सुरक्षित ऑपरेटिंग क्षेत्र है। बड़े सुरक्षित ऑपरेटिंग क्षेत्र को केवल "कुंडी-अप" के बाद ही प्राप्त किया जा सकता है, पूरी तरह से दबा दिया जाता है और पूरे डिवाइस ऑपरेशन रेंज में समाप्त हो जाता है।[citation needed] हालांकि, बेक के पेटेंट (यूएस पेटेंट 4364073) ने वास्तविक उपकरणों को महसूस करने के लिए किसी भी उपाय का खुलासा नहीं किया।

बेक के पेटेंट के बावजूद बालिगा के पहले IGBT डिवाइस के समान संरचना का वर्णन करते हुए,[3]कई IGBT निर्माताओं ने बेके के पेटेंट के लाइसेंस शुल्क का भुगतान किया।[10]तोशिबा ने 1985 में "नॉन-लेच-अप IGBT" का व्यवसायीकरण किया। स्टैनफोर्ड यूनिवर्सिटी ने 1991 में जोर देकर कहा कि तोशिबा के डिवाइस ने "प्लमर के डिवाइस" के अमेरिकी पेटेंट RE33209 का उल्लंघन किया।तोशिबा ने जवाब दिया कि "नॉन-लेच-अप IGBTS" ने कभी भी पूरे डिवाइस ऑपरेशन रेंज में नहीं लाया और इस तरह "प्लमर के पेटेंट" के अमेरिकी पेटेंट RE33209 का उल्लंघन नहीं किया।स्टैनफोर्ड यूनिवर्सिटी ने नवंबर 1992 के बाद कभी जवाब नहीं दिया। तोशिबा ने "बेक के पेटेंट" का लाइसेंस खरीदा, लेकिन "प्लमर के डिवाइस" के लिए कभी भी लाइसेंस शुल्क का भुगतान नहीं किया।अन्य IGBT निर्माताओं ने भी बेक के पेटेंट के लिए लाइसेंस शुल्क का भुगतान किया।

अनुप्रयोग

As of 2010, IGBT पावर MOSFET के बाद दूसरा सबसे व्यापक रूप से इस्तेमाल किया जाने वाला पावर ट्रांजिस्टर है।IGBT पावर ट्रांजिस्टर बाजार के 27%के लिए होता है, केवल पावर MOSFET (53%) के लिए, और RF प्रवर्धक (11%) और द्विध्रुवी जंक्शन ट्रांजिस्टर (9%) से आगे है।[24] IGBT का व्यापक रूप से उपभोक्ता इलेक्ट्रॉनिक्स, औद्योगिक प्रौद्योगिकी, ऊर्जा क्षेत्र, एयरोस्पेस इलेक्ट्रॉनिक उपकरणों और परिवहन में उपयोग किया जाता है।

लाभ

IGBT द्विध्रुवी ट्रांजिस्टर की उच्च-वर्तमान और कम-संतृप्ति-वोल्टेज क्षमता के साथ पावर MOSFET की सरल गेट-ड्राइव विशेषताओं को जोड़ती है।IGBT एक पृथक-गेट फील्ड-इफेक्ट ट्रांजिस्टर को जोड़ती है। नियंत्रण इनपुट के लिए FET और एक ही डिवाइस में स्विच के रूप में एक द्विध्रुवी पावर ट्रांजिस्टर।IGBT का उपयोग मध्यम से उच्च-शक्ति अनुप्रयोगों जैसे स्विच-मोड पावर आपूर्ति, कर्षण मोटर नियंत्रण और इंडक्शन हीटिंग जैसे उच्च-शक्ति अनुप्रयोगों में किया जाता है।बड़े IGBT मॉड्यूल में आमतौर पर समानांतर में कई उपकरण होते हैं और सैकड़ों एम्पीयर के क्रम में बहुत अधिक वर्तमान-हैंडलिंग क्षमताएं हो सकती हैं 6500 V।ये IGBTS सैकड़ों किलोवाट के भार को नियंत्रित कर सकते हैं।

पावर mosfets के साथ तुलना

एक IGBT उच्च अवरुद्ध वोल्टेज रेटेड उपकरणों में एक पारंपरिक MOSFET की तुलना में काफी कम फॉरवर्ड वोल्टेज ड्रॉप की सुविधा देता है, हालांकि MOSFETS IGBT के आउटपुट BJT में डायोड VF की अनुपस्थिति के कारण कम वर्तमान घनत्व पर बहुत कम फॉरवर्ड वोल्टेज प्रदर्शित करता है। जैसे-जैसे MOSFET और IGBT दोनों उपकरणों की अवरुद्ध वोल्टेज रेटिंग बढ़ती है, n- बहाव क्षेत्र की गहराई में वृद्धि होनी चाहिए और डोपिंग में कमी होनी चाहिए, जिसके परिणामस्वरूप डिवाइस की वोल्टेज क्षमता को अवरुद्ध करने के लिए आगे की चालन बनाम चौकोर संबंध में कमी आती है। आगे की चालन के दौरान कलेक्टर पी+ क्षेत्र से एन-बहाव क्षेत्र में अल्पसंख्यक वाहक (छेद) को इंजेक्ट करके, एन-बहाव क्षेत्र का प्रतिरोध काफी कम हो जाता है। हालांकि, ऑन-स्टेट फॉरवर्ड वोल्टेज में यह परिणामी कमी कई दंडों के साथ आती है:

  • अतिरिक्त पीएन जंक्शन ब्लॉक वर्तमान प्रवाह को उलट देता है। इसका मतलब यह है कि एक MOSFET के विपरीत, IGBTS रिवर्स दिशा में आचरण नहीं कर सकता है। ब्रिज सर्किट में, जहां रिवर्स करंट फ्लो की आवश्यकता होती है, एक अतिरिक्त डायोड (जिसे एक फ्रीव्हीलिंग डायोड कहा जाता है) को विपरीत दिशा में वर्तमान का संचालन करने के लिए IGBT के साथ समानांतर (वास्तव में एंटी-समानांतर) में रखा जाता है। जुर्माना अत्यधिक गंभीर नहीं है क्योंकि उच्च वोल्टेज पर, जहां IGBT उपयोग हावी है, असतत डायोड में MOSFET के बॉडी डायोड की तुलना में काफी अधिक प्रदर्शन होता है।
  • कलेक्टर पी+ डायोड के लिए एन-ड्रिफ्ट क्षेत्र की रिवर्स बायस रेटिंग आमतौर पर केवल दसियों वोल्ट की होती है, इसलिए यदि सर्किट एप्लिकेशन IGBT पर एक रिवर्स वोल्टेज लागू करता है, तो एक अतिरिक्त श्रृंखला डायोड का उपयोग किया जाना चाहिए।
  • एन-ड्रिफ्ट क्षेत्र में इंजेक्ट किए गए अल्पसंख्यक वाहकों को टर्न-ऑन और टर्न-ऑफ में प्रवेश करने और बाहर निकलने या पुनर्संयोजन में समय लगता है। इससे लंबे समय तक स्विच करने का समय होता है, और इसलिए यह अधिक होता है switching loss [de] एक शक्ति MOSFET की तुलना में।
  • IGBTS में ऑन-स्टेट फॉरवर्ड वोल्टेज ड्रॉप पावर MOSFETS से बहुत अलग व्यवहार करता है।MOSFET वोल्टेज ड्रॉप को एक प्रतिरोध के रूप में तैयार किया जा सकता है, जिसमें वोल्टेज ड्रॉप वर्तमान के लिए आनुपातिक है।इसके विपरीत, IGBT में डायोड की तरह वोल्टेज ड्रॉप (आमतौर पर 2V के क्रम की) केवल वर्तमान के लॉग के साथ बढ़ती है।इसके अतिरिक्त, MOSFET प्रतिरोध आमतौर पर छोटे अवरुद्ध वोल्टेज के लिए कम होता है, इसलिए IGBTS और पावर MOSFETs के बीच का विकल्प किसी विशेष अनुप्रयोग में शामिल अवरुद्ध वोल्टेज और वर्तमान दोनों पर निर्भर करेगा।

सामान्य तौर पर, उच्च वोल्टेज, उच्च वर्तमान और निम्न स्विचिंग आवृत्तियों IGBT का पक्ष लेते हैं जबकि कम वोल्टेज, मध्यम वर्तमान और उच्च स्विचिंग आवृत्तियों MOSFET के डोमेन हैं।

IGBT मॉडल

IGBTs के साथ सर्किट को विभिन्न सर्किट सिमुलेटिंग कंप्यूटर प्रोग्राम जैसे स्पाइस, सेबर और अन्य कार्यक्रमों के साथ विकसित और मॉडलिंग किया जा सकता है। IGBT सर्किट को अनुकरण करने के लिए, डिवाइस (और सर्किट में अन्य डिवाइस) में एक मॉडल होना चाहिए जो उनके विद्युत टर्मिनलों पर विभिन्न वोल्टेज और धाराओं के लिए डिवाइस की प्रतिक्रिया की भविष्यवाणी या अनुकरण करता है। अधिक सटीक सिमुलेशन के लिए IGBT के विभिन्न हिस्सों पर तापमान के प्रभाव को सिमुलेशन के साथ शामिल किया जा सकता है। मॉडलिंग के दो सामान्य तरीके उपलब्ध हैं: डिवाइस भौतिकी-आधारित मॉडल, समकक्ष सर्किट या मैक्रोमॉडल। स्पाइस एक मैक्रोमॉडल का उपयोग करके IGBT का अनुकरण करता है जो डार्लिंगटन कॉन्फ़िगरेशन में FET और BJT जैसे घटकों के एक समूह को जोड़ता है।[citation needed] वैकल्पिक भौतिकी-आधारित मॉडल हेफनर मॉडल है, जिसे राष्ट्रीय मानक और प्रौद्योगिकी संस्थान के एलन हेफनर द्वारा पेश किया गया है। हेफनर का मॉडल काफी जटिल है जिसने बहुत अच्छे परिणाम दिखाए हैं। हेफनर के मॉडल का वर्णन 1988 के एक पेपर में किया गया है और बाद में इसे थर्मो-इलेक्ट्रिकल मॉडल तक बढ़ा दिया गया जिसमें आंतरिक हीटिंग के लिए IGBT की प्रतिक्रिया शामिल है। इस मॉडल को सेबर सिमुलेशन सॉफ्टवेयर के एक संस्करण में जोड़ा गया है।[25]

IGBT विफलता तंत्र

IGBTs की विफलता तंत्र में अलग-अलग ओवरस्ट्रेस (O और वियरआउट (WO) शामिल हैं।

हनने की विफलताओं में मुख्य रूप से पूर्वाग्रह तापमान अस्थिरता (BTI, गर्म वाहक इंजेक्शन (एचसीआई), समय-निर्भर ढांकता हुआ ब्रेकडाउन (TDDB), इलेक्ट्रोमाइग्रेशन (ECM), सोल्डर थकान, सामग्री पुनर्निर्माण, जंग शामिल हैं। ओवरस्ट्रेस विफलता में मुख्य रूप से इलेक्ट्रोस्टैटिक डिस्चार्ज (ECD), लैच-अप, हिमस्खलन, सेकेंडरी ब्रेकडाउन, वायर-बॉन्ड लिफ्टऑफ और बर्नआउट शामिल हैं।

IGBT मॉड्यूल


यह भी देखें

  • द्विध्रुवी जंक्शन ट्रांजिस्टर
  • बूटस्ट्रैपिंग
  • वर्तमान इंजेक्शन तकनीक
  • फ्लोटिंग-गेट MOSFET
  • मोसफेट
  • बिजली के इलेक्ट्रॉनिक्स
  • पावर मोसफेट
  • पावर सेमीकंडक्टर डिवाइस
  • सौर इन्वर्टर

संदर्भ

  1. Basic Electronics Tutorials.
  2. Majumdar, Gourab; Takata, Ikunori (2018). Power Devices for Efficient Energy Conversion. CRC Press. pp. 144, 284, 318. ISBN 9781351262316.
  3. 3.0 3.1 3.2 3.3 Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. xxviii, 5–12. ISBN 9781455731534.
  4. Baliga, B. Jayant (1979). "Enhancement- and depletion-mode vertical-channel m.o.s. gated thyristors". Electronics Letters. 15 (20): 645–647. Bibcode:1979ElL....15..645J. doi:10.1049/el:19790459. ISSN 0013-5194.
  5. "Advances in Discrete Semiconductors March On". Power Electronics Technology. Informa: 52–6. September 2005. Archived (PDF) from the original on 22 March 2006. Retrieved 31 July 2019.
  6. 6.0 6.1 Russell, J.P.; Goodman, A.M.; Goodman, L.A.; Neilson, J.M. (1983). "The COMFET—A new high conductance MOS-gated device". IEEE Electron Device Letters. 4 (3): 63–65. Bibcode:1983IEDL....4...63R. doi:10.1109/EDL.1983.25649. S2CID 37850113.
  7. Nakagawa, Akio; Ohashi, Hiromichi; Tsukakoshi, Tsuneo (1984). "High Voltage Bipolar-Mode MOSFET with High Current Capability". Extended Abstracts of the 1984 International Conference on Solid State Devices and Materials. doi:10.7567/SSDM.1984.B-6-2.
  8. Scharf, B.; Plummer, J. (1978). A MOS-controlled triac device. 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. XXI. pp. 222–223. doi:10.1109/ISSCC.1978.1155837. S2CID 11665546.
  9. B1 Re33209 is attached in the pdf file of Re 33209.
  10. 10.0 10.1 U. S. Patent No. 4,364,073, Power MOSFET with an Anode Region, issued December 14, 1982 to Hans W. Becke and Carl F. Wheatley.
  11. "C. Frank Wheatley, Jr., BSEE". Innovation Hall of Fame at A. James Clark School of Engineering.
  12. 12.0 12.1 Nakagawa, A.; Ohashi, H.; Kurata, M.; Yamaguchi, H.; Watanabe, K. (1984). "Non-latch-up 1200V 75A bipolar-mode MOSFET with large ASO". 1984 International Electron Devices Meeting. pp. 860–861. doi:10.1109/IEDM.1984.190866. S2CID 12136665.
  13. A. Nakagawa, H. Ohashi, Y. Yamaguchi, K. Watanabe and T. Thukakoshi, "Conductivity modulated MOSFET" US Patent No. 6025622 (Feb. 15, 2000), No. 5086323 (Feb. 4, 1992) and No. 4672407 (Jun. 9, 1987).
  14. 14.0 14.1 Nakagawa, A.; Yamaguchi, Y.; Watanabe, K.; Ohashi, H. (1987). "Safe operating area for 1200-V nonlatchup bipolar-mode MOSFET's". IEEE Transactions on Electron Devices. 34 (2): 351–355. Bibcode:1987ITED...34..351N. doi:10.1109/T-ED.1987.22929. S2CID 25472355.
  15. Shenai, K. (2015). "The Invention and Demonstration of the IGBT [A Look Back]". IEEE Power Electronics Magazine. 2 (2): 12–16. doi:10.1109/MPEL.2015.2421751. ISSN 2329-9207. S2CID 37855728.
  16. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019.
  17. Goodman, A.M.; Russell, J.P.; Goodman, L.A.; Nuese, C.J.; Neilson, J.M. (1983). "Improved COMFETs with fast switching speed and high-current capability". 1983 International Electron Devices Meeting. pp. 79–82. doi:10.1109/IEDM.1983.190445. S2CID 2210870.
  18. Baliga, B.Jayant (1985). "Temperature behavior of insulated gate transistor characteristics". Solid-State Electronics. 28 (3): 289–297. Bibcode:1985SSEle..28..289B. doi:10.1016/0038-1101(85)90009-7.
  19. Product of the Year Award: "Insulated Gate Transistor", General Electric Company, Electronics Products, 1983.
  20. Marvin W. Smith, "APPLICATIONS OF INSULATED GATE TRANSISTORS" PCI April 1984 PROCEEDINGS, pp. 121-131, 1984 (Archived PDF [1])
  21. A.Nakagawa, H. Ohashi, Y. Yamaguchi, K. Watanabe and T. Thukakoshi, "Conductivity modulated MOSFET" US Patent No.6025622(Feb.15, 2000), No.5086323 (Feb.4, 1992) and No.4672407(Jun.9, 1987)
  22. "Ion Gel as a Gate Insulator in Field Effect Transistors". Archived from the original on 2011-11-14.
  23. Scharf, B.; Plummer, J. (1978). "A MOS-controlled triac device". 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. pp. 222–223. doi:10.1109/ISSCC.1978.1155837. S2CID 11665546.
  24. "Power Transistor Market Will Cross $13.0 Billion in 2011". IC Insights. June 21, 2011. Retrieved 15 October 2019.
  25. Hefner, A.R.; Diebolt, D.M. (September 1994). "An experimentally verified IGBT model implemented in the Saber circuit simulator". IEEE Transactions on Power Electronics. 9 (5): 532–542. Bibcode:1994ITPE....9..532H. doi:10.1109/63.321038. S2CID 53487037.


अग्रिम पठन


बाहरी संबंध