बोन सीमेंट

From Vigyanwiki
Revision as of 19:21, 10 December 2022 by alpha>Indicwiki (Created page with "{{Short description|Adhesives used to fix prosthetic devices to bones and to cement bone to bone in difficult fractures}} {{Medref|date=January 2022}} आधी सदी स...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

आधी सदी से भी अधिक समय से कृत्रिम जोड़ों (कूल्हे के जोड़, घुटने के जोड़, कंधे के जोड़ और कोहनी के जोड़) को ठीक करने के लिए हड्डी के सीमेंट का बहुत सफलतापूर्वक उपयोग किया जाता रहा है। कृत्रिम जोड़ों (जिन्हें कृत्रिम अंग कहा जाता है) को हड्डी सीमेंट से जोड़ा जाता है। हड्डी सीमेंट कृत्रिम अंग और हड्डी के बीच मुक्त स्थान भरता है और एक लोचदार क्षेत्र घुटना महत्वपूर्ण भूमिका निभाता है। यह आवश्यक है क्योंकि मानव कूल्हे पर शरीर के वजन का लगभग 10-12 गुना काम किया जाता है और इसलिए हड्डी के सीमेंट को कूल्हों पर काम करने वाली ताकतों को अवशोषित करना चाहिए ताकि यह सुनिश्चित हो सके कि कृत्रिम प्रत्यारोपण लंबे समय तक बना रहे।

अस्थि सीमेंट रासायनिक रूप से Plexiglas (यानी पॉलिमिथाइल मेथाक्रायलेट) या पीएमएमए) से ज्यादा कुछ नहीं है। खोपड़ी में अंतराल को बंद करने के लिए प्लास्टिक शल्य चिकित्सा में 1940 के दशक में पहली बार पॉली (मिथाइल मेथैक्रिलेट) का चिकित्सकीय उपयोग किया गया था। सर्जरी में उनके उपयोग से पहले शरीर के साथ हड्डी सीमेंट की अनुकूलता के व्यापक नैदानिक ​​परीक्षण किए गए थे। पीएमएमए की उत्कृष्ट ऊतक संगतता ने 1950 के दशक में सिर के कृत्रिम अंग के लंगर के लिए हड्डी सीमेंट का उपयोग करने की अनुमति दी।

आज इस प्रकार की लाखों प्रक्रियाएं पूरी दुनिया में हर साल आयोजित की जाती हैं और उनमें से आधे से अधिक नियमित रूप से हड्डी सीमेंट का उपयोग करती हैं - और अनुपात बढ़ रहा है। बोन सीमेंट को क्लिनिकल प्रैक्टिस में उपयोग में आसानी के साथ एक विश्वसनीय एंकरेज सामग्री माना जाता है और विशेष रूप से सीमेंटेड-इन प्रोस्थेसिस के साथ इसकी सिद्ध लंबी उत्तरजीविता दर के कारण। स्वीडन और नॉर्वे में कृत्रिम संयुक्त प्रतिस्थापन के लिए कूल्हा और घुटने रजिस्टर[1] सीमेंटेड-इन एंकरेज के फायदों को स्पष्ट रूप से प्रदर्शित करता है। जर्मनी में 2010 में एंडोप्रोस्थेसिस के लिए एक समान रजिस्टर पेश किया गया था।[2]

IUPAC definition

Synthetic, self-curing organic or inorganic material used to fill up a cavity or to create a mechanical fixation.

Note 1: In situ self-curing can be the source of released reagents that can cause local and/or systemic toxicity as in the case of the monomer released from methacrylics-based bone cement used in orthopedic surgery.

Note 2: In dentistry, polymer-based cements are also used as fillers of cavities. They are generally cured photochemically using UV radiation in contrast to bone cements.[3]


रचना

अस्थि सीमेंट दो-घटक सामग्री के रूप में प्रदान किए जाते हैं। अस्थि सीमेंट में एक पाउडर (यानी, प्री-पोलीमराइज्ड पीएमएमए और या पीएमएमए या मिथाइल मेथाक्रायलेट को-पॉलीमर बीड्स और या अनाकार पाउडर, रेडियो-ओपेसीफायर, इनिशिएटर) और एक तरल (एमएमए मोनोमर, स्टेबलाइजर, इनहिबिटर) होता है। दो घटक मिश्रित होते हैं और मोनोमर का एक मुक्त कट्टरपंथी पोलीमराइज़ेशन तब होता है जब प्रारंभकर्ता को त्वरक के साथ मिलाया जाता है। हड्डी सीमेंट की चिपचिपाहट समय के साथ बहते तरल से आटे जैसी अवस्था में बदल जाती है जिसे सुरक्षित रूप से लगाया जा सकता है और फिर अंत में ठोस कठोर सामग्री में कठोर हो जाता है।[4] ऑस्टियोपोरोटिक संपीड़न फ्रैक्चर के इलाज के लिए चिकित्सक को हड्डी के बिस्तर में हड्डी के सीमेंट को सुरक्षित रूप से लगाने में मदद करने के लिए निर्धारित समय को धातु या प्लास्टिक प्रोस्थेटिक डिवाइस से जोड़ा जा सकता है या रीढ़ की हड्डी में अकेले इस्तेमाल किया जा सकता है।

उष्माक्षेपी प्रतिक्रिया फ्री-रेडिकल पोलीमराइज़ेशन प्रक्रिया के दौरान बोन सीमेंट गर्म होता है, जो शरीर में लगभग 82-86 डिग्री सेल्सियस के तापमान तक पहुँच जाता है, जो शरीर में प्रोटीन विकृतीकरण के लिए महत्वपूर्ण स्तर से अधिक तापमान होता है। यह कम पोलीमराइज़ेशन तापमान अपेक्षाकृत पतली सीमेंट कोटिंग द्वारा निर्धारित किया जाता है, जो 5 मिमी से अधिक नहीं होना चाहिए, और बड़े प्रोस्थेसिस सतह और रक्त के प्रवाह के माध्यम से तापमान अपव्यय।[5] दंत भराव सामग्री के क्षेत्र में हड्डी सीमेंट के अलग-अलग घटकों को भी जाना जाता है। इन अनुप्रयोगों में एक्रिलेट-आधारित प्लास्टिक का भी उपयोग किया जाता है। जबकि अलग-अलग घटक हमेशा फार्मास्युटिकल एडिटिव्स और सक्रिय पदार्थों के रूप में पूरी तरह से सुरक्षित नहीं होते हैं, अस्थि सीमेंट के रूप में अलग-अलग पदार्थ या तो परिवर्तित हो जाते हैं या पूरी तरह से सीमेंट मैट्रिक्स में पोलीमराइजेशन चरण के दौरान चिपचिपाहट में वृद्धि से इलाज के लिए संलग्न होते हैं। वर्तमान ज्ञान से, ठीक की गई हड्डी के सीमेंट को अब सुरक्षित के रूप में वर्गीकृत किया जा सकता है, जैसा कि मूल रूप से 1950 के दशक में किए गए शरीर के साथ संगतता पर प्रारंभिक अध्ययन के दौरान प्रदर्शित किया गया था।

हाल ही में रीढ़ की हड्डी में या तो कशेरुकसंधान या kyphoplasty प्रक्रियाओं में हड्डी सीमेंट का उपयोग किया गया है। इस प्रकार के सीमेंट की संरचना ज्यादातर कैल्शियम फॉस्फेट और हाल ही में मैग्नीशियम फॉस्फेट पर आधारित है। अनाकार मैग्नीशियम फॉस्फेट (एएमपी) पर आधारित एक उपन्यास बायोडिग्रेडेबल, गैर-एक्सोथर्मिक, स्व-सेटिंग आर्थोपेडिक सीमेंट संरचना विकसित की गई थी। ठोस अग्रदूत के रूप में एएमपी का उपयोग करके अवांछनीय एक्ज़ोथिर्मिक प्रतिक्रियाओं की घटना से बचा गया।[6]


== बोन सीमेंट == के उपयोग के लिए महत्वपूर्ण जानकारी जिसे बोन सीमेंट इम्प्लांटेशन सिंड्रोम (BCIS) कहा जाता है, साहित्य में वर्णित है।[7] लंबे समय तक यह माना जाता था कि हड्डी सीमेंट से जारी अपूर्ण रूप से परिवर्तित मोनोमर संचलन प्रतिक्रियाओं और उपापचय का कारण था। हालांकि, अब यह ज्ञात है कि यह मोनोमर (अवशिष्ट मोनोमर) श्वसन श्रृंखला द्वारा चयापचय होता है और कार्बन डाइआक्साइड और पानी में विभाजित होता है और उत्सर्जित होता है। दिल का आवेश हमेशा कृत्रिम जोड़ों के एंकरेज के दौरान हो सकता है जब सामग्री को पहले से साफ ऊरु नहर में डाला जाता है। नतीजा इंट्रामेडुलरी दबाव में वृद्धि है, संभावित रूप से संचलन में वसा चला रहा है।

यदि रोगी को हड्डी सीमेंट के घटकों से कोई एलर्जी है, तो वर्तमान ज्ञान के अनुसार कृत्रिम अंग को लंगर डालने के लिए हड्डी सीमेंट का उपयोग नहीं किया जाना चाहिए। सीमेंट के बिना एंकोरेज - सीमेंट मुक्त इम्प्लांट प्लेसमेंट - विकल्प है।

एएसटीएम एफ451 के अनुसार नए बोन सीमेंट योगों के लक्षण वर्णन की आवश्यकता है।[8] यह मानक इलाज दर, अवशिष्ट मोनोमर, यांत्रिक शक्ति, बेंज़ोयल पेरोक्साइड एकाग्रता, और इलाज के दौरान गर्मी के विकास का आकलन करने के लिए परीक्षण विधियों का वर्णन करता है।

संशोधन

संशोधन एक कृत्रिम अंग का प्रतिस्थापन है। इसका मतलब यह है कि शरीर में पहले से लगाए गए कृत्रिम अंग को हटा दिया जाता है और उसकी जगह एक नया कृत्रिम अंग लगा दिया जाता है। प्रारंभिक ऑपरेशन की तुलना में संशोधन अक्सर अधिक जटिल और अधिक कठिन होते हैं, क्योंकि प्रत्येक संशोधन में स्वस्थ हड्डी पदार्थ का नुकसान होता है। संतोषजनक परिणाम के लिए संशोधन संचालन भी अधिक महंगा है। इसलिए सबसे महत्वपूर्ण लक्ष्य एक अच्छी शल्य प्रक्रिया का उपयोग करके और अच्छे (दीर्घकालिक) परिणामों वाले उत्पादों का उपयोग करके संशोधन से बचना है।

दुर्भाग्य से, संशोधनों से बचना हमेशा संभव नहीं होता है।[1][4]संशोधन के अलग-अलग कारण भी हो सकते हैं और सेप्टिक या एसेप्टिक संशोधन के बीच अंतर है।[9] यदि किसी संक्रमण की पुष्टि के बिना प्रत्यारोपण को बदलना आवश्यक है - उदाहरण के लिए, सड़न रोकनेवाला - सीमेंट को पूरी तरह से हटाया नहीं जाता है। हालांकि, यदि प्रत्यारोपण सेप्टिक कारणों से ढीला हो गया है, तो संक्रमण को दूर करने के लिए सीमेंट को पूरी तरह से हटा दिया जाना चाहिए। ज्ञान की वर्तमान स्थिति में हड्डी की साइट से एक अच्छी तरह से लंगर वाली सीमेंट मुक्त कृत्रिम अंग को छोड़ने की तुलना में सीमेंट को हटाना आसान है। अंतत: संशोधित प्रोस्थेसिस की स्थिरता के लिए प्रारंभिक प्रत्यारोपण के संभावित ढीलेपन का जल्द से जल्द पता लगाना महत्वपूर्ण है ताकि अधिक से अधिक स्वस्थ हड्डी को बनाए रखा जा सके।

हड्डी सीमेंट के साथ तय किया गया एक कृत्रिम अंग रोगियों के तेजी से पुनर्निर्माण के साथ संयुक्त रूप से उच्च प्राथमिक स्थिरता प्रदान करता है। ऑपरेशन के तुरंत बाद सीमेंटेड-इन प्रोस्थेसिस को पूरी तरह से लोड किया जा सकता है क्योंकि पीएमएमए 24 घंटे के भीतर अपनी अधिकांश ताकत प्राप्त कर लेता है।[9]आवश्यक पुनर्वास उन रोगियों के लिए तुलनात्मक रूप से सरल है, जिनके पास सीमेंटेड-इन प्रोस्थेसिस प्रत्यारोपित किया गया है। ऑपरेशन के तुरंत बाद जोड़ों को फिर से लोड किया जा सकता है, लेकिन सुरक्षा कारणों से उचित अवधि के लिए बैसाखी का उपयोग अभी भी आवश्यक है।

बोन सीमेंट विशेष रूप से उपयोगी साबित हुआ है क्योंकि विशिष्ट सक्रिय पदार्थ, उदा। एंटीबायोटिक दवाओं, पाउडर घटक में जोड़ा जा सकता है। सक्रिय पदार्थ नए जोड़ के प्रत्यारोपण प्लेसमेंट के बाद स्थानीय रूप से जारी किए जाते हैं, यानी नए कृत्रिम अंग के तत्काल आसपास के क्षेत्र में और संक्रमण के खतरे को कम करने की पुष्टि की गई है। एंटीबायोटिक्स बैक्टीरिया के खिलाफ ठीक उसी जगह पर काम करते हैं जहां उन्हें खुले घाव में शरीर को अनावश्यक रूप से उच्च एंटीबायोटिक स्तरों के अधीन किए बिना आवश्यक होता है। यह बोन सीमेंट को प्रशासन का एक आधुनिक मार्ग बनाता है जो आवश्यक दवाओं को सीधे सर्जिकल साइट पर पहुंचाता है। महत्वपूर्ण कारक यह नहीं है कि सीमेंट मैट्रिक्स में कितना सक्रिय पदार्थ है बल्कि यह है कि सक्रिय पदार्थ का कितना हिस्सा वास्तव में स्थानीय रूप से जारी किया जाता है। हड्डी सीमेंट में बहुत अधिक सक्रिय पदार्थ वास्तव में हानिकारक होगा, क्योंकि निश्चित कृत्रिम अंग की यांत्रिक स्थिरता सीमेंट में सक्रिय पदार्थ के उच्च अनुपात से कमजोर होती है। औद्योगिक रूप से निर्मित हड्डी सीमेंट का स्थानीय सक्रिय पदार्थ स्तर जो हड्डी सीमेंट के उपयोग से बनता है जिसमें सक्रिय पदार्थ होते हैं (यह मानते हुए कि कोई असंगति नहीं है) और प्रणालीगत एकल इंजेक्शन के लिए नैदानिक ​​​​नियमित खुराक से काफी नीचे हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Hallan, Geir; Espehaug, Birgitte; Furnes, Ove; Wangen, Helge; Høl, Paul J.; Ellison, Peter; Havelin, Leif I. (2012). "क्या अभी भी सीमेंटेड टाइटेनियम फेमोरल स्टेम के लिए जगह है? नॉर्वेजियन आर्थ्रोप्लास्टी रजिस्टर से 10,108 मामले". Acta Orthopaedica. 83 (1): 1–6. doi:10.3109/17453674.2011.645194. PMC 3278649. PMID 22206445.
  2. "हमारे बारे में". Endoprothesenregister Deutschland. EPRD Deutsche Endoprothesenregister GmbH. Archived from the original on 2016-02-25. Retrieved 22 February 2016.
  3. Vert, Michel; Doi, Yoshiharu; Hellwich, Karl-Heinz; Hess, Michael; Hodge, Philip; Kubisa, Przemyslaw; Rinaudo, Marguerite; Schué, François (2012). "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)" (PDF). Pure and Applied Chemistry. 84 (2): 377–410. doi:10.1351/PAC-REC-10-12-04. S2CID 98107080.
  4. 4.0 4.1 Havelin, L. I.; Espehaug, B.; Vollset, S. E.; Engesaeter, L. B. (1995). "चार्ली कुल हिप कृत्रिम अंग के शुरुआती संशोधन पर सीमेंट के प्रकार का प्रभाव। नॉर्वेजियन आर्थ्रोप्लास्टी रजिस्टर से आठ हजार पांच सौ उनहत्तर प्राथमिक आर्थ्रोप्लास्टी की समीक्षा". The Journal of Bone and Joint Surgery. 77 (10): 1543–1550. doi:10.2106/00004623-199510000-00009. PMID 7593063.
  5. Vaishya, Raju; Chauhan, Mayank; Vaish, Abhishek (December 2013). "अस्थि सीमेंट". Journal of Clinical Orthopaedics and Trauma. 4 (4): 157–163. doi:10.1016/j.jcot.2013.11.005. PMC 3880950. PMID 26403875.
  6. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements, Biomed. Mater. 11 (2016) 055010, https://dx.doi.org/10.1088/1748-6041/11/5/055010.
  7. Br. J. Anaesth. (2009) 102 (1): 12-22. doi: 10.1093/bja/aen328
  8. "ऐक्रेलिक बोन सीमेंट के लिए मानक विशिष्टता". www.astm.org.
  9. 9.0 9.1 Van Tol, Alexander Franciscus; Tibballs, John E.; Roar Gjerdet, Nils; Ellison, Peter (2013). "हड्डी-सीमेंट-इम्प्लांट कतरनी बंधन ताकत पर सतह खुरदरापन के प्रभाव की प्रायोगिक जांच". Journal of the Mechanical Behavior of Biomedical Materials. 28: 254–262. doi:10.1016/j.jmbbm.2013.08.005. PMID 24004958.


इस पेज में लापता आंतरिक लिंक की सूची

  • घुटने का जोड़
  • कोहनी का जोड़
  • कूल्हों का जोड़
  • कंधे का जोड़
  • श्यानता
  • कट्टरपंथी पोलीमराइजेशन
  • एक्रिलाट
  • प्रशासन मार्ग

बाहरी संबंध