वक्र

From Vigyanwiki
Revision as of 11:57, 13 November 2022 by alpha>Abhishekk (minor changes)
एक परवलय , सबसे सरल वक्रों में से एक, (सीधी) रेखाओं के बाद

वक्र, जिसे गणित में भी सैद्धांतिक और अनुप्रयुक्त गणित ग्रंथों में वक्र रेखा कहा जाता है, गणितीय वस्तु है जो अक्षीय सीधी समतल रेखाओं के समान या भिन्न है, घुमावदार रेखा एक सीधी रेखा नहीं है, लेकिन एक फ़ंक्शन हो सकती है, या घुमावदार रेखा एक गैर सीधी रेखा (गैर आयताकार वस्तु) का हिस्सा हो सकती है या एक गोले या गोलाकार वस्तु का हिस्सा, या एक घुमावदार विमान, आदि, और वहाँ भी अलग (यह "विपरीत नहीं" है, अर्थात लंबवत या समांतर नहीं है) सीधी रेखाओं के लिए है जो सीधे विमानों का हिस्सा हैं लेकिन कुछ कार्यों के लिए सीधे विमानों में सीधे विमान में प्रक्षेपित किया जा सकता है।

अक्षीय क्षेत्रों और घुमावदार गोलाकार वस्तुओं में, रेखाएं शायद "ऑब्जेक्ट ज्यामिति" को परिभाषित करती हैं।

सहज रूप से, एक वक्र को एक गतिमान बिंदु द्वारा छोड़े गए निशान के रूप में सोचा जा सकता है। यूक्लिड के तत्वों में यह परिभाषा 2000 से भी अधिक वर्ष पहले सामने आई थी: "[घुमावदार] रेखा[lower-alpha 1] मात्रा की पहली प्रजाति है, जिसका केवल एक आयाम है, अर्थात् लंबाई, बिना किसी चौड़ाई और गहराई के, और उस बिंदु के प्रवाह या भाग के अलावा और कुछ नहीं है जो […][1]

वक्र की इस परिभाषा को आधुनिक गणित में इस प्रकार औपचारिक रूप दिया गया है: एक वक्र एक निरंतर कार्य द्वारा एक टोपोलॉजिकल स्पेस के अंतराल की छवि है। कुछ संदर्भों में, वक्र को परिभाषित करने वाले फ़ंक्शन को पैरामीट्रिज़ेशन कहा जाता है, और वक्र एक पैरामीट्रिक वक्र है। इस लेख में, इन वक्रों को कभी-कभी टोपोलॉजिकल कर्व्स कहा जाता है ताकि उन्हें अधिक विवश वक्रों से अलग किया जा सके, जैसे कि अवकलनीय वक्र। यह परिभाषा गणित में अध्ययन किए जाने वाले अधिकांश वक्रों को समाहित करती है; उल्लेखनीय अपवाद स्तर वक्र हैं (जो वक्र और पृथक बिंदुओं के संघ हैं), और बीजीय वक्र (नीचे देखें)। स्तर वक्र और बीजगणितीय वक्रों को कभी-कभी निहित वक्र कहा जाता है, क्योंकि वे आमतौर पर निहित समीकरणों द्वारा परिभाषित होते हैं।

फिर भी, टोपोलॉजिकल कर्व्स का वर्ग बहुत व्यापक है, और इसमें कुछ कर्व्स होते हैं जो किसी वक्र की अपेक्षा के अनुरूप नहीं दिखते हैं, या यहां तक कि खींचे नहीं जा सकते। यह स्थान भरने वाले वक्रों और भग्न वक्रों का मामला है। अधिक नियमितता सुनिश्चित करने के लिए, एक वक्र को परिभाषित करने वाले कार्य को अक्सर अवकलनीय माना जाता है, और फिर वक्र को एक अवकलनीय वक्र कहा जाता है।

एक समतल बीजगणितीय वक्र दो अनिश्चितों में बहुपद का शून्य समुच्चय है। अधिक सामान्यतः, एक बीजीय वक्र बहुपदों के एक परिमित समुच्चय का शून्य समुच्चय होता है, जो एक आयाम की बीजीय विविधता होने की आगे की शर्त को संतुष्ट करता है। यदि बहुपदों के गुणांक एक क्षेत्र k से संबंधित हैं, तो वक्र को k के ऊपर परिभाषित किया गया कहा जाता है। एक वास्तविक बीजगणितीय वक्र के सामान्य मामले में, जहां k वास्तविक संख्याओं का क्षेत्र है, बीजीय वक्र टोपोलॉजिकल वक्रों का एक परिमित संघ है। जब जटिल शून्यों पर विचार किया जाता है, तो एक जटिल बीजगणितीय वक्र होता है, जो कि स्थलीय दृष्टिकोण से, एक वक्र नहीं है, बल्कि एक सतह है, और इसे अक्सर रीमैन सतह कहा जाता है। हालांकि सामान्य ज्ञान में वक्र नहीं होने पर, अन्य क्षेत्रों में परिभाषित बीजीय वक्रों का व्यापक अध्ययन किया गया है। विशेष रूप से, आधुनिक क्रिप्टोग्राफी में एक सीमित क्षेत्र में बीजीय वक्र व्यापक रूप से उपयोग किए जाते हैं।

इतिहास

न्यूग्रेंज की महापाषाण कला वक्रों में प्रारंभिक रुचि दिखा रही है

वक्रों में रुचि गणितीय अध्ययन का विषय होने से बहुत पहले से ही शुरू हो गई थी। इसे कला में और प्रागैतिहासिक काल की रोजमर्रा की वस्तुओं में उनके सजावटी उपयोग के कई उदाहरणों में देखा जा सकता है।[2] वक्र, या कम से कम उनके चित्रमय निरूपण, बनाने में सरल हैं, उदाहरण के लिए समुद्र तट पर रेत पर एक छड़ी के साथ।

ऐतिहासिक रूप से, शब्द रेखा का प्रयोग अधिक आधुनिक शब्द वक्र के स्थान पर किया जाता था। इसलिए सीधी रेखा और दाहिनी रेखा शब्दों का इस्तेमाल वक्र रेखाओं से आज की रेखा को अलग करने के लिए किया जाता है। उदाहरण के लिए, यूक्लिड के तत्वों की पुस्तक I में, एक रेखा को "चौड़ाई रहित लंबाई" (डिफ। 2) के रूप में परिभाषित किया गया है, जबकि एक सीधी रेखा को "एक ऐसी रेखा के रूप में परिभाषित किया गया है जो समान रूप से अपने आप पर स्थित बिंदुओं के साथ स्थित है" (डिफ। 4)। रेखा के बारे में यूक्लिड के विचार को शायद इस कथन से स्पष्ट किया गया है "एक रेखा के सिरे बिंदु होते हैं," (डिफ। 3)।[3] बाद में टिप्पणीकारों ने विभिन्न योजनाओं के अनुसार पंक्तियों को वर्गीकृत किया। उदाहरण के लिए:[4]

  • समग्र रेखाएँ (कोण बनाने वाली रेखाएँ)
  • मिश्रित पंक्तियाँ
    • निर्धारित करें (ऐसी रेखाएं जो अनिश्चित काल तक विस्तारित नहीं होती हैं, जैसे वृत्त)
    • अनिश्चित (ऐसी रेखाएं जो अनिश्चित काल तक विस्तारित होती हैं, जैसे कि सीधी रेखा और परवलय)
एक शंकु (शंकु खंड ) को काटकर बनाए गए वक्र प्राचीन ग्रीस में अध्ययन किए गए वक्रों में से थे।

ग्रीक जियोमीटर ने कई अन्य प्रकार के वक्रों का अध्ययन किया था। एक कारण ज्यामितीय समस्याओं को हल करने में उनकी रुचि थी जिसे मानक कंपास और स्ट्रेटएज निर्माण का उपयोग करके हल नहीं किया जा सकता था। इन वक्रों में शामिल हैं:इन वक्रों में शामिल हैं:

  • पेरगा के एपोलोनियस द्वारा गहराई से अध्ययन किए गए शंकु वर्ग
  • डिओक्लेस के सिस्सोइड, डिओक्लेस द्वारा अध्ययन किया गया और घन को दोगुना करने के लिए एक विधि के रूप में उपयोग किया जाता है।[5]
  • निकोमेड्स का शंखभ, निकोमेडिस द्वारा घन को दोगुना करने और एक कोण को समत्रिभाजित करने की एक विधि के रूप में अध्ययन किया गया।[6]
  • आर्किमिडीज सर्पिल, जिसका अध्ययन आर्किमिडीज़ द्वारा एक कोण को समद्विभाजित करने और वृत्त को वर्गाकार करने की एक विधि के रूप में किया गया था।[7]
  • स्पाइरिक सेक्शन, पर्सियस द्वारा शंकु के वर्गों के रूप में अध्ययन किए गए टोरी के वर्गों का अध्ययन एपोलोनियस द्वारा किया गया था।
विश्लेषणात्मक ज्यामिति ने वक्रों की अनुमति दी, जैसे कि डेसकार्टेस के फोलियम, को ज्यामितीय निर्माण के बजाय समीकरणों का उपयोग करके परिभाषित किया जाना चाहिए।

सत्रहवीं शताब्दी में रेने डेसकार्टेस द्वारा विश्लेषणात्मक ज्यामिति की शुरुआत कर्व के सिद्धांत में एक मौलिक प्रगति थी। इसने एक वक्र को एक विस्तृत ज्यामितीय निर्माण के बजाय एक समीकरण का उपयोग करके वर्णित किया। इसने न केवल नए वक्रों को परिभाषित और अध्ययन करने की अनुमति दी, बल्कि इसने बीजगणितीय वक्रों के बीच एक औपचारिक अंतर को सक्षम किया जिसे बहुपद समीकरणों का उपयोग करके परिभाषित किया जा सकता है, और ट्रान्सेंडैंटल वक्र जो नहीं कर सकते हैं। पहले, कर्व्स को "ज्यामितीय" या "मैकेनिकल" के रूप में वर्णित किया गया था, इस आधार पर कि वे कैसे उत्पन्न हुए थे, या माना जा सकता था।[2]

केप्लर द्वारा खगोल विज्ञान में शंकु वर्गों का प्रयोग किया गया था। न्यूटन ने विभिन्नताओं की कलन में एक प्रारंभिक उदाहरण पर भी कार्य किया। वैरिएबल समस्याओं के समाधान, जैसे कि ब्राचिस्टोक्रोन और टॉटोक्रोन प्रश्न, वक्र के गुणों को नए तरीकों से पेश करते हैं (इस मामले में, चक्रज)। कैटेनरी का नाम हैंगिंग चेन की समस्या के समाधान के रूप में मिलता है, एक ऐसा प्रश्न जो डिफरेंशियल कैलकुलस के माध्यम से नियमित रूप से सुलभ हो गया।

अठारहवीं शताब्दी में, सामान्य तौर पर समतल बीजीय वक्रों के सिद्धांत की शुरुआत हुई। न्यूटन ने क्यूबिक कर्व्स का अध्ययन किया था, वास्तविक बिंदुओं के सामान्य विवरण में 'अंडाकार'। बेज़ाउट के प्रमेय के बयान ने कई पहलुओं को दिखाया जो कि उस समय की ज्यामिति के लिए सीधे सुलभ नहीं थे, एकवचन बिंदुओं और जटिल समाधानों के साथ करना।

उन्नीसवीं सदी के बाद से, वक्र सिद्धांत को कई गुना और बीजगणितीय किस्मों के सिद्धांत के आयाम के विशेष मामले के रूप में देखा जाता है। फिर भी, कई प्रश्न घटता के लिए विशिष्ट हैं, जैसे कि स्थान भरने वाले वक्र, जॉर्डन वक्र प्रमेय और हिल्बर्ट की सोलहवीं समस्या।

टोपोलॉजिकल कर्व

एक टोपोलॉजिकल कर्व को वास्तविक संख्याओं के अंतराल I से एक टोपोलॉजिकल स्पेस X में एक सतत फ़ंक्शन द्वारा निर्दिष्ट किया जा सकता है। ठीक से बोलना, वक्र की छवि है। हालांकि, कुछ संदर्भों में, को ही एक वक्र कहा जाता है, विशेष रूप से जब छवि वैसी नहीं दिखती है जिसे आम तौर पर वक्र कहा जाता है और यह पर्याप्त रूप से को चित्रित नहीं करती है।

उदाहरण के लिए, पीनो वक्र की छवि या, अधिक सामान्यतः, एक स्थान-भरने वाला वक्र पूरी तरह से एक वर्ग भरता है, और इसलिए को कैसे परिभाषित किया जाता है, इस पर कोई जानकारी नहीं देता है।

एक वक्र बंद है[8] या एक लूप है यदि और है। इस प्रकार एक बंद वक्र एक वृत्त के निरंतर मानचित्रण की छवि है।

यदि एक टोपोलॉजिकल वक्र का डोमेन एक बंद और परिबद्ध अंतराल है, तो वक्र को एक पथ कहा जाता है, जिसे टोपोलॉजिकल आर्क (या सिर्फ आर्क) भी कहा जाता है।

एक वक्र सरल होता है यदि यह एक अंतःक्षेपण या अंतःक्षेपी सतत फलन द्वारा एक वृत्त की छवि हो। दूसरे शब्दों में, यदि एक वक्र को एक डोमेन के रूप में एक अंतराल के साथ एक निरंतर फ़ंक्शन द्वारा परिभाषित किया जाता है, तो वक्र सरल होता है यदि और केवल यदि अंतराल के किन्हीं दो अलग-अलग बिंदुओं में अलग-अलग छवियां हों, सिवाय इसके कि, यदि बिंदु अंतराल के अंत बिंदु हैं। सहज रूप से, एक साधारण वक्र एक वक्र है जो "स्वयं को पार नहीं करता है और कोई लापता बिंदु नहीं है" (एक सतत गैर-स्व-प्रतिच्छेदी वक्र)।[9]

एक सकारात्मक क्षेत्र के साथ एक ड्रैगन वक्र

एक समतल सरल बंद वक्र को जॉर्डन वक्र भी कहते हैं। इसे विमान में एक गैर-स्व-प्रतिच्छेदन निरंतर लूप के रूप में भी परिभाषित किया गया है।[10] जॉर्डन वक्र प्रमेय में कहा गया है कि जॉर्डन वक्र के एक विमान में सेट पूरक में दो जुड़े घटक होते हैं (अर्थात वक्र विमान को दो गैर-प्रतिच्छेदन क्षेत्रों में विभाजित करता है जो दोनों जुड़े हुए हैं)।

एक समतल वक्र एक वक्र है जिसके लिए यूक्लिडियन तल है - ये ऐसे उदाहरण हैं जो पहली बार मिले हैं - या कुछ मामलों में प्रक्षेपी तल। स्पेस कर्व एक ऐसा कर्व है जिसके लिए कम से कम त्रि-आयामी है; तिरछा वक्र एक अंतरिक्ष वक्र है जो किसी तल में नहीं होता है। समतल, स्थान और तिरछा वक्रों की ये परिभाषाएँ वास्तविक बीजगणितीय वक्रों पर भी लागू होती हैं, हालाँकि वक्र की उपरोक्त परिभाषा लागू नहीं होती है (एक वास्तविक बीजगणितीय वक्र डिस्कनेक्ट हो सकता है)।

एक वक्र की परिभाषा में ऐसे आंकड़े शामिल होते हैं जिन्हें आम उपयोग में शायद ही वक्र कहा जा सकता है। उदाहरण के लिए, एक साधारण वक्र की छवि समतल (अंतरिक्ष-भरने वाले वक्र) में एक वर्ग को कवर कर सकती है और इस प्रकार एक सकारात्मक क्षेत्र हो सकता है।[11] फ्रैक्टल कर्व्स में ऐसे गुण हो सकते हैं जो सामान्य ज्ञान के लिए अजीब हों। उदाहरण के लिए, एक फ्रैक्टल वक्र का हॉसडॉर्फ आयाम एक से बड़ा हो सकता है (कोच स्नोफ्लेक देखें) और यहां तक कि एक सकारात्मक क्षेत्र भी। एक उदाहरण ड्रैगन कर्व है, जिसमें कई अन्य असामान्य गुण होते हैं।

विभेदनीय वक्र

मोटे तौर पर एक अलग-अलग वक्र बोलना एक वक्र है जिसे स्थानीय रूप से एक इंजेक्शन अलग-अलग फ़ंक्शन की छवि के रूप में परिभाषित किया जाता है जो वास्तविक संख्याओं के अंतराल I से एक अलग-अलग कई गुना X, अक्सर में होता है।

अधिक सटीक रूप से, एक अवकलनीय वक्र X का एक उपसमुच्चय C होता है, जहां C के प्रत्येक बिंदु का पड़ोस U होता है, जैसे कि वास्तविक संख्याओं के अंतराल के लिए भिन्न होता है।[clarification needed] दूसरे शब्दों में, एक अवकलनीय वक्र, आयाम एक का भिन्न-भिन्न बहुगुणित होता है।

अवकलनीय चाप

यूक्लिडियन ज्यामिति में, एक चाप (प्रतीक: ) एक अवकलनीय वक्र का एक जुड़ा उपसमुच्चय होता है।

रेखाओं के चापों को खंड, किरणें या रेखाएँ कहा जाता है, यह इस बात पर निर्भर करता है कि वे किस प्रकार परिबद्ध हैं।

एक सामान्य घुमावदार उदाहरण एक वृत्त का चाप है, जिसे एक वृत्ताकार चाप कहा जाता है।

एक गोले (या एक गोलाकार) में, एक बड़े वृत्त (या एक महान दीर्घवृत्त) के एक चाप को एक बड़ा चाप कहा जाता है।

वक्र की लंबाई

यदि -आयामी यूक्लिडियन स्थान है, और यदि एक इंजेक्शन और लगातार अलग-अलग कार्य है, तो की लंबाई को मात्रा के रूप में परिभाषित किया जाता है

वक्र की लंबाई पैरामीट्रिजेशन से स्वतंत्र है।

विशेष रूप से, एक बंद अंतराल पर परिभाषित एक सतत भिन्न फलन के ग्राफ की लंबाई है

अधिक आम तौर पर, यदि मीट्रिक के साथ एक मीट्रिक स्थान है, तो हम वक्र की लंबाई को परिभाषित कर सकते हैं

जहां सर्वोच्चता सभी और के सभी विभाजनों पर ले ली गई है।

एक सुधार योग्य वक्र एक परिमित लंबाई वाला वक्र है। एक वक्र को प्राकृतिक (या इकाई-गति या चाप लंबाई द्वारा पैरामीट्रिज्ड) कहा जाता है यदि किसी भी के लिए , हमारे पास है

यदि एक लिप्सचिट्ज़-निरंतर कार्य है, तो यह स्वतः सुधार योग्य है। इसके अलावा, इस मामले में, कोई की गति (या मीट्रिक व्युत्पन्न) को पर परिभाषित कर सकता है

और फिर दिखाओ कि

विभेदक ज्यामिति

जबकि मिलने वाले वक्रों के पहले उदाहरण ज्यादातर समतल वक्र हैं (अर्थात, रोज़मर्रा के शब्दों में, द्वि-आयामी अंतरिक्ष में घुमावदार रेखाएँ), ऐसे स्पष्ट उदाहरण हैं जैसे कि हेलिक्स जो तीन आयामों में स्वाभाविक रूप से मौजूद हैं। ज्यामिति की जरूरतें, और उदाहरण के लिए शास्त्रीय यांत्रिकी के लिए किसी भी संख्या में आयामों के अंतरिक्ष में वक्र की धारणा होना है। सामान्य सापेक्षता में, स्पेसटाइम में एक विश्व रेखा एक वक्र है।

यदि एक अवकलनीय गुणक है, तो हम में अवकलनीय वक्र की धारणा को परिभाषित कर सकते हैं। यह सामान्य विचार गणित में वक्रों के अनेक अनुप्रयोगों को समाविष्ट करने के लिए पर्याप्त है। स्थानीय दृष्टिकोण से कोई भी को यूक्लिडियन स्थान मान सकता है। दूसरी ओर, यह अधिक सामान्य होना उपयोगी है, इसमें (उदाहरण के लिए) वक्र की इस धारणा के माध्यम से स्पर्शरेखा सदिशों को में परिभाषित करना संभव है।

यदि एक चिकने मैनिफ़ोल्ड है, तो में एक स्मूद कर्व एक स्मूद मैप है

.

यह एक मूल धारणा है। कम और अधिक सीमित विचार भी हैं। यदि कई गुना है (यानी, एक कई गुना जिसका चार्ट लगातार बार अलग-अलग होता है), तो में एक वक्र ऐसा वक्र होता है जिसे केवल माना जाता है (यानी बार निरंतर अलग-अलग होता है)। यदि एक विश्लेषणात्मक मैनिफोल्ड है (अर्थात असीम रूप से भिन्न और चार्ट शक्ति श्रृंखला के रूप में अभिव्यक्त होते हैं), और एक विश्लेषणात्मक नक्शा है, तो को एक विश्लेषणात्मक वक्र कहा जाता है।

एक अवकलनीय वक्र को नियमित कहा जाता है यदि इसकी व्युत्पत्ति कभी लुप्त न हो। (शब्दों में, एक नियमित वक्र कभी भी रुकने के लिए धीमा नहीं होता या अपने आप पीछे नहीं हटता।) दो अलग-अलग वक्र

तथा

एक आपत्ति होने पर समकक्ष कहा जाता है नक्शा

ऐसा है कि उलटा नक्शा

ई आल्सो , तथा

सभी के लिए मानचित्र को का पुन:परमिश्रण कहा जाता है; और यह में सभी अवकलनीय वक्रों के सेट पर एक तुल्यता संबंध बनाता है। एक चाप पुनर्मूल्यांकन के संबंध के तहत वक्रों का एक तुल्यता वर्ग है।

बीजीय वक्र

बीजगणितीय वक्र वे वक्र हैं जिन्हें बीजगणितीय ज्यामिति में माना जाता है। एक समतल बीजगणितीय वक्र निर्देशांक x, y के बिंदुओं का समुच्चय होता है, जैसे कि f(x, y) = 0, जहां f किसी क्षेत्र F पर परिभाषित दो चरों में एक बहुपद है। एक कहता है कि वक्र F पर परिभाषित है। बीजगणितीय ज्यामिति आम तौर पर न केवल F में निर्देशांक वाले बिंदुओं पर विचार करती है बल्कि बीजगणितीय रूप से बंद क्षेत्र K में निर्देशांक वाले सभी बिंदुओं पर विचार करती है।

यदि C, F में गुणांकों वाले बहुपद f द्वारा परिभाषित एक वक्र है, तो वक्र को F के ऊपर परिभाषित किया गया है।

वास्तविक संख्याओं पर परिभाषित एक वक्र के मामले में, सामान्य रूप से जटिल निर्देशांक वाले बिंदुओं पर विचार किया जाता है। इस मामले में, वास्तविक निर्देशांक वाला एक बिंदु एक वास्तविक बिंदु होता है, और सभी वास्तविक बिंदुओं का समुच्चय वक्र का वास्तविक भाग होता है। इसलिए यह केवल एक बीजगणितीय वक्र का वास्तविक भाग है जो एक सामयिक वक्र हो सकता है (यह हमेशा मामला नहीं होता है, क्योंकि बीजगणितीय वक्र का वास्तविक भाग डिस्कनेक्ट हो सकता है और इसमें अलग-अलग बिंदु शामिल हो सकते हैं)। संपूर्ण वक्र, जो इसके जटिल बिंदु का समुच्चय है, स्थलीय दृष्टिकोण से एक सतह है। विशेष रूप से, गैर-एकवचन जटिल प्रक्षेपी बीजगणितीय वक्रों को रिमेंन सतह कहा जाता है।

एक क्षेत्र G में निर्देशांक वाले वक्र C के बिंदु G के ऊपर परिमेय कहे जाते हैं और इन्हें C(G) से दर्शाया जा सकता है। जब G परिमेय संख्याओं का क्षेत्र होता है, तो व्यक्ति केवल परिमेय बिंदुओं की बात करता है। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय को इस प्रकार पुनर्कथित किया जा सकता है: n > 2 के लिए, डिग्री n के फ़र्मेट वक्र के प्रत्येक तर्कसंगत बिंदु का शून्य निर्देशांक होता है।

बीजगणितीय वक्र स्थान वक्र भी हो सकते हैं, या उच्च आयाम वाले स्थान में वक्र हो सकते हैं, जैसे कि n। उन्हें आयाम एक के बीजीय किस्मों के रूप में परिभाषित किया गया है। उन्हें n चरों में कम से कम n–1 बहुपद समीकरणों के सामान्य हल के रूप में प्राप्त किया जा सकता है। यदि n–1 बहुपद आयाम n के एक स्थान में एक वक्र को परिभाषित करने के लिए पर्याप्त हैं, तो वक्र को एक पूर्ण प्रतिच्छेदन कहा जाता है। चर को समाप्त करके (उन्मूलन सिद्धांत के किसी भी उपकरण द्वारा), एक बीजगणितीय वक्र को समतल बीजगणितीय वक्र पर प्रक्षेपित किया जा सकता है, जो हालांकि क्यूप्स या दोहरे बिंदुओं जैसी नई विलक्षणता का परिचय दे सकता है।

प्रोजेक्टिव प्लेन में एक वक्र के लिए एक समतल वक्र भी पूरा किया जा सकता है: यदि एक वक्र को कुल डिग्री d के बहुपद f द्वारा परिभाषित किया गया है, तो wdf(u/w, v/w) एक सजातीय बहुपद g(u, v, w) को सरल बनाता है। u, v, w के मान जैसे कि g(u, v, w) = 0 प्रोजेक्टिव प्लेन में वक्र के पूरा होने के बिंदुओं के सजातीय निर्देशांक हैं और प्रारंभिक वक्र के अंक ऐसे हैं कि w है शून्य नहीं। एक उदाहरण फ़र्मेट कर्व un + vn = wn है, जिसका एक affine रूप xn + yn = 1 है। उच्च आयामी स्थानों में घटता के लिए समरूपीकरण की एक समान प्रक्रिया को परिभाषित किया जा सकता है।

रेखाओं को छोड़कर, बीजगणितीय वक्रों के सबसे सरल उदाहरण शांकव हैं, जो दो डिग्री और जीनस शून्य के गैर-एकवचन वक्र हैं। अण्डाकार वक्र, जो कि जीनस एक के गैर-एकवचन वक्र हैं, संख्या सिद्धांत में अध्ययन किए जाते हैं, और क्रिप्टोग्राफी के लिए महत्वपूर्ण अनुप्रयोग हैं।

यह भी देखें


टिप्पणियाँ

  1. In current mathematical usage, a line is straight. Previously lines could be either curved or straight.


संदर्भ

  1. In (rather old) French: "La ligne est la première espece de quantité, laquelle a tant seulement une dimension à sçavoir longitude, sans aucune latitude ni profondité, & n'est autre chose que le flux ou coulement du poinct, lequel […] laissera de son mouvement imaginaire quelque vestige en long, exempt de toute latitude." Pages 7 and 8 of Les quinze livres des éléments géométriques d'Euclide Megarien, traduits de Grec en François, & augmentez de plusieurs figures & demonstrations, avec la corrections des erreurs commises és autres traductions, by Pierre Mardele, Lyon, MDCXLV (1645).
  2. 2.0 2.1 Lockwood p. ix
  3. Heath p. 153
  4. Heath p. 160
  5. Lockwood p. 132
  6. Lockwood p. 129
  7. O'Connor, John J.; Robertson, Edmund F., "Spiral of Archimedes", MacTutor History of Mathematics archive, University of St Andrews
  8. This term my be ambiguous, as a non-closed curve may be a closed set, as is a line in a plane
  9. "Dictionary.com पर जॉर्डन आर्क परिभाषा। Dictionary.com संक्षिप्त। रैंडम हाउस, इंक". Dictionary.reference.com. Retrieved 2012-03-14.
  10. Sulovský, Marek (2012). असतत ज्यामिति में गहराई, क्रॉसिंग और संघर्ष (in English). Logos Verlag Berlin GmbH. p. 7. ISBN 9783832531195.
  11. Osgood, William F. (January 1903). "सकारात्मक क्षेत्र का जॉर्डन वक्र". Transactions of the American Mathematical Society. American Mathematical Society. 4 (1): 107–112. doi:10.2307/1986455. ISSN 0002-9947. JSTOR 1986455.


बाहरी संबंध