बौंडी के-कैलकुलस
बॉन्डी के-कैलकुलस सर हरमन बॉन्डी द्वारा लोकप्रिय विशेष सापेक्षता सिखाने की एक विधि है, जिसका उपयोग विश्वविद्यालय स्तर की भौतिकी कक्षाओं (उदाहरण के लिए ऑक्सफोर्ड विश्वविद्यालय में) में किया गया है।[1]), और कुछ सापेक्षता पाठ्यपुस्तकों में।[2]: 58–65 [3] K-कैलकुलस की उपयोगिता इसकी सरलता है। सापेक्षता के कई परिचय वेग की अवधारणा और लोरेंत्ज़ परिवर्तन की व्युत्पत्ति से शुरू होते हैं। अन्य अवधारणाएँ जैसे समय फैलाव, लंबाई संकुचन, एक साथ सापेक्षता की सापेक्षता, जुड़वां विरोधाभास का संकल्प और सापेक्षतावादी डॉपलर प्रभाव लोरेंत्ज़ परिवर्तन से प्राप्त होते हैं, ये सभी वेग के कार्यों के रूप में हैं।
बॉन्डी ने अपनी पुस्तक रिलेटिविटी एंड कॉमन सेंस में,[4] पहली बार 1964 में प्रकाशित हुआ और 1962 में इलस्ट्रेटेड लंदन समाचार में प्रकाशित लेखों के आधार पर, प्रस्तुति के क्रम को उलट दिया गया। वह उस चीज़ से आरंभ करता है जिसे वह अक्षर द्वारा निरूपित मौलिक अनुपात कहता है (जो रेडियल डॉपलर कारक साबित होता है)।[3]: 40 इससे वह जुड़वाँ विरोधाभास, और एक साथ सापेक्षता, समय फैलाव और लंबाई संकुचन, सभी के संदर्भ में बताते हैं . प्रदर्शनी में बाद में ऐसा नहीं हुआ कि वह वेग और मौलिक अनुपात के बीच एक लिंक प्रदान करता है . लोरेंत्ज़ परिवर्तन पुस्तक के अंत में दिखाई देता है।
इतिहास
के-कैलकुलस विधि का उपयोग पहले 1935 में ई. ए. मिल्ने द्वारा किया गया था।[5] मिल्ने ने पत्र का उपयोग किया एक स्थिर डॉपलर कारक को दर्शाने के लिए, लेकिन गैर-जड़त्वीय गति (और इसलिए एक भिन्न डॉपलर कारक) से जुड़े एक अधिक सामान्य मामले पर भी विचार किया गया। बोंडी ने पत्र का प्रयोग किया के बजाय और प्रेजेंटेशन को सरल बनाया (निरंतर के लिए)। केवल), और k-कैलकुलस नाम पेश किया।[4]: 109
बोंडी का k-कारक
दो जड़त्वीय पर्यवेक्षकों, ऐलिस और बॉब पर विचार करें, जो स्थिर सापेक्ष वेग से एक दूसरे से सीधे दूर जा रहे हैं। ऐलिस बॉब की ओर एक-एक बार नीली रोशनी की फ्लैश भेजती है सेकंड, जैसा कि उसकी अपनी घड़ी से मापा जाता है। चूँकि ऐलिस और बॉब एक दूरी से अलग हैं, इसलिए ऐलिस द्वारा फ़्लैश भेजने और बॉब द्वारा फ़्लैश प्राप्त करने के बीच देरी होती है। इसके अलावा, पृथक्करण दूरी लगातार एक स्थिर दर से बढ़ रही है, इसलिए विलंब बढ़ता जा रहा है। इसका मतलब यह है कि बॉब को फ्लैश प्राप्त होने के बीच का समय अंतराल, जैसा कि उसकी घड़ी द्वारा मापा गया है, इससे अधिक है सेकंड, कहते हैं कुछ स्थिरांक के लिए सेकंड . (इसके बजाय, यदि ऐलिस और बॉब सीधे एक-दूसरे की ओर बढ़ रहे होते, तो एक समान तर्क लागू होता, लेकिन उस मामले में .)[4]: 80
बौंडी वर्णन करता है "एक मौलिक अनुपात" के रूप में,[4]: 88 और अन्य लेखकों ने तब से इसे बॉन्डी के-फैक्टर या बॉन्डी का के-फैक्टर कहा है।[2]: 63
ऐलिस की चमक की आवृत्ति पर प्रसारित होती है हर्ट्ज, उसकी घड़ी द्वारा, और बॉब द्वारा आवृत्ति पर प्राप्त किया गया हर्ट्ज़, उसकी घड़ी से। इसका तात्पर्य डॉपलर कारक से है . तो बॉन्डी का के-फैक्टर डॉपलर फैक्टर का दूसरा नाम है (जब स्रोत ऐलिस और पर्यवेक्षक बॉब सीधे एक दूसरे से दूर या एक दूसरे की ओर बढ़ रहे हैं)।[3]: 40
यदि ऐलिस और बॉब को भूमिकाओं की अदला-बदली करनी थी, और बॉब ने ऐलिस को प्रकाश की चमक भेजी, तो सापेक्षता के सिद्धांत (आइंस्टीन का पहला अभिधारणा) का तात्पर्य है कि बॉब से ऐलिस तक के-कारक का मान ऐलिस से लेकर ऐलिस तक के-कारक के समान होगा। बॉब, क्योंकि सभी जड़त्वीय पर्यवेक्षक समतुल्य हैं। तो के-फैक्टर केवल पर्यवेक्षकों के बीच सापेक्ष गति पर निर्भर करता है और कुछ नहीं।[4]: 80
पारस्परिक k-कारक
अब, तीसरे जड़त्वीय पर्यवेक्षक डेव पर विचार करें, जो ऐलिस से एक निश्चित दूरी पर है, और ऐसा है कि बॉब ऐलिस और डेव के बीच सीधी रेखा पर स्थित है। चूंकि ऐलिस और डेव परस्पर आराम की स्थिति में हैं, ऐलिस से डेव तक की देरी निरंतर है। इसका मतलब यह है कि डेव को ऐलिस की नीली चमक एक-एक बार की दर से प्राप्त होती है सेकंड, उसकी घड़ी के हिसाब से, वही दर जिस पर ऐलिस उन्हें भेजती है। दूसरे शब्दों में, ऐलिस से डेव तक के-फैक्टर एक के बराबर है।[4]: 77
अब मान लीजिए कि जब भी बॉब को ऐलिस से नीला फ्लैश मिलता है तो वह तुरंत डेव की ओर अपना लाल फ्लैश भेजता है, हर बार एक बार सेकंड (बॉब की घड़ी के अनुसार)। आइंस्टीन का दूसरा अभिधारणा, कि प्रकाश की गति उसके स्रोत की गति से स्वतंत्र है, इसका तात्पर्य यह है कि ऐलिस की नीली फ्लैश और बॉब की लाल फ्लैश दोनों एक ही गति से यात्रा करती हैं, न ही दूसरे से आगे निकलती हैं, और इसलिए एक ही समय में डेव पर पहुंचती हैं। तो डेव को बॉब से हर बार एक लाल फ्लैश मिलता है सेकंड, डेव की घड़ी द्वारा, जो बॉब द्वारा भेजे गए थे बॉब की घड़ी से सेकंड। इसका तात्पर्य यह है कि बॉब से डेव तक के-फैक्टर है .[4]: 80
यह स्थापित करता है कि सीधे एक-दूसरे से दूर जाने वाले (लाल शिफ्ट) पर्यवेक्षकों के लिए के-कारक, समान गति (नीला बदलाव) से एक-दूसरे की ओर सीधे जाने वाले पर्यवेक्षकों के लिए के-कारक का व्युत्क्रम है।
जुड़वाँ विरोधाभास
अब चौथे जड़त्व पर्यवेक्षक कैरल पर विचार करें जो डेव से ऐलिस तक ठीक उसी गति से यात्रा करता है जिस गति से बॉब ऐलिस से डेव तक यात्रा करता है। कैरोल की यात्रा का समय इस प्रकार तय किया गया है कि वह डेव को ठीक उसी समय छोड़ती है जब बॉब आता है। ऐलिस, बॉब और कैरोल की घड़ियों द्वारा रिकॉर्ड किए गए समय को निरूपित करें .
जब बॉब ऐलिस के पास से गुज़रता है, तो वे दोनों अपनी घड़ियाँ उसी के अनुसार समन्वयित कर लेते हैं . जब कैरोल बॉब के पास से गुजरती है, तो वह अपनी घड़ी को बॉब की घड़ी से समकालिक कर देती है, . अंत में, जैसे ही कैरोल ऐलिस के पास से गुजरती है, वे अपनी घड़ियों की तुलना एक दूसरे से करते हैं। न्यूटोनियन भौतिकी में, उम्मीद यह होगी कि, अंतिम तुलना में, ऐलिस और कैरोल की घड़ी सहमत होंगी, . नीचे दिखाया जाएगा कि सापेक्षता में यह सत्य नहीं है। यह प्रसिद्ध जुड़वां विरोधाभास का एक संस्करण है जिसमें समान जुड़वां अलग हो जाते हैं और फिर से जुड़ जाते हैं, लेकिन बाद में पता चलता है कि उनमें से एक अब दूसरे से बड़ा है।
यदि ऐलिस समय पर प्रकाश की एक फ्लैश भेजती है बॉब की ओर, फिर, के-फैक्टर की परिभाषा के अनुसार, यह बॉब द्वारा समय पर प्राप्त किया जाएगा . फ़्लैश का समय इस प्रकार तय किया गया है कि वह ठीक उसी समय बॉब के पास पहुंचे जब बॉब कैरोल से मिले, इसलिए कैरोल पढ़ने के लिए अपनी घड़ी को सिंक्रनाइज़ करती है .
इसके अलावा, जब बॉब और कैरोल मिलते हैं, तो वे दोनों एक साथ ऐलिस को फ्लैश भेजते हैं, जो ऐलिस को एक साथ प्राप्त होते हैं। सबसे पहले, बॉब के फ्लैश को ध्यान में रखते हुए, समय पर भेजा गया , यह ऐलिस को समय पर प्राप्त होना चाहिए , इस तथ्य का उपयोग करते हुए कि ऐलिस से बॉब तक के-फैक्टर बॉब से ऐलिस तक के-फैक्टर के समान है।
जैसा कि बॉब की बाहरी यात्रा की अवधि थी , उसकी घड़ी से, समरूपता से यह पता चलता है कि समान गति से समान दूरी पर कैरोल की वापसी यात्रा की अवधि भी होनी चाहिए , उसकी घड़ी से, और इसलिए जब कैरोल ऐलिस से मिलती है, तो कैरोल की घड़ी पढ़ती है . यात्रा के इस चरण के लिए k-कारक पारस्परिक होना चाहिए (जैसा कि पहले चर्चा की गई है), इसलिए, ऐलिस की ओर कैरोल के फ्लैश को ध्यान में रखते हुए, एक संचरण अंतराल के रिसेप्शन अंतराल से मेल खाता है . इसका मतलब यह है कि ऐलिस की घड़ी का आखिरी समय है, जब कैरोल और ऐलिस मिलते हैं . यह कैरोल की घड़ी के समय से भी बड़ा है तब से
रडार माप और वेग
के-कैलकुलस पद्धति में, दूरियों को रडार का उपयोग करके मापा जाता है। एक पर्यवेक्षक एक लक्ष्य की ओर एक रडार पल्स भेजता है और उससे एक प्रतिध्वनि प्राप्त करता है। राडार पल्स (जो यात्रा करता है , प्रकाश की गति) कुल दूरी तय करती है, वहां और पीछे, यानी लक्ष्य से दोगुनी दूरी, और समय लेती है , कहाँ और रडार पल्स के प्रसारण और रिसेप्शन पर पर्यवेक्षक की घड़ी द्वारा रिकॉर्ड किए गए समय हैं। इसका तात्पर्य यह है कि लक्ष्य से दूरी है[2]: 60
वेग रचना
तीन जड़त्वीय पर्यवेक्षकों ऐलिस, बॉब और एड पर विचार करें, जो उस क्रम में व्यवस्थित हैं और एक ही सीधी रेखा के साथ अलग-अलग गति से आगे बढ़ रहे हैं। इस खंड में, संकेतन ऐलिस से बॉब तक (और इसी तरह पर्यवेक्षकों के अन्य जोड़े के बीच) के-फैक्टर को दर्शाने के लिए उपयोग किया जाएगा।
पहले की तरह, ऐलिस बॉब और एड की ओर एक नीला फ्लैश भेजती है सेकंड, उसकी घड़ी द्वारा, जिसे बॉब प्रत्येक प्राप्त करता है सेकंड, बॉब की घड़ी के अनुसार, और एड प्रत्येक को प्राप्त करता है सेकंड, एड की घड़ी से।
अब मान लीजिए कि जब भी बॉब को ऐलिस से नीला फ्लैश मिलता है तो वह तुरंत एड की ओर अपना लाल फ्लैश भेजता है, एक-एक बार बॉब की घड़ी के हिसाब से सेकंड, इसलिए एड को हर बार बॉब से एक लाल फ्लैश मिलता है सेकंड, एड की घड़ी से। आइंस्टीन का दूसरा अभिधारणा, कि प्रकाश की गति उसके स्रोत की गति से स्वतंत्र है, इसका तात्पर्य यह है कि ऐलिस का नीला फ्लैश और बॉब का लाल फ्लैश दोनों एक ही गति से यात्रा करते हैं, न ही दूसरे से आगे निकलते हैं, और इसलिए एक ही समय में एड पर पहुंचते हैं। इसलिए, जैसा कि एड द्वारा मापा जाता है, लाल फ़्लैश अंतराल और नीला फ़्लैश अंतराल वैसा ही होना चाहिए. तो k-कारकों के संयोजन का नियम केवल गुणन है:[4]: 105
अपरिवर्तनीय अंतराल
पहले वर्णित रडार विधि का उपयोग करते हुए, जड़त्वीय पर्यवेक्षक ऐलिस निर्देशांक निर्दिष्ट करता है समय पर राडार पल्स संचारित करके किसी घटना पर और समय पर उसकी प्रतिध्वनि प्राप्त हो रही है , जैसा कि उसकी घड़ी द्वारा मापा गया था।
इसी प्रकार, जड़त्वीय पर्यवेक्षक बॉब निर्देशांक निर्दिष्ट कर सकते हैं समय पर राडार पल्स संचारित करके उसी घटना पर और समय पर उसकी प्रतिध्वनि प्राप्त हो रही है , जैसा कि उसकी घड़ी से मापा जाता है। हालाँकि, जैसा कि चित्र से पता चलता है, बॉब के लिए अपना स्वयं का रडार सिग्नल उत्पन्न करना आवश्यक नहीं है, क्योंकि वह इसके बजाय केवल ऐलिस के सिग्नल से समय ले सकता है।
अब, ऐलिस से बॉब तक यात्रा करने वाले सिग्नल पर के-कैलकुलस विधि लागू करना
लोरेंत्ज़ परिवर्तन
के लिए दो समीकरण पिछले अनुभाग में एक साथ समीकरणों को प्राप्त करने के लिए हल किया जा सकता है:[4]: 118 [2]: 67
तेज़ी
तेज़ी के-फैक्टर से परिभाषित किया जा सकता है[2]: 71
संदर्भ
- ↑ Mason, L.J.; Woodhouse, N.M.J. "सापेक्षता और विद्युत चुंबकत्व" (PDF). Retrieved 20 February 2021.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Woodhouse, NMJ (2003). विशेष सापेक्षता. Springer. ISBN 1-85233-426-6.
- ↑ 3.0 3.1 3.2 Ray d'Inverno (1992). "Chapter 2: The k-calculus". आइंस्टीन की सापेक्षता का परिचय. Clarendon Press. ISBN 0-19-859686-3.
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 Bondi, Hermann (1964). सापेक्षता और सामान्य ज्ञान. New York: Doubleday & Company. (Also published in 1965 in Great Britain by Heinemann, and reprinted in 1980 by Dover.)
- ↑ Milne, E.A. (1935). सापेक्षता गुरुत्वाकर्षण और विश्व संरचना. Oxford University Press. pp. 36–38.