डिराक समीकरण
{{Quantum mechanics|cTopic=Equations}कण भौतिकी में, डिराक समीकरण 1928 में ब्रिटिश भौतिक विज्ञानी पॉल डिराक द्वारा प्राप्त एक सापेक्षतावादी तरंग समीकरण है। इसके डिराक समीकरण #सहसंयोजक रूप और सापेक्षतावादी अपरिवर्तन, या डिराक समीकरण #पॉली सिद्धांत के साथ तुलना सहित, यह सभी स्पिन-½|स्पिन का वर्णन करता है।1⁄2 बड़े कण, जिन्हें डिराक कण कहा जाता है, जैसे इलेक्ट्रॉन और क्वार्क जिनके लिए समता (भौतिकी) एक समरूपता (भौतिकी) है। यह क्वांटम यांत्रिकी के सिद्धांतों और विशेष सापेक्षता के सिद्धांत दोनों के अनुरूप है,[1] और क्वांटम यांत्रिकी के संदर्भ में विशेष सापेक्षता को पूरी तरह से ध्यान में रखने वाला पहला सिद्धांत था। इसे पूरी तरह से कठोर तरीके से हाइड्रोजन वर्णक्रमीय श्रृंखला की बारीक संरचना का लेखा-जोखा करके मान्य किया गया था।
समीकरण ने पदार्थ के एक नए रूप, antimatter के अस्तित्व को भी दर्शाया, जो पहले से संदेहास्पद और अवलोकित था और जिसकी कई वर्षों बाद प्रयोगात्मक रूप से पुष्टि की गई थी। इसने वोल्फगैंग पाउली के फेनोमेनोलॉजी (कण भौतिकी) स्पिन (भौतिकी) सिद्धांत में कई घटक तरंग कार्यों की शुरूआत के लिए एक सैद्धांतिक औचित्य भी प्रदान किया। डिराक सिद्धांत में तरंग फ़ंक्शन चार जटिल संख्याओं (बिस्पिनोर के रूप में जाना जाता है) के वैक्टर हैं, जिनमें से दो गैर-सापेक्षतावादी सीमा में पाउली समीकरण से मिलते जुलते हैं, श्रोडिंगर समीकरण के विपरीत जो केवल एक जटिल मूल्य के तरंग कार्यों का वर्णन करता है। इसके अलावा, शून्य द्रव्यमान की सीमा में, डिराक समीकरण वेइल समीकरण में कम हो जाता है।
हालाँकि डिराक ने पहले तो अपने परिणामों के महत्व को पूरी तरह से नहीं समझा, क्वांटम यांत्रिकी और सापेक्षता के मिलन के परिणामस्वरूप स्पिन की विस्तृत व्याख्या - और पोजीट्रान की अंतिम खोज - सैद्धांतिक भौतिकी की महान विजयों में से एक का प्रतिनिधित्व करती है। इस उपलब्धि को उनसे पहले आइजैक न्यूटन, जेम्स क्लर्क मैक्सवेल और अल्बर्ट आइंस्टीन के कार्यों के बराबर बताया गया है।[2] क्वांटम क्षेत्र सिद्धांत के संदर्भ में, स्पिन के अनुरूप क्वांटम क्षेत्रों का वर्णन करने के लिए डिराक समीकरण की पुनर्व्याख्या की गई है-1⁄2 कण.
डिराक समीकरण वेस्टमिन्स्टर ऐबी के फर्श पर एक पट्टिका पर अंकित है। 13 नवंबर 1995 को अनावरण किया गया, यह पट्टिका पॉल डिराक के जीवन का स्मरण कराती है।[3]
गणितीय सूत्रीकरण
क्षेत्र सिद्धांत के लिए अपने आधुनिक सूत्रीकरण में, डिराक समीकरण को डिराक स्पिनर क्षेत्र के संदर्भ में लिखा गया है एक जटिल वेक्टर स्थान में मान लेना, जिसे ठोस रूप से वर्णित किया गया है , समतल स्पेसटाइम (मिन्कोवस्की स्थान) पर परिभाषित . इसकी अभिव्यक्ति में गामा मैट्रिक्स और एक पैरामीटर भी शामिल है द्रव्यमान के साथ-साथ अन्य भौतिक स्थिरांकों के रूप में व्याख्या की गई।
एक क्षेत्र के संदर्भ में , डिराक समीकरण तब है
और प्राकृतिक इकाइयों में, फेनमैन स्लैश नोटेशन के साथ,
गामा मैट्रिक्स चार का एक सेट है जटिल आव्यूह (तत्व) ) जो परिभाषित विरोधी कम्यूटेशन संबंधों को संतुष्ट करते हैं:
स्लैश नोटेशन एक कॉम्पैक्ट नोटेशन है
डिराक एडजॉइंट और एडजॉइंट समीकरण
स्पिनर क्षेत्र का डायराक जोड़ परिभाषित किया जाता है
क्लेन-गॉर्डन समीकरण
को लागू करने डिराक समीकरण देता है
संरक्षित धारा
सिद्धांत की एक संरक्षित धारा है
Adding the Dirac and adjoint Dirac equations gives
इस अभिव्यक्ति को प्राप्त करने का एक अन्य तरीका विभिन्न तरीकों से है, वैश्विक के लिए नोएदर के प्रमेय को लागू करना संरक्षित धारा प्राप्त करने के लिए समरूपता
Recall the Lagrangian is
Now considering the variation parameter to be infinitesimal, we work at first order in and ignore terms. From the previous discussion we immediately see the explicit variation in the Lagrangian due to is vanishing, that is under the variation,
As part of Noether's theorem, we find the implicit variation in the Lagrangian due to variation of fields. If the equation of motion for are satisfied, then
|
(*) |
This immediately simplifies as there are no partial derivatives of in the Lagrangian. is the infinitesimal variation
समाधान
चूंकि डिराक ऑपरेटर वर्ग-अभिन्न कार्यों के 4-टुपल्स पर कार्य करता है, इसलिए इसके समाधान समान हिल्बर्ट स्थान के सदस्य होने चाहिए। यह तथ्य कि समाधानों की ऊर्जा की कोई निचली सीमा नहीं है, अप्रत्याशित है।
समतल-तरंग समाधान
प्लेन-वेव समाधान वे होते हैं जो एक एन्सैट्ज़ से उत्पन्न होते हैं
उदाहरण के लिए, चिरल प्रतिनिधित्व में , समाधान स्थान को a द्वारा पैरामीटराइज़ किया गया है वेक्टर , साथ
ये समतल-तरंग समाधान विहित परिमाणीकरण के लिए एक प्रारंभिक बिंदु प्रदान करते हैं।
लैग्रेंजियन सूत्रीकरण
डिराक समीकरण और एडजॉइंट डिराक समीकरण दोनों को एक विशिष्ट लैग्रेन्जियन घनत्व के साथ क्रिया से (बदलते हुए) प्राप्त किया जा सकता है जो निम्न द्वारा दिया गया है:
प्राकृतिक इकाइयों में और स्लैश नोटेशन के साथ, क्रिया तब होती है
इस क्रिया के लिए, संरक्षित धारा उपरोक्त वैश्विक के अनुरूप संरक्षित धारा के रूप में उत्पन्न होता है क्षेत्र सिद्धांत के लिए नोएदर प्रमेय के माध्यम से समरूपता। समरूपता को स्थानीय, स्पेसटाइम बिंदु पर निर्भर में बदलकर इस क्षेत्र सिद्धांत का आकलन करने से गेज समरूपता (वास्तव में, गेज अतिरेक) मिलती है। परिणामी सिद्धांत क्वांटम इलेक्ट्रोडायनामिक्स या QED है। अधिक विस्तृत चर्चा के लिए नीचे देखें।
लोरेंत्ज़ इनवेरिएंस
डिराक समीकरण लोरेंत्ज़ परिवर्तनों के तहत अपरिवर्तनीय है, अर्थात लोरेंत्ज़ समूह की कार्रवाई के तहत या सख्ती से , पहचान से जुड़ा घटक।
एक डिराक स्पिनर के लिए ठोस रूप से मूल्यों को लेने के रूप में देखा जाता है , लोरेंत्ज़ परिवर्तन के तहत परिवर्तन ए द्वारा दिया गया है जटिल मैट्रिक्स . तदनुरूप को परिभाषित करने में कुछ सूक्ष्मताएँ हैं , साथ ही संकेतन का एक मानक दुरुपयोग।
अधिकांश उपचार लाई बीजगणित स्तर पर होते हैं। अधिक विस्तृत उपचार के लिए लोरेंत्ज़ समूह#लाई बीजगणित देखें। लोरेंत्ज़ समूह वास्तविक मैट्रिक्स अभिनय कर रहे हैं छह मैट्रिक्स के एक सेट द्वारा उत्पन्न होता है घटकों के साथ
ये लोरेंत्ज़ बीजगणित रूपान्तरण संबंधों को संतुष्ट करते हैं
लोरेंत्ज़ बीजगणित रूपान्तरण संबंधों को संतुष्ट करें।
एक लोरेंत्ज़ परिवर्तन के रूप में लिखा जा सकता है
स्पिन स्पेस पर संबंधित परिवर्तन है
Multiplying both sides from the left by and returning the dummy variable to gives
लोरेंत्ज़ इनवेरिएंस से संबद्ध एक संरक्षित नोएथर धारा है, या यूं कहें कि संरक्षित नोएथर धाराओं का एक टेंसर है। . इसी प्रकार, चूंकि अनुवाद के तहत समीकरण अपरिवर्तनीय है, इसलिए संरक्षित नोथर धाराओं का एक टेंसर है , जिसे सिद्धांत के तनाव-ऊर्जा टेंसर के रूप में पहचाना जा सकता है। लोरेंत्ज़ धारा आंतरिक कोणीय गति का प्रतिनिधित्व करने वाले टेंसर के अलावा तनाव-ऊर्जा टेंसर के संदर्भ में भी लिखा जा सकता है।
ऐतिहासिक विकास और आगे गणितीय विवरण
डिराक समीकरण का उपयोग (ऐतिहासिक रूप से) क्वांटम-मैकेनिकल सिद्धांत को परिभाषित करने के लिए भी किया गया था इसके बजाय इसकी व्याख्या तरंग-फ़ंक्शन के रूप में की जाती है।
पॉल डिराक द्वारा मूल रूप से प्रस्तावित रूप में डिराक समीकरण है:[4]
इस समीकरण को बनाने में डिराक का उद्देश्य सापेक्ष रूप से गतिमान इलेक्ट्रॉन के व्यवहार को समझाना था, और इस प्रकार परमाणु को सापेक्षता के अनुरूप तरीके से व्यवहार करने की अनुमति देना था। उनकी मामूली आशा यह थी कि इस तरह से पेश किए गए सुधारों का परमाणु स्पेक्ट्रा की समस्या पर असर पड़ सकता है।
उस समय तक, परमाणु के पुराने क्वांटम सिद्धांत को सापेक्षता के सिद्धांत के अनुकूल बनाने के प्रयास, जो परमाणु नाभिक के इलेक्ट्रॉन की संभवतः गैर-वृत्ताकार कक्षा में संग्रहीत कोणीय गति को अलग करने पर आधारित थे, विफल हो गए थे - और नया वर्नर हाइजेनबर्ग, वोल्फगैंग पाउली, पास्कल जॉर्डन , इरविन श्रोडिंगर|श्रोडिंगर और स्वयं डिराक के क्वांटम यांत्रिकी इस समस्या का इलाज करने के लिए पर्याप्त रूप से विकसित नहीं हुए थे। हालाँकि डिराक के मूल इरादे संतुष्ट थे, उनके समीकरण का पदार्थ की संरचना पर कहीं अधिक गहरा प्रभाव पड़ा और उन्होंने वस्तुओं की नई गणितीय कक्षाएं पेश कीं जो अब मौलिक भौतिकी के आवश्यक तत्व हैं।
इस समीकरण में नए तत्व चार हैं 4 × 4 मैट्रिक्स (गणित) α1, α2, α3 और β, और चार-घटक तरंग फ़ंक्शन ψ. इसमें चार घटक हैं ψ क्योंकि कॉन्फ़िगरेशन स्थान में किसी भी बिंदु पर इसका मूल्यांकन एक बिस्पिनर है। इसकी व्याख्या स्पिन-1/2|स्पिन-अप इलेक्ट्रॉन, स्पिन-डाउन इलेक्ट्रॉन, स्पिन-अप पॉज़िट्रॉन और स्पिन-डाउन पॉज़िट्रॉन के सुपरपोज़िशन के रूप में की जाती है। वह 4 × 4 मैट्रिक्स αk और β सभी हर्मिटियन मैट्रिक्स हैं और अनैच्छिक मैट्रिक्स हैं:
इस प्रकार एकल प्रतीकात्मक समीकरण तरंग फ़ंक्शन बनाने वाली चार मात्राओं के लिए चार युग्मित रैखिक प्रथम-क्रम आंशिक अंतर समीकरणों में सुलझता है। समीकरण को प्लैंक इकाइयों में अधिक स्पष्ट रूप से इस प्रकार लिखा जा सकता है:[5]
श्रोडिंगर समीकरण को सापेक्ष बनाना
डिराक समीकरण सतही तौर पर एक विशाल मुक्त कण के लिए श्रोडिंगर समीकरण के समान है:
यद्यपि यह श्रोडिंगर समीकरण का एक सफल सापेक्षतावादी सामान्यीकरण नहीं है, इस समीकरण को क्वांटम क्षेत्र सिद्धांत के संदर्भ में पुनर्जीवित किया गया है, जहां इसे क्लेन-गॉर्डन समीकरण के रूप में जाना जाता है, और एक स्पिनलेस कण क्षेत्र (उदाहरण के लिए सन मेसन या हिग्स बॉसन) का वर्णन करता है। ऐतिहासिक रूप से, श्रोडिंगर स्वयं अपने नाम वाले समीकरण से पहले इस समीकरण पर पहुंचे थे लेकिन जल्द ही इसे खारिज कर दिया। क्वांटम क्षेत्र सिद्धांत के संदर्भ में, अनिश्चित घनत्व को चार्ज घनत्व के अनुरूप समझा जाता है, जो सकारात्मक या नकारात्मक हो सकता है, न कि संभाव्यता घनत्व।
डिराक का तख्तापलट
इस प्रकार डिराक ने एक ऐसे समीकरण को आज़माने के बारे में सोचा जो स्थान और समय दोनों में प्रथम क्रम का हो। उदाहरण के लिए, कोई औपचारिक रूप से (अर्थात् संकेतन के दुरुपयोग से) ऊर्जा-संवेग संबंध ले सकता है
कहानी के अनुसार, डिराक कैंब्रिज में चिमनी की ओर देख रहा था और इस समस्या पर विचार कर रहा था, तभी उसके मन में वेव ऑपरेटर का वर्गमूल निकालने का विचार इस प्रकार आया:
इन आव्यूहों के संदर्भ में गुणनखंडन को देखते हुए, कोई भी अब तुरंत एक समीकरण लिख सकता है
सहसंयोजक रूप और आपेक्षिक अपरिवर्तन
समीकरण के लोरेंत्ज़ सहप्रसरण को प्रदर्शित करने के लिए, इसे ऐसे रूप में ढालना फायदेमंद है जिसमें स्थान और समय व्युत्पन्न समान स्तर पर दिखाई देते हैं। नए मैट्रिक्स इस प्रकार पेश किए गए हैं:
जहां दो बार दोहराए गए सूचकांक के मूल्यों पर आइंस्टीन संकेतन है μ = 0, 1, 2, 3, और ∂μ 4-ग्रेडिएंट है। व्यवहार में कोई अक्सर गामा मैट्रिक्स को पाउली मैट्रिक्स और 2 × 2 पहचान मैट्रिक्स से लिए गए 2 × 2 उप-मैट्रिसेस के संदर्भ में लिखता है। स्पष्ट रूप से गामा मैट्रिक्स#डिराक आधार है
डिराक समीकरण की व्याख्या अब एक eigenvalue समीकरण के रूप में की जा सकती है, जहां शेष द्रव्यमान 4-पल ऑपरेटर के आइगेनवैल्यू के समानुपाती होता है, आनुपातिकता स्थिरांक प्रकाश की गति होती है:
एक मौलिक प्रमेय में कहा गया है कि यदि मैट्रिक्स के दो अलग-अलग सेट दिए गए हैं और दोनों क्लिफोर्ड बीजगणित को संतुष्ट करते हैं, तो वे मैट्रिक्स समानता द्वारा एक दूसरे से जुड़े हुए हैं:
नियोजित डिराक मैट्रिसेस के विभिन्न निरूपण डिराक तरंग फ़ंक्शन में भौतिक सामग्री के विशेष पहलुओं पर ध्यान केंद्रित करेंगे। यहां दिखाए गए प्रतिनिधित्व को मानक प्रतिनिधित्व के रूप में जाना जाता है - इसमें, तरंग फ़ंक्शन के ऊपरी दो घटक प्रकाश की तुलना में कम ऊर्जा और छोटे वेग की सीमा में पाउली के 2 स्पिनर तरंग फ़ंक्शन में चले जाते हैं।
उपरोक्त विचार, ग्रासमैन की मूल प्रेरणा को ध्यान में रखते हुए, ज्यामिति में गामा की उत्पत्ति को प्रकट करते हैं; वे स्पेसटाइम में यूनिट वैक्टर के एक निश्चित आधार का प्रतिनिधित्व करते हैं। इसी प्रकार, गामा के उत्पाद जैसे γμγν उन्मुख सतह तत्वों का प्रतिनिधित्व करते हैं, इत्यादि। इसे ध्यान में रखते हुए, कोई गामा के संदर्भ में स्पेसटाइम पर इकाई आयतन तत्व का रूप इस प्रकार पा सकता है। परिभाषा के अनुसार, यह है
संबंधित सिद्धांतों के साथ तुलना
पाउली सिद्धांत
आधे-पूर्णांक स्पिन (भौतिकी) को शुरू करने की आवश्यकता प्रयोगात्मक रूप से स्टर्न-गेरलाच प्रयोग के परिणामों पर आधारित है। परमाणुओं की एक किरण को एक मजबूत समरूपता और विषमता चुंबकीय क्षेत्र के माध्यम से चलाया जाता है, जो फिर विभाजित हो जाता है Nपरमाणुओं की स्पिन (भौतिकी) के आधार पर भाग। यह पाया गया कि चांदी के परमाणुओं के लिए, किरण दो भागों में विभाजित थी; इसलिए जमीनी स्थिति पूर्णांक नहीं हो सकती, क्योंकि भले ही परमाणुओं की आंतरिक कोणीय गति यथासंभव छोटी हो, 1, किरण को परमाणुओं के अनुरूप तीन भागों में विभाजित किया जाएगा Lz = −1, 0, +1. निष्कर्ष यह है कि चांदी के परमाणुओं में शुद्ध आंतरिक कोणीय गति होती है 1⁄2. वोल्फगैंग पाउली ने एक सिद्धांत स्थापित किया, जिसने हैमिल्टन के सिद्धांत में दो-घटक तरंग फ़ंक्शन और संबंधित सुधार शब्द को पेश करके इस विभाजन को समझाया, जो इस तरंग फ़ंक्शन के अर्ध-शास्त्रीय युग्मन को एक लागू चुंबकीय क्षेत्र में दर्शाता है, जैसा कि एसआई इकाइयों में होता है: (ध्यान दें कि बोल्ड चेहरे वाले अक्षर 3 आयामों में यूक्लिडियन सदिश दर्शाते हैं, जबकि मिन्कोव्स्की अंतरिक्ष चार-वेक्टर Aμ को इस प्रकार परिभाषित किया जा सकता है .)
इस बात पर दृढ़ता से जोर दिया जाना चाहिए कि डिराक स्पिनर का बड़े और छोटे घटकों में पृथक्करण स्पष्ट रूप से कम-ऊर्जा सन्निकटन पर निर्भर करता है। संपूर्ण डिराक स्पिनर एक अघुलनशील संपूर्ण का प्रतिनिधित्व करता है, और पाउली सिद्धांत तक पहुंचने के लिए जिन घटकों को यहां उपेक्षित किया गया है, वे सापेक्षतावादी शासन में नई घटनाएं लाएंगे - एंटीमैटर और पदार्थ निर्माण और कणों के विनाश का विचार।
वेइल सिद्धांत
जनहीन मामले में , डिराक समीकरण वेइल समीकरण में बदल जाता है, जो सापेक्ष द्रव्यमान रहित स्पिन का वर्णन करता है-1⁄2 कण.[7] सिद्धांत एक सेकंड प्राप्त करता है समरूपता: नीचे देखें.
भौतिक व्याख्या
अवलोकनीय वस्तुओं की पहचान
क्वांटम सिद्धांत में महत्वपूर्ण भौतिक प्रश्न यह है: सिद्धांत द्वारा परिभाषित भौतिक रूप से देखने योग्य मात्राएँ क्या हैं? क्वांटम यांत्रिकी के अभिधारणाओं के अनुसार, ऐसी मात्राएँ हर्मिटियन ऑपरेटरों द्वारा परिभाषित की जाती हैं जो किसी प्रणाली की संभावित अवस्थाओं के हिल्बर्ट स्थान पर कार्य करती हैं। इन ऑपरेटरों के eigenvalues तब संबंधित भौतिक मात्रा की माप समस्या के संभावित परिणाम होते हैं। श्रोडिंगर सिद्धांत में, ऐसी सबसे सरल वस्तु समग्र हैमिल्टनियन है, जो सिस्टम की कुल ऊर्जा का प्रतिनिधित्व करती है। डिराक सिद्धांत को पारित करने पर इस व्याख्या को बनाए रखने के लिए, हैमिल्टनियन को लिया जाना चाहिए
छिद्र सिद्धांत
नकारात्मक E समीकरण के समाधान समस्याग्रस्त हैं, क्योंकि यह माना गया था कि कण में सकारात्मक ऊर्जा है। हालाँकि, गणितीय रूप से कहें तो, हमारे लिए नकारात्मक-ऊर्जा समाधानों को अस्वीकार करने का कोई कारण नहीं दिखता है। चूंकि वे मौजूद हैं, इसलिए उन्हें आसानी से नजरअंदाज नहीं किया जा सकता है, क्योंकि एक बार जब इलेक्ट्रॉन और विद्युत चुम्बकीय क्षेत्र के बीच बातचीत शामिल हो जाती है, तो सकारात्मक-ऊर्जा ईजेनस्टेट में रखा गया कोई भी इलेक्ट्रॉन क्रमिक रूप से कम ऊर्जा वाले नकारात्मक-ऊर्जा ईजेनस्टेट में क्षय हो जाएगा। वास्तविक इलेक्ट्रॉन स्पष्ट रूप से इस तरह से व्यवहार नहीं करते हैं, अन्यथा वे फोटॉन के रूप में ऊर्जा उत्सर्जित करके गायब हो जाएंगे।
इस समस्या से निपटने के लिए, डिराक सागर परिकल्पना पेश की, जिसे छेद सिद्धांत के रूप में जाना जाता है, कि निर्वात कई-शरीर क्वांटम अवस्था है जिसमें सभी नकारात्मक-ऊर्जा इलेक्ट्रॉन ईजेनस्टेट्स का कब्जा है। इलेक्ट्रॉनों के समुद्र के रूप में निर्वात के इस वर्णन को डिराक समुद्र कहा जाता है। चूँकि पाउली अपवर्जन सिद्धांत इलेक्ट्रॉनों को एक ही अवस्था में रहने से रोकता है, किसी भी अतिरिक्त इलेक्ट्रॉन को एक सकारात्मक-ऊर्जा आइजेनस्टेट पर कब्जा करने के लिए मजबूर किया जाएगा, और सकारात्मक-ऊर्जा इलेक्ट्रॉनों को नकारात्मक-ऊर्जा आइजेनस्टेट्स में क्षय होने से रोका जाएगा।
डिराक ने आगे तर्क दिया कि यदि नकारात्मक-ऊर्जा ईजेनस्टेट्स अपूर्ण रूप से भरे हुए हैं, तो प्रत्येक खाली ईजेनस्टेट - जिसे छेद कहा जाता है - एक सकारात्मक रूप से चार्ज किए गए कण की तरह व्यवहार करेगा। छेद में सकारात्मक ऊर्जा होती है क्योंकि निर्वात से कण-छेद जोड़ी बनाने के लिए ऊर्जा की आवश्यकता होती है। जैसा कि ऊपर उल्लेख किया गया है, डिराक ने शुरू में सोचा था कि छेद प्रोटॉन हो सकता है, लेकिन हरमन वेइल ने बताया कि छेद को ऐसा व्यवहार करना चाहिए जैसे कि उसका द्रव्यमान इलेक्ट्रॉन के समान हो, जबकि प्रोटॉन 1800 गुना से अधिक भारी है। अंततः छेद की पहचान पॉज़िट्रॉन के रूप में की गई, जिसे 1932 में कार्ल डेविड एंडरसन द्वारा प्रयोगात्मक रूप से खोजा गया था।[8] नकारात्मक-ऊर्जा इलेक्ट्रॉनों के अनंत समुद्र का उपयोग करके निर्वात का वर्णन करना पूरी तरह से संतोषजनक नहीं है। नकारात्मक-ऊर्जा इलेक्ट्रॉनों के समुद्र से असीम रूप से नकारात्मक योगदान को एक अनंत सकारात्मक नंगे ऊर्जा द्वारा रद्द किया जाना चाहिए और नकारात्मक-ऊर्जा इलेक्ट्रॉनों के समुद्र से आने वाले चार्ज घनत्व और वर्तमान में योगदान को एक अनंत सकारात्मक जेलियम पृष्ठभूमि द्वारा बिल्कुल रद्द कर दिया जाना चाहिए ताकि वैक्यूम का शुद्ध विद्युत चार्ज घनत्व शून्य हो। क्वांटम क्षेत्र सिद्धांत में, सृजन और विनाश ऑपरेटरों पर एक बोगोलीउबोव परिवर्तन (एक व्याप्त नकारात्मक-ऊर्जा इलेक्ट्रॉन राज्य को एक खाली सकारात्मक ऊर्जा पॉज़िट्रॉन राज्य में और एक खाली नकारात्मक-ऊर्जा इलेक्ट्रॉन राज्य को एक कब्जे वाली सकारात्मक ऊर्जा पॉज़िट्रॉन राज्य में बदलना) हमें डायराक समुद्री औपचारिकता को बायपास करने की अनुमति देता है, भले ही, औपचारिक रूप से, यह इसके बराबर है।
हालाँकि, संघनित पदार्थ भौतिकी के कुछ अनुप्रयोगों में, छिद्र सिद्धांत की अंतर्निहित अवधारणाएँ मान्य हैं। एक विद्युत चालक में प्रवाहकत्त्व इलेक्ट्रॉनों का समुद्र, जिसे कंपोजिट फ़र्मियन # फर्मी समुद्र कहा जाता है, में सिस्टम की रासायनिक क्षमता तक की ऊर्जा वाले इलेक्ट्रॉन होते हैं। फर्मी सागर में एक खाली अवस्था एक सकारात्मक रूप से चार्ज किए गए इलेक्ट्रॉन की तरह व्यवहार करती है, और यद्यपि इसे भी चालन इलेक्ट्रॉन छेद के रूप में जाना जाता है, यह पॉज़िट्रॉन से अलग है। फर्मी समुद्र का ऋणात्मक आवेश पदार्थ के धनात्मक आवेशित आयनिक जाली द्वारा संतुलित होता है।
क्वांटम क्षेत्र सिद्धांत में
क्वांटम क्षेत्र सिद्धांत जैसे क्वांटम इलेक्ट्रोडायनामिक्स में, डिराक क्षेत्र दूसरे परिमाणीकरण की प्रक्रिया के अधीन है, जो समीकरण की कुछ विरोधाभासी विशेषताओं को हल करता है।
डिराक समीकरण के लोरेंत्ज़ सहप्रसरण की आगे की चर्चा
डिराक समीकरण लोरेंत्ज़ सहसंयोजक है। इसे व्यक्त करने से न केवल डिराक समीकरण को उजागर करने में मदद मिलती है, बल्कि मेजराना स्पिनर और एल्को स्पिनर को भी उजागर करने में मदद मिलती है, जो हालांकि निकट से संबंधित हैं, लेकिन इनमें सूक्ष्म और महत्वपूर्ण अंतर हैं।
प्रक्रिया के ज्यामितीय चरित्र को ध्यान में रखते हुए लोरेंत्ज़ सहप्रसरण को समझना सरल बनाया गया है।[9] होने देना स्पेसटाइम कई गुना में एक एकल, निश्चित बिंदु बनें। इसका स्थान अनेक एटलस (टोपोलॉजी) में व्यक्त किया जा सकता है। भौतिकी साहित्य में इन्हें इस प्रकार लिखा गया है और , इस समझ के साथ कि दोनों और उसी बिंदु का वर्णन करें , लेकिन विभिन्न स्थानीय संदर्भ फ्रेम में (स्पेसटाइम के एक छोटे विस्तारित पैच पर संदर्भ का एक फ्रेम)। कोई कल्पना कर सकता है जैसे कि इसके ऊपर विभिन्न समन्वय फ़्रेमों का एक फाइबर (गणित) होता है। ज्यामितीय शब्दों में, कोई कहता है कि स्पेसटाइम को फाइबर बंडल और विशेष रूप से फ़्रेम बंडल के रूप में वर्णित किया जा सकता है। दो बिंदुओं के बीच का अंतर और एक ही फाइबर में घूर्णन और लोरेंत्ज़ बूस्ट का संयोजन होता है। समन्वय फ्रेम का एक विकल्प उस बंडल के माध्यम से एक (स्थानीय) अनुभाग (फाइबर बंडल) है।
फ़्रेम बंडल के साथ युग्मित एक दूसरा बंडल, स्पिनर बंडल है। स्पिनर बंडल के माध्यम से एक खंड सिर्फ कण क्षेत्र है (वर्तमान मामले में डायराक स्पिनर)। स्पिनर फाइबर में विभिन्न बिंदु एक ही भौतिक वस्तु (फर्मियन) से मेल खाते हैं लेकिन विभिन्न लोरेंत्ज़ फ्रेम में व्यक्त किए जाते हैं। स्पष्ट रूप से, लगातार परिणाम प्राप्त करने के लिए फ़्रेम बंडल और स्पिनर बंडल को एक सुसंगत तरीके से एक साथ बांधा जाना चाहिए; औपचारिक रूप से, कोई कहता है कि स्पिनर बंडल संबद्ध बंडल है; यह एक प्रमुख बंडल से जुड़ा है, जो वर्तमान मामले में फ्रेम बंडल है। फाइबर पर बिंदुओं के बीच अंतर सिस्टम की समरूपता के अनुरूप है। स्पिनर बंडल में समरूपता के दो अलग-अलग जनरेटर (गणित) हैं: कुल कोणीय गति और आंतरिक कोणीय गति। दोनों लोरेंत्ज़ परिवर्तनों के अनुरूप हैं, लेकिन अलग-अलग तरीकों से।
यहां प्रस्तुति इत्ज़ीक्सन और ज़ुबेर की प्रस्तुति का अनुसरण करती है।[10] यह लगभग ब्योर्केन और ड्रेल के समान है।[11] सामान्य सापेक्षतावादी सेटिंग में एक समान व्युत्पत्ति वेनबर्ग में पाई जा सकती है।[12] यहां हम अपने स्पेसटाइम को समतल तय करते हैं, यानी हमारा स्पेसटाइम मिन्कोव्स्की स्पेस है।
लोरेंत्ज़ परिवर्तन के तहत डिराक स्पिनर के रूप में बदलने के लिए
उपरोक्त की ज्यामितीय व्याख्या यह है कि फ़्रेम फ़ील्ड एफ़िन स्पेस है, जिसका कोई पसंदीदा मूल नहीं है। जेनरेटर इस स्थान की समरूपता उत्पन्न करता है: यह एक निश्चित बिंदु की पुनः लेबलिंग प्रदान करता है जनरेटर तंतु में एक बिंदु से दूसरे बिंदु तक गति उत्पन्न करता है: से एक गति दोनों के साथ और अभी भी उसी स्पेसटाइम बिंदु के अनुरूप है इन संभवतः अस्पष्ट टिप्पणियों को स्पष्ट बीजगणित के साथ स्पष्ट किया जा सकता है।
होने देना लोरेंत्ज़ परिवर्तन बनें। डिराक समीकरण है
फिर मूल डिराक समीकरण पुनः प्राप्त हो जाता है
अन्य सूत्रीकरण
डिराक समीकरण कई अन्य तरीकों से तैयार किया जा सकता है।
घुमावदार स्पेसटाइम
इस लेख ने विशेष सापेक्षता के अनुसार फ्लैट स्पेसटाइम में डिराक समीकरण विकसित किया है। घुमावदार स्पेसटाइम में डिराक समीकरण तैयार करना संभव है।
भौतिक स्थान का बीजगणित
इस लेख ने चार-वेक्टर और श्रोडिंगर ऑपरेटरों का उपयोग करके डिराक समीकरण विकसित किया। भौतिक स्थान के बीजगणित में डिराक समीकरण वास्तविक संख्याओं के स्थान पर क्लिफ़ोर्ड बीजगणित का उपयोग करता है, जो एक प्रकार का ज्यामितीय बीजगणित है।
युग्मित वेइल स्पिनर्स
जैसा कि उल्लेखित डिराक समीकरण#अक्षीय समरूपता है, द्रव्यमान रहित डिराक समीकरण तुरंत सजातीय वेइल समीकरण में कम हो जाता है। गामा मैट्रिक्स#वेइल (चिरल) आधार का उपयोग करके, गैर-द्रव्यमान समीकरण को मूल चार-घटक स्पिनर के सूचकांकों के पहले और आखिरी जोड़े पर कार्य करने वाले युग्मित अमानवीय वेइल समीकरणों की एक जोड़ी में विघटित किया जा सकता है, यानी। , कहाँ और प्रत्येक दो-घटक वेइल स्पिनर हैं। ऐसा इसलिए है क्योंकि चिरल गामा मैट्रिक्स के तिरछे ब्लॉक रूप का मतलब है कि वे स्वैप करते हैं और और प्रत्येक पर दो-दो-दो पाउली मैट्रिसेस लागू करें:
.
तो डिराक समीकरण
बन जाता है
जो बदले में द्रव्यमान रहित बाएँ और दाएँ-हेलिसिटी (कण भौतिकी) स्पिनरों के लिए अमानवीय वेइल समीकरणों की एक जोड़ी के बराबर है, जहाँ युग्मन शक्ति द्रव्यमान के समानुपाती होती है:
इसे हिलाने की गति की सहज व्याख्या के रूप में प्रस्तावित किया गया है, क्योंकि ये द्रव्यमान रहित घटक प्रकाश की गति से फैलेंगे और विपरीत दिशाओं में आगे बढ़ेंगे, क्योंकि हेलीसिटी गति की दिशा पर स्पिन का प्रक्षेपण है।[14] यहां जनसमूह की भूमिका है वेग को प्रकाश की गति से कम नहीं करना है, बल्कि उस औसत दर को नियंत्रित करना है जिस पर ये उलटाव होते हैं; विशेष रूप से, उत्क्रमण को पॉइसन प्रक्रिया के रूप में तैयार किया जा सकता है।[15]
यू(1) समरूपता
इस अनुभाग में प्राकृतिक इकाइयों का उपयोग किया जाता है। युग्मन स्थिरांक को परंपरा के अनुसार लेबल किया जाता है : इस पैरामीटर को इलेक्ट्रॉन चार्ज के मॉडलिंग के रूप में भी देखा जा सकता है।
वेक्टर समरूपता
डिराक समीकरण और क्रिया स्वीकार करती है समरूपता जहां फ़ील्ड के रूप में रूपांतरित करें
समरूपता का आकलन
यदि हम वैश्विक समरूपता को 'बढ़ावा' देते हैं, जो स्थिरांक द्वारा परिचालित है , एक स्थानीय समरूपता के लिए, एक फ़ंक्शन द्वारा पैरामीटराइज़ किया गया , या समकक्ष डिराक समीकरण अब अपरिवर्तनीय नहीं है: इसका एक अवशिष्ट व्युत्पन्न है .
स्केलर इलेक्ट्रोडायनामिक्स के अनुसार फिक्स आगे बढ़ता है: आंशिक व्युत्पन्न को सहसंयोजक व्युत्पन्न में बढ़ावा दिया जाता है
गेज परिवर्तन के तहत परिवर्तन कानून के लिए तो यह सामान्य है
सहसंयोजक व्युत्पन्न का विस्तार करने से क्रिया को दूसरे उपयोगी रूप में लिखा जा सकता है:
अक्षीय समरूपता
द्रव्यमान रहित डिराक फर्मियन, अर्थात् खेत डिराक समीकरण को संतुष्ट करना , एक दूसरे को स्वीकार करें, असमान समरूपता
इसे चार-घटक डिराक फ़र्मियन लिखकर सबसे आसानी से देखा जा सकता है दो-घटक वेक्टर फ़ील्ड की एक जोड़ी के रूप में,
फिर डिराक क्रिया रूप धारण कर लेती है
पहले वाली वेक्टर समरूपता अभी भी मौजूद है, जहां और समान रूप से घुमाएँ. क्रिया का यह रूप दूसरे को असमान बनाता है समरूपता प्रकट:
कहाँ आव्यूहों के लिए घातीय मानचित्र है।
यह एकमात्र नहीं है समरूपता संभव है, लेकिन यह पारंपरिक है। वेक्टर और अक्षीय समरूपता का कोई भी 'रैखिक संयोजन' भी एक है समरूपता
शास्त्रीय रूप से, अक्षीय समरूपता एक अच्छी तरह से तैयार किए गए गेज सिद्धांत को स्वीकार करती है। लेकिन क्वांटम स्तर पर, एक विसंगति (भौतिकी) है, यानी, गेजिंग में बाधा है।
रंग समरूपता का विस्तार
हम इस चर्चा को एबेलियन से आगे बढ़ा सकते हैं एक गेज समूह के अंतर्गत सामान्य गैर-एबेलियन समरूपता के लिए समरूपता , एक सिद्धांत के लिए रंग आवेश का समूह।
ठोसता के लिए, हम ठीक करते हैं , क्रियाशील आव्यूहों का विशेष एकात्मक समूह .
इस अनुभाग से पहले, इसे मिन्कोव्स्की स्पेस पर एक स्पिनर फ़ील्ड के रूप में देखा जा सकता है, दूसरे शब्दों में एक फ़ंक्शन , और इसके घटक स्पिन सूचकांकों द्वारा लेबल किए जाते हैं, पारंपरिक रूप से ग्रीक सूचकांक वर्णमाला की शुरुआत से लिए गए हैं .
अनौपचारिक रूप से सिद्धांत को गेज सिद्धांत के रूप में प्रचारित करना जैसे रूपांतरित होने वाला एक भाग प्राप्त करता है , और इन्हें रंग सूचकांकों, पारंपरिक रूप से लैटिन सूचकांकों द्वारा लेबल किया जाता है . कुल मिलाकर, है घटक, द्वारा सूचकांकों में दिए गए . 'स्पिनर' केवल लेबल करता है कि स्पेसटाइम परिवर्तनों के तहत क्षेत्र कैसे बदलता है।
औपचारिक रूप से, एक टेंसर उत्पाद में मूल्यवान है, अर्थात यह एक फ़ंक्शन है गेजिंग एबेलियन के समान ही आगे बढ़ती है मामला, कुछ मतभेदों के साथ। गेज परिवर्तन के तहत स्पिनर फ़ील्ड के रूप में रूपांतरित होते हैं
कार्रवाई तो तब है
भौतिक अनुप्रयोग
भौतिक अनुप्रयोगों के लिए, मामला मानक मॉडल के क्वार्क सेक्टर का वर्णन करता है जो मजबूत इंटरैक्शन का मॉडल तैयार करता है। क्वार्क को डिराक स्पिनर्स के रूप में तैयार किया गया है; गेज क्षेत्र ग्लूऑन क्षेत्र है। मामला मानक मॉडल के विद्युत क्षेत्र के भाग का वर्णन करता है। इलेक्ट्रॉन और न्यूट्रिनो जैसे लेप्टान डायराक स्पिनर हैं; गेज फ़ील्ड है गेज बोसोन.
सामान्यीकरण
इस अभिव्यक्ति को मनमाने ढंग से झूठ समूह के लिए सामान्यीकृत किया जा सकता है कनेक्शन के साथ और एक समूह प्रतिनिधित्व , जहां का रंग भाग है में मूल्यवान है . औपचारिक रूप से, डिराक फ़ील्ड एक फ़ंक्शन है तब गेज परिवर्तन के तहत परिवर्तन होता है जैसा
इस सिद्धांत को घुमावदार स्पेसटाइम के लिए सामान्यीकृत किया जा सकता है, लेकिन ऐसी सूक्ष्मताएं हैं जो सामान्य स्पेसटाइम (या अधिक आम तौर पर अभी भी, कई गुना) पर गेज सिद्धांत में उत्पन्न होती हैं, जिन्हें फ्लैट स्पेसटाइम पर नजरअंदाज किया जा सकता है। यह अंततः फ्लैट स्पेसटाइम के संकुचन के कारण है जो हमें वैश्विक स्तर पर परिभाषित गेज फ़ील्ड और गेज परिवर्तनों को देखने की अनुमति देता है .
यह भी देखें
डिराक समीकरण पर लेख
|
अन्य समीकरण
|
अन्य विषय
|
संदर्भ
उद्धरण
- ↑ P.W. Atkins (1974). Quanta: A handbook of concepts. Oxford University Press. p. 52. ISBN 978-0-19-855493-6.
- ↑ T.Hey, P.Walters (2009). द न्यू क्वांटम यूनिवर्स. Cambridge University Press. p. 228. ISBN 978-0-521-56457-1.
- ↑ Gisela Dirac-Wahrenburg. "पॉल डिराक". Dirac.ch. Retrieved 12 July 2013.
- ↑ Dirac, Paul A.M. (1982) [1958]. क्वांटम यांत्रिकी के सिद्धांत. International Series of Monographs on Physics (4th ed.). Oxford University Press. p. 255. ISBN 978-0-19-852011-5.
- ↑ Collas, Peter; Klein, David (2019). The Dirac Equation in Curved Spacetime: A Guide for Calculations. Springer. p. 7. ISBN 978-3-030-14825-6. Extract of page 7
- ↑ Pendleton, Brian (2012–2013). क्वांटम सिद्धांत (PDF). section 4.3 "The Dirac Equation". Archived (PDF) from the original on 9 October 2022.
- ↑ Ohlsson, Tommy (22 September 2011). Relativistic Quantum Physics: From advanced quantum mechanics to introductory quantum field theory. Cambridge University Press. p. 86. ISBN 978-1-139-50432-4.
- ↑ Penrose, Roger (2004). वास्तविकता की राह. Jonathan Cape. p. 625. ISBN 0-224-04447-8.
- ↑ Jurgen Jost, (2002) "Riemannian Geometry and Geometric Analysis (3rd Edition)" Springer Universitext. (See chapter 1 for spin structures and chapter 3 for connections on spin structures)
- ↑ Claude Itzykson and Jean-Bernard Zuber, (1980) "Quantum Field Theory", McGraw-Hill (See Chapter 2)
- ↑ James D. Bjorken, Sidney D. Drell (1964) "Relativistic Quantum Mechanics", McGraw-Hill. (See Chapter 2)
- ↑ Steven Weinberg, (1972) "Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity", Wiley & Sons (See chapter 12.5, "Tetrad formalism" pages 367ff.).
- ↑ Weinberg, "Gravitation", op cit. (See chapter 2.9 "Spin", pages 46-47.)
- ↑ Penrose, Roger (2004). वास्तविकता की राह (Sixth Printing ed.). Alfred A. Knopf. pp. 628–632. ISBN 0-224-04447-8.
- ↑ Gaveau, B.; Jacobson, T.; Kac, M.; Schulman, L. S. (30 July 1984). "क्वांटम यांत्रिकी और ब्राउनियन मोशन के बीच सादृश्य का सापेक्ष विस्तार". Physical Review Letters. 53 (5): 419–422.
चयनित कागजात
- Anderson, Carl (1933). "सकारात्मक इलेक्ट्रॉन". Physical Review. 43 (6): 491. Bibcode:1933PhRv...43..491A. doi:10.1103/PhysRev.43.491.
- Arminjon, M.; F. Reifler (2013). "घुमावदार स्पेसटाइम और सामान्यीकृत डी ब्रोगली संबंधों में डिराक समीकरणों के समतुल्य रूप". Brazilian Journal of Physics. 43 (1–2): 64–77. arXiv:1103.3201. Bibcode:2013BrJPh..43...64A. doi:10.1007/s13538-012-0111-0. S2CID 38235437.
- Dirac, P. A. M. (1928). "इलेक्ट्रॉन का क्वांटम सिद्धांत" (PDF). Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 117 (778): 610–624. Bibcode:1928RSPSA.117..610D. doi:10.1098/rspa.1928.0023. JSTOR 94981. Archived (PDF) from the original on 2 January 2015.
- Dirac, P. A. M. (1930). "इलेक्ट्रॉनों और प्रोटॉन का एक सिद्धांत". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 126 (801): 360–365. Bibcode:1930RSPSA.126..360D. doi:10.1098/rspa.1930.0013. JSTOR 95359.
- Frisch, R.; Stern, O. (1933). "हाइड्रोजन अणुओं के चुंबकीय विक्षेपण और प्रोटॉन के चुंबकीय क्षण के बारे में। मैं". Zeitschrift für Physik. 85 (1–2): 4. Bibcode:1933ZPhy...85....4F. doi:10.1007/BF01330773. S2CID 120793548.
पाठ्यपुस्तकें
- Bjorken, J D; Drell, S (1964). Relativistic Quantum mechanics. New York, McGraw-Hill.
- Halzen, Francis; Martin, Alan (1984). Quarks & Leptons: An Introductory Course in Modern Particle Physics. John Wiley & Sons. ISBN 9780471887416.
- Griffiths, D.J. (2008). Introduction to Elementary Particles (2nd ed.). Wiley-VCH. ISBN 978-3-527-40601-2.
- Rae, Alastair I. M.; Jim Napolitano (2015). Quantum Mechanics (6th ed.). Routledge. ISBN 978-1482299182.
- Schiff, L.I. (1968). Quantum Mechanics (3rd ed.). McGraw-Hill.
- Shankar, R. (1994). Principles of Quantum Mechanics (2nd ed.). Plenum.
- Thaller, B. (1992). The Dirac Equation. Texts and Monographs in Physics. Springer.
बाहरी संबंध
- The history of the positron Lecture given by Dirac in 1975
- The Dirac Equation at MathPages
- The Nature of the Dirac Equation, its solutions, and Spin[permanent dead link]
- Dirac equation for a spin 1⁄2 particle
- Pedagogic Aids to Quantum Field Theory click on Chap. 4 for a step-by-small-step introduction to the Dirac equation, spinors, and relativistic spin/helicity operators.