संयुक्त माप का सिद्धांत

From Vigyanwiki

संयुक्त माप का सिद्धांत (जिसे संयुक्त माप या योगात्मक संयुक्त माप के रूप में भी जाना जाता है) सतत मात्रा का एक सामान्य औपचारिक सिद्धांत है। इसकी खोज स्वतंत्र रूप से फ्रांसीसी अर्थशास्त्री जेरार्ड डेब्रू ( वर्ष 1960), अमेरिकी गणितीय मनोवैज्ञानिक आर. डंकन लूस और सांख्यिकी जॉन टुकी (लूस, टुकी & वर्ष 1964) द्वारा की गई थी।

यह सिद्धांत उस स्थिति से संबंधित है जहाँ कम से कम दो प्राकृतिक गुण, A और X, अन्योन्याक्रियाहीन रूप से तृतीय गुण, P से संबंधित हैं। यह आवश्यक नहीं है कि A, X या P मात्राएँ ज्ञात हों। P के स्तरों के मध्य विशिष्ट संबंधों के माध्यम से यह स्थापित किया जा सकता है कि P, A और X सतत मात्राएं हैं। इसलिए संयुक्त माप के सिद्धांत का उपयोग आनुभविक परिस्थितियों में विशेषताओं को मापने के लिए किया जा सकता है जहाँ एक साथ ऑपरेशन या संश्रृंखलन का उपयोग करके विशेषताओं के स्तर को संयोजित करना संभव नहीं है। इसलिए प्रवृति, संज्ञानात्मक योग्यता और उपादेयता जैसे मनोवैज्ञानिक गुणों का परिमाणन तार्किक रूप से प्रशंसनीय है। इसका अर्थ यह है कि मनोवैज्ञानिक विशेषताओं का वैज्ञानिक माप संभव है। यह भौतिक मात्राओं के समान एक मनोवैज्ञानिक मात्रा का परिमाण संभवतः एक वास्तविक संख्या तथा एक इकाई परिमाण के उत्पाद के रूप में व्यक्त किया जा सकता है।

हालाँकि, मनोविज्ञान में संयुक्त माप के सिद्धांत का अनुप्रयोग सीमित है। यह तर्क दिया गया है कि यह उच्च स्तर के औपचारिक गणित के सम्मिलित होने के कारण है (उदाहरण के लिए, क्लिफ 1992) तथा यह सिद्धांत सामान्यतः मनोवैज्ञानिक अनुसंधान (उदाहरण के लिए, पेरलाइन, राइट & वेनर 1979) में खोजे गए "नॉयसी" डेटा का लेखा प्रदान नहीं करा सकती है। यह तर्क दिया गया है कि रैश मॉडल संयुक्त माप के सिद्धांत का एक स्टोकेस्टिक संस्करण है (उदाहरण के लिए, ब्रोगडेन 1977; एम्ब्रेट्सन, रीज़ & वर्ष 2000; फिशर 1995; कीट्स 1967; क्लाइन 1998; शेब्लेचनर 1999), हालांकि, इस पर विवाद (उदाहरण के लिए, करबात्सोस, वर्ष 2001; क्यिंगडन, वर्ष 2008) किया गया है। पूर्व दशक में संयोजन माप के अभिगृहीत निरस्तीकरण के प्रायिकतात्मक परीक्षण करने के लिए प्रतिबंधित प्रणाली के तरीके विकसित किए गए हैं (उदाहरण के लिए, कराबात्सोस, 2001; डेविस-स्टॉबर, 2009)।

संयुक्त माप का सिद्धांत (भिन्न किंतु) संयुक्त विश्लेषण से संबंधित है जो कि योगात्मक उपयोगिता फलनों के मापदंडों का अनुमान लगाने के लिए विपणन में नियोजित एक सांख्यिकीय प्रयोग पद्धति है। प्रत्यर्थियों को विभिन्न बहु-विशेषता उत्तेजनाएँ प्रस्तुत की जाती हैं और प्रस्तुत उत्तेजनाओं के विषय में उनकी प्राथमिकताओं को मापने के लिए विभिन्न विधियों का प्रयोग किया जाता है।

ऐतिहासिक सिंहावलोकन

1930 के दशक में, ब्रिटिश एसोसिएशन फॉर द एडवांसमेंट ऑफ साइंस ने मनोवैज्ञानिक विशेषताओं को वैज्ञानिक रूप से मापने की संभावना की जांच करने के लिए फर्ग्यूसन समिति की स्थापना की। ब्रिटिश भौतिकीविद् और माप सिद्धांताकार नॉर्मन रॉबर्ट कैंपबेल समिति के एक प्रभावशाली सदस्य थे। अपनी अंतिम रिपोर्ट (फर्ग्यूसन एट अल., 1940) में, कैंपबेल और समिति ने निष्कर्ष निकाला कि चूंकि मनोवैज्ञानिक विशेषताएं श्रृखंलाबद्धीकरण संक्रिया को बनाए रखने में सक्षम नहीं थीं, इसलिए ऐसी विशेषताएं सतत मात्रा नहीं हो सकतीं। अत: इन्हें वैज्ञानिक दृष्टि से मापा नहीं जा सका। इसका मनोविज्ञान पर महत्वपूर्ण प्रभाव पड़ा, इनमें से अत्यधिक महत्वपूर्ण वर्ष 1946 में हार्वर्ड मनोवैज्ञानिक स्टेनली स्मिथ स्टीवंस द्वारा माप के परिचालन संबंधी सिद्धांत का निर्माण था। स्टीवंस के माप के गैर-वैज्ञानिक सिद्धांत को सामान्यतः मनोविज्ञान और व्यवहार विज्ञान में व्यापक रूप से सर्वोत्तम माना जाता है(मिशेल वर्ष 1999)

जबकि जर्मन गणितज्ञ ओटो होल्डर (वर्ष 1901) ने संयुक्त माप के सिद्धांत की विशेषताओं को प्रत्याशित किया था, लूस एंड तुकी के मौलिक वर्ष 1964 पेपर के प्रकाशन तक ऐसा नहीं हुआ था कि सिद्धांत को अपना प्रथम पूर्ण विवरण प्राप्त हुआ था। लूस और तुकी की प्रस्तुति बीजगणितीय थी और इसलिए इसे डेब्रू (वर्ष 1960) के सांस्थितिक कार्य की तुलना में अधिक सामान्य माना जाता है, जो कि पूर्व की एक विशेष स्थिति है (लूस और & सप्पेस वर्ष 2002)। जर्नल ऑफ़ मैथेमैटिकल साइकोलॉजी के प्रारंभिक प्रकाशन के प्रथम लेख में, लूस & तुकी वर्ष 1964 ने सिद्ध किया कि संयोजन माप के सिद्धांत के माध्यम से उन विशेषताओं को परिमाणित किया जा सकता है जो संयोजन में सक्षम नहीं हैं। इस प्रकार एन.आर. कैम्पबेल और फर्ग्यूसन आयोग गलत सिद्ध हुए। यह कि दी गई मनोवैज्ञानिक विशेषता एक सतत मात्रा है, एक तार्किक रूप से सुसंगत और अनुभवजन्य परीक्षण योग्य परिकल्पना है।

उसी पत्रिका के अगले अंक में दाना स्कॉट ( वर्ष 1964) के महत्वपूर्ण पत्र प्रकाशित हुए, जिन्होंने सॉल्वैबिलिटी और आर्किमिडीयन सिद्धांतों के अप्रत्यक्ष परीक्षण के लिए रद्द करने की शर्तों का एक पदानुक्रम प्रस्तावित किया और डेविड क्रांत्ज़ (वर्ष 1964) जिन्होंने लूस एंड टुकी के कार्य को होल्डर (वर्ष 1901) के कार्य से युग्मन किया।

कार्य जल्द ही केवल दो से अधिक विशेषताओं को सम्मिलित करने के लिए संयुक्त माप के सिद्धांत का विस्तार करने पर केंद्रित हो गया। क्रांत्ज़ वर्ष 1968 और अमोस टावर्सकी (वर्ष 1967) ने विकसित किया जिसे बहुपदीय संयुक्त माप के रूप में जाना जाता है, क्रांत्ज़ वर्ष 1968 एक रूपरेखा प्रदान करता है जिससे तीन या अधिक विशेषताओं की संयुक्त माप संरचनाओं का निर्माण किया जा सकता है। तत्पश्चात फ़ाउंडेशन ऑफ़ मेजरमेंट के प्रथम खंड (इसके दो चर, बहुपद और एन-घटक रूपों में) के प्रकाशन के साथ संयुक्त माप के सिद्धांत को एक संपूर्ण और उच्च तकनीकी उपचार प्राप्त हुआ, जिसे क्रांत्ज़, लूस, टावर्सकी और दार्शनिक पैट्रिक सपेस ने लिखा था (क्रांत्ज़ एट अल. र्ष 1971)।

(क्रांत्ज़ एट अल. र्ष 1971) के प्रकाशन के कुछ ही समय पश्चात, संयुक्त माप के सिद्धांत के लिए एक "त्रुटि सिद्धांत" विकसित करने पर ध्यान केंद्रित किया गया। संयुक्त सरणियों की संख्या पर अध्ययन किए गए जो केवल एकल निरस्तीकरण और एकल तथा दोहरे निरस्तीकरण दोनों का समर्थन करते थे (आर्बकल, लैरीमर & वर्ष 1976; मैक्लेलैंड & वर्ष 1977)। तत्पश्चात गणना अध्ययन बहुपदीय संयोजन माप पर केंद्रित थे (करबात्सोस, उलरिच & वर्ष 2002; उलरिच, विल्सन & वर्ष 1993)। इन अध्ययनों में पाया गया कि यह अत्यधिक संभावना नहीं है कि संयुक्त माप के सिद्धांत के स्वयंसिद्ध यादृच्छिक रूप से संतुष्ट हों, बशर्ते कि कम से कम एक घटक विशेषताओं के तीन से अधिक स्तरों की पहचान की गई हो।

जोएल मिचेल (1988) ने बाद में पहचान की कि दोहरे निरस्तीकरण स्वयंसिद्ध के परीक्षणों का कोई परीक्षण वर्ग खाली नहीं था। दोहरे निरस्तीकरण का कोई उदाहरण इस प्रकार या तो स्वयंसिद्ध की स्वीकृति या अस्वीकृति है। मिशेल ने इस समय संयुक्त माप के सिद्धांत के लिए एक गैर-तकनीकी परिचय भी लिखा था (Michell 1990) जिसमें स्कॉट (1964) के कार्य के आधार पर उच्च आदेश रद्द करने की स्थिति प्राप्त करने के लिए एक स्कीमा भी शामिल है। मिशेल की स्कीमा का उपयोग करते हुए, बेन रिचर्ड्स (किंगडन एंड रिचर्ड्स, 2007) ने पाया कि ट्रिपल रद्दीकरण स्वयंसिद्ध के कुछ उदाहरण असंगत हैं क्योंकि वे एकल रद्दीकरण स्वयंसिद्ध का खंडन करते हैं। इसके अलावा, उन्होंने ट्रिपल रद्दीकरण के कई उदाहरणों की पहचान की, जो दोहरे रद्दीकरण का समर्थन करने पर मामूली रूप से सही हैं।

संयुक्त मापन के सिद्धांत के अभिगृहीत प्रसंभाव्य नहीं हैं; और रद्दीकरण स्वयंसिद्धों द्वारा डेटा पर रखी गई क्रमिक बाधाओं को देखते हुए, आदेश प्रतिबंधित अनुमान पद्धति का उपयोग किया जाना चाहिए (Iverson & Falmagne 1985). जॉर्ज करबातस और उनके सहयोगी (काराबातस, 2001; Karabatsos & Sheu 2004) ने साइकोमेट्रिक अनुप्रयोगों के लिए बायेसियन निष्कर्ष मार्कोव चेन मोंटे कार्लो पद्धति विकसित की। Karabatsos & Ullrich 2002 ने प्रदर्शित किया कि कैसे इस ढांचे को बहुपद संयोजन संरचनाओं तक बढ़ाया जा सकता है। करबात्सोस (2005) ने इस काम को अपने बहुराष्ट्रीय डिरिचलेट ढांचे के साथ सामान्यीकृत किया, जिसने गणितीय मनोविज्ञान के कई गैर-स्टोकेस्टिक सिद्धांतों के संभाव्य परीक्षण को सक्षम किया। अभी हाल ही में, क्लिंटिन डेविस-स्टोबर (2009) ने आदेश प्रतिबंधित अनुमान के लिए एक फ़्रीक्वेंटिस्ट फ्रेमवर्क विकसित किया जिसका उपयोग रद्दीकरण स्वयंसिद्धों का परीक्षण करने के लिए भी किया जा सकता है।

संयुक्त मापन के सिद्धांत का शायद सबसे उल्लेखनीय (Kyngdon, 2011) उपयोग इजरायल द्वारा प्रस्तावित संभावना सिद्धांत में था - अमेरिकी मनोवैज्ञानिक डेनियल कन्नमैन और अमोस टावर्सकी (काह्नमैन एंड टावर्सकी, 1979)। प्रॉस्पेक्ट थ्योरी जोखिम और अनिश्चितता के तहत निर्णय लेने का एक सिद्धांत था, जो पसंद के व्यवहार जैसे कि अलाइस विरोधाभास के लिए जिम्मेदार था। डेविड क्रांत्ज़ ने संयुक्त माप के सिद्धांत का उपयोग करते हुए संभावना सिद्धांत का औपचारिक प्रमाण लिखा। 2002 में, कहमैन को संभावना सिद्धांत के लिए अर्थशास्त्र में नोबेल मेमोरियल पुरस्कार मिला (बिरनबाम, 2008)।

मापन और परिमाणीकरण

माप की शास्त्रीय/मानक परिभाषा

भौतिकी और मैट्रोलोजी में, माप की मानक परिभाषा एक निरंतर मात्रा के परिमाण और उसी प्रकार की एक इकाई परिमाण के बीच अनुपात का अनुमान है (डी बोअर, 1994/95; एमर्सन, 2008)। उदाहरण के लिए, पीटर का हॉलवे 4 मीटर लंबा है, हॉलवे की लंबाई के लिए इकाई (इस मामले में मीटर) के अनुपात के रूप में अब तक अज्ञात लंबाई परिमाण (हॉलवे की लंबाई) का माप व्यक्त करता है। संख्या 4 इस शब्द के सख्त गणितीय अर्थ में एक वास्तविक संख्या है।

कुछ अन्य मात्राओं के लिए, इनवेरिएंट गुण अंतरों के बीच अनुपात होते हैं। उदाहरण के लिए तापमान पर विचार करें। परिचित रोजमर्रा के उदाहरणों में, फ़ारेनहाइट या सेल्सियस स्केल में कैलिब्रेट किए गए उपकरणों का उपयोग करके तापमान को मापा जाता है। इस तरह के उपकरणों से वास्तव में जो मापा जा रहा है वह तापमान के अंतर का परिमाण है। उदाहरण के लिए, एंडर्स सेल्सियस ने समुद्र तल पर पानी के हिमांक और क्वथनांक के बीच तापमान के अंतर के 1/100 वें हिस्से के रूप में सेल्सियस पैमाने की इकाई को परिभाषित किया। 20 डिग्री सेल्सियस का दोपहर का तापमान माप केवल दोपहर के तापमान और ठंडे पानी के तापमान का अंतर है जो सेल्सियस इकाई के अंतर और ठंडे पानी के तापमान से विभाजित होता है।

औपचारिक रूप से व्यक्त, एक वैज्ञानिक माप है:

जहाँ Q मात्रा का परिमाण है, r एक वास्तविक संख्या है और [Q] उसी प्रकार का एक इकाई परिमाण है।

व्यापक और गहन मात्रा

लंबाई एक मात्रा है जिसके लिए प्राकृतिक संयोजन संचालन मौजूद हैं। यही है, उदाहरण के लिए, हम कठोर स्टील की छड़ों की अगल-बगल की फैशन लंबाई को जोड़ सकते हैं, जैसे कि लंबाई के बीच योगात्मक संबंध आसानी से देखे जा सकते हैं। यदि हमारे पास ऐसी छड़ों की चार 1 मीटर लंबाई है, तो हम उन्हें 4 मीटर की लंबाई बनाने के लिए अंत से अंत तक रख सकते हैं। संयोजन में सक्षम मात्रा को व्यापक मात्रा के रूप में जाना जाता है और इसमें द्रव्यमान, समय, विद्युत प्रतिरोध और समतल कोण शामिल होते हैं। इन्हें भौतिकी और मेट्रोलॉजी में आधार मात्रा के रूप में जाना जाता है।

तापमान एक मात्रा है जिसके लिए संघनन संक्रियाओं का अभाव है। हम 40 डिग्री सेल्सियस तापमान के पानी की मात्रा को 20 डिग्री सेल्सियस पर पानी की एक और बाल्टी में नहीं डाल सकते हैं और 60 डिग्री सेल्सियस तापमान के साथ पानी की मात्रा की उम्मीद कर सकते हैं। इसलिए तापमान एक गहन मात्रा है।

तापमान जैसी मनोवैज्ञानिक विशेषताओं को गहन माना जाता है क्योंकि ऐसी विशेषताओं को जोड़ने का कोई तरीका नहीं पाया गया है। लेकिन यह कहना नहीं है कि ऐसे गुण मात्रात्मक नहीं हैं। संयुक्त माप का सिद्धांत ऐसा करने का एक सैद्धांतिक साधन प्रदान करता है।

सिद्धांत

दो प्राकृतिक गुणों A, और X पर विचार करें। यह ज्ञात नहीं है कि या तो A या X एक सतत मात्रा है, या दोनों ही हैं। ए, बी और सी ए के तीन स्वतंत्र, पहचान योग्य स्तरों का प्रतिनिधित्व करते हैं; और x, y और z को X के तीन स्वतंत्र, पहचाने जाने योग्य स्तरों का प्रतिनिधित्व करते हैं। एक तीसरी विशेषता, P, में A और X के स्तरों के नौ क्रमित जोड़े शामिल हैं। यानी, (a, x), (b, y), ..., (सी, जेड) (चित्र 1 देखें)। A, X और P का परिमाणीकरण, P के स्तरों पर धारण किए हुए संबंध के व्यवहार पर निर्भर करता है। इन संबंधों को संयुक्त माप के सिद्धांत में अभिगृहीत के रूप में प्रस्तुत किया जाता है।

एकल रद्दीकरण या स्वतंत्रता स्वयंसिद्ध

चित्र एक: एकल निरस्तीकरण अभिगृहीत का आलेखीय निरूपण। यह देखा जा सकता है कि a > b क्योंकि (a, x) > (b, x), (a, y) > (b, y) और (a, z) > (b, z)।

एकल रद्दीकरण स्वयंसिद्ध इस प्रकार है। P पर संबंध एकल निरस्तीकरण को संतुष्ट करता है यदि और केवल यदि A में सभी a और b के लिए, और X में x, (a, x) > (b, x) X में प्रत्येक w के लिए निहित है जैसे कि (a, w) > (बी, डब्ल्यू)। इसी तरह, एक्स में सभी एक्स और वाई के लिए और ए में ए, (ए, एक्स)> (ए, वाई) ए में हर डी के लिए निहित है जैसे कि (डी, एक्स)> (डी, वाई)। इसका अर्थ यह है कि यदि किन्हीं भी दो स्तरों, a, b, को आदेशित किया जाता है, तो यह क्रम X के प्रत्येक स्तर पर ध्यान दिए बिना लागू होता है। वही X के किसी भी दो स्तरों, x और y के लिए प्रत्येक स्तर के संबंध में लागू होता है। ए का

एकल रद्दीकरण तथाकथित है क्योंकि पी के दो स्तरों का एक सामान्य कारक शेष तत्वों पर समान क्रमिक संबंध छोड़ने के लिए रद्द हो जाता है। उदाहरण के लिए, a असमिका (a, x) > (a, y) को रद्द कर देता है क्योंकि यह दोनों पक्षों के लिए उभयनिष्ठ है, जिससे x > y बचता है। क्रांट्ज, एट अल।, (1971) ने मूल रूप से इस स्वयंसिद्ध स्वतंत्रता को कहा, क्योंकि एक विशेषता के दो स्तरों के बीच क्रमिक संबंध किसी अन्य विशेषता के किसी भी और सभी स्तरों से स्वतंत्र होता है। हालाँकि, यह देखते हुए कि स्वतंत्रता शब्द स्वतंत्रता की सांख्यिकीय अवधारणाओं के साथ भ्रम पैदा करता है, एकल रद्दीकरण बेहतर शब्द है। चित्र एक एकल निरस्तीकरण के एक उदाहरण का चित्रमय प्रतिनिधित्व है।

गुण A और X के परिमाणीकरण के लिए एकल निरस्तीकरण अभिगृहीत की संतुष्टि आवश्यक है, लेकिन पर्याप्त नहीं है। यह केवल दर्शाता है कि A, X और P के स्तर क्रमबद्ध हैं। अनौपचारिक रूप से, एकल निरस्तीकरण, ए और एक्स की मात्रा निर्धारित करने के लिए पी के स्तर पर आदेश को पर्याप्त रूप से बाधित नहीं करता है। उदाहरण के लिए, आदेशित जोड़े (ए, एक्स), (बी, एक्स) और (बी, वाई) पर विचार करें। यदि एकल रद्दीकरण होता है तो (ए, एक्स)> (बी, एक्स) और (बी, एक्स)> (बी, वाई)। इसलिए ट्रांज़िटिविटी (ए, एक्स)> (बी, वाई) के माध्यम से। इन बाद के दो आदेशित जोड़े के बीच का संबंध, अनौपचारिक रूप से एक बाएं-झुकाव वाला विकर्ण, एकल रद्दीकरण स्वयंसिद्ध की संतुष्टि से निर्धारित होता है, जैसा कि पी पर सभी बाएं झुकाव वाले विकर्ण संबंध हैं।

दोहरा रद्दीकरण स्वयंसिद्ध

चित्रा दो: डबल रद्दीकरण का एक लूस-टकी उदाहरण, जिसमें परिणामी असमानता (टूटी हुई रेखा तीर) पूर्ववर्ती असमानताओं (ठोस रेखा तीर) दोनों की दिशा का खंडन नहीं करती है, इसलिए स्वयंसिद्ध का समर्थन करती है।

एकल निरस्तीकरण पी पर दाएं झुकाव वाले विकर्ण संबंधों के क्रम को निर्धारित नहीं करता है। भले ही पारगमन और एकल रद्दीकरण द्वारा यह स्थापित किया गया था कि (ए, एक्स)> (बी, वाई), (ए, वाई) और (के बीच संबंध) बी, एक्स) अनिर्धारित रहता है। यह हो सकता है कि या तो (बी, एक्स) > (ए, वाई) या (ए, वाई) > (बी, एक्स) और ऐसी अस्पष्टता अनसुलझी नहीं रह सकती।

दोहरा निरस्तीकरण अभिगृहीत P पर ऐसे संबंधों के एक वर्ग से संबंधित है जिसमें दो पूर्ववर्ती असमानताओं की सामान्य शर्तें तीसरी असमानता उत्पन्न करने के लिए रद्द हो जाती हैं। दोहरे रद्दीकरण के उदाहरण पर विचार करें, जिसे चित्र दो द्वारा रेखांकन के रूप में दर्शाया गया है। दोहरे निरस्तीकरण के इस विशेष उदाहरण की पूर्ववर्ती असमानताएँ हैं:

और

मान लें कि:

सच है अगर और केवल अगर और

सच है अगर और केवल अगर , यह इस प्रकार है कि:

सामान्य शर्तों को रद्द करने के परिणामस्वरूप:

अतः दोहरा निरसन केवल तभी प्राप्त हो सकता है जब A और X मात्राएँ हों।

दोहरा निरसन संतुष्ट होता है यदि और केवल यदि परिणामी असमानता पूर्ववर्ती असमानताओं का खंडन नहीं करती है। उदाहरण के लिए, यदि परिणामी असमानता उपरोक्त थी:

या वैकल्पिक रूप से,

तो दोहरे निरस्तीकरण का उल्लंघन होगा (Michell 1988) और यह निष्कर्ष नहीं निकाला जा सका कि A और X मात्राएँ हैं।

दोहरा निरस्तीकरण P पर दाएं झुकाव वाले विकर्ण संबंधों के व्यवहार से संबंधित है क्योंकि ये एकल रद्दीकरण द्वारा तार्किक रूप से लागू नहीं होते हैं। (Michell 2009) ने पाया कि जब ए और एक्स के स्तर अनंत तक पहुंचते हैं, तो सही झुकाव वाले विकर्ण संबंधों की संख्या पी पर कुल संबंधों की संख्या का आधा है। इसलिए यदि ए और एक्स मात्राएं हैं, तो पी पर संबंधों की संख्या का आधा कारण है ए और एक्स पर क्रमसूचक संबंधों के लिए और आधे ए और एक्स पर योगात्मक संबंधों के कारण हैं (Michell 2009).

डबल रद्दीकरण के उदाहरणों की संख्या ए और एक्स दोनों के लिए पहचाने गए स्तरों की संख्या पर आकस्मिक है। यदि ए के एन स्तर और एक्स के एम हैं, तो डबल रद्दीकरण के उदाहरणों की संख्या एन है! × मी!. इसलिए, यदि n = m = 3, तो 3! × 3! = 6 × 6 = कुल 36 मामले दोहरा रद्दीकरण। हालाँकि, यदि एकल रद्दीकरण सत्य है, तो इनमें से 6 उदाहरणों को छोड़कर सभी सत्य हैं, और यदि इन 6 उदाहरणों में से कोई एक सत्य है, तो वे सभी सत्य हैं। ऐसा ही एक उदाहरण चित्र दो में दिखाया गया है। (Michell 1988) इसे दोहरे निरस्तीकरण का लूस-टकी उदाहरण कहता है।

यदि एकल रद्दीकरण का पहले डेटा के एक सेट पर परीक्षण किया गया है और स्थापित किया गया है, तो केवल दोहरे रद्दीकरण के लूस-टुकी उदाहरणों का परीक्षण करने की आवश्यकता है। ए के एन स्तरों और एक्स के एम के लिए, लूस-टुकी डबल रद्दीकरण उदाहरणों की संख्या है . उदाहरण के लिए, यदि n = m = 4, तो ऐसे 16 उदाहरण हैं। यदि n = m = 5 तो 100 हैं। A और X दोनों में स्तरों की संख्या जितनी अधिक होगी, उतनी ही कम संभावना है कि रद्दीकरण स्वयंसिद्ध यादृच्छिक रूप से संतुष्ट हों (Arbuckle & Larimer 1976; McClelland 1977) और मात्रा का अधिक कठोर परीक्षण संयुक्त माप का अनुप्रयोग बन जाता है।

सॉल्वेबिलिटी और आर्किमिडीयन स्वयंसिद्ध

चित्रा तीन: ट्रिपल रद्दीकरण का एक उदाहरण।

निरंतर मात्रा स्थापित करने के लिए एकल और दोहरे रद्दीकरण स्वयंसिद्ध स्वयं पर्याप्त नहीं हैं। निरंतरता सुनिश्चित करने के लिए अन्य शर्तों को भी पेश किया जाना चाहिए। ये विलेयता और आर्किमिडीयन स्थितियाँ हैं।

घुलनशीलता का अर्थ है कि a, b, x और y के किसी भी तीन तत्वों के लिए चौथा मौजूद है जैसे कि समीकरण a x = b y हल हो जाता है, इसलिए स्थिति का नाम। घुलनशीलता अनिवार्य रूप से आवश्यकता है कि प्रत्येक स्तर P में A में एक तत्व और X में एक तत्व है। घुलनशीलता से A और X के स्तरों के बारे में कुछ पता चलता है - वे या तो वास्तविक संख्याओं की तरह सघन हैं या पूर्णांकों की तरह समान दूरी पर हैं (Krantz et al. 1971).

आर्किमिडीज़ की स्थिति इस प्रकार है। मान लीजिए I क्रमागत पूर्णांकों का समुच्चय है, या तो परिमित या अनंत, धनात्मक या ऋणात्मक। A के स्तर एक मानक अनुक्रम बनाते हैं यदि और केवल यदि X में x और y मौजूद हैं जहाँ x ≠ y और I में सभी पूर्णांक i और i + 1 के लिए:

इसका मूल रूप से मतलब यह है कि यदि x, y से अधिक है, उदाहरण के लिए, A के स्तर हैं जो पाए जा सकते हैं जो दो प्रासंगिक क्रमित जोड़े बनाते हैं, P के स्तर, बराबर।

आर्किमिडीज़ की स्थिति का तर्क है कि पी का कोई असीम रूप से सबसे बड़ा स्तर नहीं है और इसलिए ए या एक्स का कोई सबसे बड़ा स्तर नहीं है। यह स्थिति प्राचीन यूनानी गणितज्ञ आर्किमिडीज़ द्वारा दी गई निरंतरता की एक परिभाषा है, जिन्होंने लिखा है कि आगे, असमान रेखाओं की, असमान सतहें, और असमान ठोस, अधिक से अधिक इस तरह के परिमाण से कम से अधिक होता है, जब खुद में जोड़ा जाता है, उन लोगों के बीच किसी भी निर्धारित परिमाण को पार करने के लिए बनाया जा सकता है जो एक दूसरे के साथ तुलनीय हैं (गोले और सिलेंडर पर, पुस्तक I, धारणा 5). आर्किमिडीज ने माना कि निरंतर मात्रा के किन्हीं दो परिमाणों के लिए, एक दूसरे से कम होने के कारण, कम को एक पूर्ण संख्या से गुणा किया जा सकता है जैसे कि यह अधिक परिमाण के बराबर होता है। यूक्लिड ने यूक्लिड के तत्वों की पुस्तक V में एक स्वयंसिद्ध के रूप में आर्किमिडीयन स्थिति को बताया, जिसमें यूक्लिड ने निरंतर मात्रा और माप के अपने सिद्धांत को प्रस्तुत किया।

जैसा कि वे अनन्तवादी अवधारणाओं को शामिल करते हैं, सॉल्वेबिलिटी और आर्किमिडीयन स्वयंसिद्ध किसी भी परिमित अनुभवजन्य स्थिति में प्रत्यक्ष परीक्षण के लिए उत्तरदायी नहीं हैं। लेकिन इसका मतलब यह नहीं है कि इन स्वयंसिद्धों का अनुभवजन्य रूप से परीक्षण नहीं किया जा सकता है। स्कॉट (1964) के रद्द करने की शर्तों के परिमित सेट का उपयोग अप्रत्यक्ष रूप से इन स्वयंसिद्धों का परीक्षण करने के लिए किया जा सकता है; इस तरह के परीक्षण की सीमा अनुभवजन्य रूप से निर्धारित की जा रही है। उदाहरण के लिए, यदि ए और एक्स दोनों के पास तीन स्तर हैं, तो स्कॉट के (1964) पदानुक्रम के भीतर उच्चतम आदेश रद्दीकरण स्वयंसिद्ध है जो अप्रत्यक्ष रूप से सॉल्वेबिलिटी और आर्कमेडीनेस का परीक्षण करता है। चार स्तरों के साथ यह ट्रिपल रद्दीकरण (चित्र 3) है। यदि ऐसे परीक्षण संतुष्ट हैं, तो ए और एक्स पर अंतर में मानक अनुक्रमों का निर्माण संभव है। इसलिए ये विशेषताएँ वास्तविक संख्या के अनुसार सघन हो सकती हैं या पूर्णांक के अनुसार समान रूप से फैली हुई हो सकती हैं (Krantz et al. 1971). दूसरे शब्दों में, A और X निरंतर मात्राएँ हैं।

माप की वैज्ञानिक परिभाषा से संबंध

संयुक्त माप की शर्तों की संतुष्टि का अर्थ है कि ए और एक्स के स्तरों के मापन को या तो परिमाण के बीच अनुपात या परिमाण अंतर के बीच अनुपात के रूप में व्यक्त किया जा सकता है। यह आमतौर पर उत्तरार्द्ध के रूप में व्याख्या की जाती है, यह देखते हुए कि अधिकांश व्यवहार वैज्ञानिक मानते हैं कि उनके परीक्षण और सर्वेक्षण तथाकथित अंतराल के पैमाने पर विशेषताओं को मापते हैं (Kline 1998). यही है, उनका मानना ​​है कि परीक्षण मनोवैज्ञानिक विशेषताओं के पूर्ण शून्य स्तरों की पहचान नहीं करते हैं।

औपचारिक रूप से, यदि पी, ए और एक्स एक योजक संयोजन संरचना बनाते हैं, तो ए और एक्स से वास्तविक संख्या में ऐसे कार्य होते हैं जैसे ए और बी में ए और एक्स और वाई में एक्स:

अगर और उपरोक्त अभिव्यक्ति को संतुष्ट करने वाले दो अन्य वास्तविक मूल्यवान कार्य मौजूद हैं और वास्तविक मूल्यवान स्थिरांक संतोषजनक:

वह है, और ए और एक्स के मापन परिवर्तन के लिए अद्वितीय हैं (यानी प्रत्येक स्टीवंस (1946) की भाषा में एक अंतराल पैमाना है)। इस परिणाम का गणितीय प्रमाण में दिया गया है (Krantz et al. 1971, pp. 261–6).

इसका मतलब यह है कि ए और एक्स के स्तर परिमाण के अंतर हैं जो किसी प्रकार के यूनिट अंतर के सापेक्ष मापा जाता है। P का प्रत्येक स्तर A और X के स्तरों के बीच का अंतर है। हालांकि, साहित्य से यह स्पष्ट नहीं है कि कैसे एक इकाई को योगात्मक संयुक्त संदर्भ में परिभाषित किया जा सकता है। van der Ven 1980 ने संयुक्त संरचनाओं के लिए एक स्केलिंग विधि प्रस्तावित की लेकिन उन्होंने इकाई पर भी चर्चा नहीं की।

संयुक्त मापन का सिद्धांत, तथापि, अंतरों के परिमाणन तक ही सीमित नहीं है। यदि P का प्रत्येक स्तर A के स्तर और X के स्तर का उत्पाद है, तो P एक अन्य भिन्न मात्रा है जिसका माप X के प्रति इकाई परिमाण A के परिमाण के रूप में व्यक्त किया जाता है। उदाहरण के लिए, A में द्रव्यमान होते हैं और X में होते हैं आयतनों की, तो P में आयतन की प्रति इकाई द्रव्यमान के रूप में मापे गए घनत्व होते हैं। ऐसे मामलों में, ऐसा प्रतीत होता है कि ए के एक स्तर और एक्स के एक स्तर को संयुक्त माप के आवेदन से पहले एक अस्थायी इकाई के रूप में पहचाना जाना चाहिए।

यदि P का प्रत्येक स्तर A के स्तर और X के स्तर का योग है, तो P वही मात्रा है जो A और X है। उदाहरण के लिए, ए और एक्स लंबाई हैं इसलिए पी होना चाहिए। इसलिए तीनों को एक ही इकाई में व्यक्त किया जाना चाहिए। ऐसे मामलों में, ऐसा प्रतीत होता है कि ए या एक्स के स्तर को अस्थायी रूप से इकाई के रूप में पहचाना जाना चाहिए। इसलिए ऐसा प्रतीत होता है कि संयुक्त माप के आवेदन के लिए प्रासंगिक प्राकृतिक प्रणाली के कुछ पूर्व वर्णनात्मक सिद्धांत की आवश्यकता होती है।

संयुक्त माप के अनुप्रयोग

संयुक्त माप के सिद्धांत के अनुभवजन्य अनुप्रयोग विरल रहे हैं (क्लिफ, वर्ष 1992; मिशेल वर्ष 2009).

दोहरे निरस्तीकरण के अनेक अनुभवजन्य मूल्यांकन संचालित किए गए हैं। इनमे से, लेवल्ट, रीमेर्स्मा & बंट 1972 ने बाइन्यूरल लाउडनेस के मनोभौतिकी के सिद्धांत का मूल्यांकन किया। उन्होंने पाया कि दोहरे निरस्तीकरण सिद्धांत को अस्वीकार कर दिया गया था। गिगेरेंजर, स्ट्रूब & वर्ष 1983 ने इसी प्रकार की जांच की तथा लेवल्ट, एट अल' ( वर्ष 1972) के निष्कर्षों को दोहराया। गिगेरेंजर, स्ट्रूब & वर्ष 1983 ने प्रेक्षित किया कि दोहरे निरस्तीकरण के मूल्यांकन में अधिक अतिरेक सम्मिलित है जो इसके अनुभवजन्य परीक्षण को जटिल बनाता है। इसलिए, स्टिंग्रिम्सन, लूस & वर्ष 2005 ने समतुल्य थॉमसन स्थिति सिद्धांत का मूल्यांकन किया जो इस अतिरेक से रक्षा करता है और गुणों को द्विकर्णीय प्रबलता में समर्थित पाया। स्टिंग्रिम्सन, लूस & वर्ष 2005, उस तिथि तक के साहित्य को सारांशित करता है, जिसमें यह अवलोकन भी शामिल है कि थॉमसन स्थिति के मूल्यांकन में एक अनुभवजन्य चुनौती भी शामिल है जिसे वे संयुक्त कम्यूटेटिविटी स्वयंसिद्ध द्वारा उपचारित पाते हैं, जिसे वे थॉमसन स्थिति के समकक्ष दिखाते हैं। Luce & Steingrimsson 2011 बायनॉरल लाउडनेस और ब्राइटनेस के लिए कंज्वाइंट कम्यूटेटिविटी सपोर्टेड पाया गया।

Michell 1990 ने इस सिद्धांत को L. L. थर्सटोन (1927) के युग्मित तुलनाओं के सिद्धांत, बहुआयामी स्केलिंग और Coombs' (1964) के एकआयामी खुलासा के सिद्धांत पर लागू किया। उन्होंने केवल Coombs '(1964) सिद्धांत के साथ रद्दीकरण स्वयंसिद्धों का समर्थन पाया। हालांकि, थर्स्टन के सिद्धांत और बहुआयामी स्केलिंग के परीक्षण में मिशेल (1990) द्वारा नियोजित सांख्यिकीय तकनीकों ने रद्दीकरण स्वयंसिद्धों द्वारा लगाए गए क्रमिक बाधाओं पर ध्यान नहीं दिया। (van der Linden 1994).

(Johnson 2001), किंगडन (2006), मिशेल (1994) और (Sherman 1993) ने कूम्ब्स' (1964) के एकआयामी खुलासा के सिद्धांत के उपयोग द्वारा प्राप्त इंटरस्टिमुलस मिडपॉइंट ऑर्डर के निरस्तीकरण सिद्धांतों का परीक्षण किया। तीनों अध्ययनों में कॉम्ब्स के सिद्धांत को छह कथनों के एक सेट पर लागू किया गया था। इन लेखकों ने पाया कि अभिगृहीत संतुष्ट थे, तथापि, ये एक सकारात्मक परिणाम के प्रति पक्षपाती अनुप्रयोग थे। छह उत्तेजनाओं के साथ, एक इंटरस्टिमुलस मिडपॉइंट ऑर्डर की संभावना यादृच्छिक रूप से डबल रद्दीकरण सिद्धांतों को संतुष्ट करती है। 5874 (मिशेल, 1994)। यह कोई असंभावित घटना नहीं है। किंगडन एंड रिचर्ड्स (2007) ने आठ कथनों को नियोजित किया और पाया कि इंटरस्टिमुलस मिडपॉइंट ऑर्डर ने दोहरी रद्दीकरण स्थिति को खारिज कर दिया।

Perline, Wright & Wainer 1979 ने एक दोषी पैरोल प्रश्नावली के लिए आइटम प्रतिक्रिया डेटा और डेनिश सैनिकों से एकत्रित खुफिया परीक्षण डेटा के लिए संयुक्त माप लागू किया। उन्होंने पैरोल प्रश्नावली डेटा में कैंसिलेशन एक्सिओम्स का काफी उल्लंघन पाया, लेकिन इंटेलिजेंस टेस्ट डेटा में नहीं। इसके अलावा, उन्होंने दोहरे रद्दीकरण के अनुमानित नो टेस्ट उदाहरण दर्ज किए। दोहरे निरस्तीकरण (मिशेल, 1988) के समर्थन में उदाहरणों के रूप में इनकी सही व्याख्या करना, के परिणाम Perline, Wright & Wainer 1979 वे जो मानते थे उससे बेहतर हैं।

Stankov & Cregan 1993 अनुक्रम पूर्णता कार्यों पर प्रदर्शन के लिए संयुक्त माप लागू किया। उनके संयुक्त सरणियों (एक्स) के स्तंभों को पत्र श्रृंखला पूर्ण करने वाले कार्यों में कार्यशील मेमोरी प्लेस कीपर्स की बढ़ती संख्या के माध्यम से कार्यशील मेमोरी क्षमता पर रखी गई मांग द्वारा परिभाषित किया गया था। पंक्तियों को प्रेरणा के स्तर (ए) द्वारा परिभाषित किया गया था, जिसमें परीक्षण को पूरा करने के लिए अलग-अलग समय उपलब्ध थे। उनके डेटा (पी) में पूर्णता के समय और श्रृंखला की औसत संख्या सही थी। उन्हें रद्दीकरण स्वयंसिद्धों के लिए समर्थन मिला, हालांकि, उनका अध्ययन संयुक्त सरणियों के छोटे आकार (3 × 3 आकार है) और सांख्यिकीय तकनीकों द्वारा पक्षपाती था, जो रद्दीकरण स्वयंसिद्धों द्वारा लगाए गए क्रमिक प्रतिबंधों को ध्यान में नहीं रखते थे।

Kyngdon (2011) ने Karabatsos (2001) के आदेश-प्रतिबंधित निष्कर्ष ढांचे का उपयोग आइटम प्रतिक्रिया अनुपात (P) पढ़ने के एक संयुक्त मैट्रिक्स का परीक्षण करने के लिए किया, जहां परीक्षार्थी पढ़ने की क्षमता में संयुक्त सरणी (A) की पंक्तियाँ शामिल थीं और पढ़ने वाली वस्तुओं की कठिनाई सरणी के कॉलम (एक्स)। पढ़ने की क्षमता के स्तरों को कच्चे कुल परीक्षण स्कोर के माध्यम से पहचाना गया और पढ़ने के लिए लेक्साइल फ्रेमवर्क द्वारा पढ़ने की कठिनाई के स्तर की पहचान की गई (Stenner et al. 2006). Kyngdon ने पाया कि रद्दीकरण स्वयंसिद्धों की संतुष्टि केवल मैट्रिक्स के क्रमपरिवर्तन के माध्यम से प्राप्त की गई थी जो आइटम कठिनाई के कल्पित लेक्साइल उपायों के साथ असंगत थी। Kyngdon ने बहुपद संयोजन माप का उपयोग करते हुए सिम्युलेटेड क्षमता परीक्षण प्रतिक्रिया डेटा का भी परीक्षण किया। डेटा को हम्फ्री के विस्तारित फ्रेम ऑफ रेफरेंस रेश मॉडल का उपयोग करके उत्पन्न किया गया था (Humphry & Andrich 2008). उन्होंने तीन चरों में एक वितरणात्मक बहुपद संयुक्त संरचना के अनुरूप वितरण, एकल और दोहरे रद्दीकरण का समर्थन पाया। (Krantz & Tversky 1971).

यह भी देखें

संदर्भ

  • Arbuckle, J.; Larimer, J. (1976). "The number of two-way tables satisfying certain additivity axioms". Journal of Mathematical Psychology. 12: 89–100. doi:10.1016/0022-2496(76)90036-5.
  • Birnbaum, M. H. (2008). "New paradoxes of risky decision making". Psychological Review. 115 (2): 463–501. CiteSeerX 10.1.1.144.5661. doi:10.1037/0033-295X.115.2.463. PMID 18426300.
  • Brogden, H. E. (December 1977). "The Rasch model, the law of comparative judgement and additive conjoint measurement". Psychometrika. 42 (4): 631–4. doi:10.1007/BF02295985. S2CID 123583660.
  • Cliff, N. (1992). "Abstract measurement theory and the revolution that never happened". Psychological Science. 3 (3): 186–190. doi:10.1111/j.1467-9280.1992.tb00024.x. S2CID 144507788.
  • Coombs, C. H. (1964). A Theory of Data. New York: Wiley.[page needed]
  • Davis-Stober, C. P. (February 2009). "Analysis of multinomial models under inequality constraints: applications to measurement theory". Journal of Mathematical Psychology. 53 (1): 1–13. doi:10.1016/j.jmp.2008.08.003.
  • Debreu, G. (1960). "Topological methods in cardinal utility theory". In Arrow, K.J.; Karlin, S.; Suppes, P. (eds.). Mathematical Methods in the Social Sciences. Stanford University Press. pp. 16–26.
  • Embretson, S. E.; Reise, S. P. (2000). Item response theory for psychologists. Erlbaum.[page needed]
  • Emerson, W. H. (2008). "On quantity calculus and units of measurement". Metrologia. 45 (2): 134–138. Bibcode:2008Metro..45..134E. doi:10.1088/0026-1394/45/2/002. S2CID 121451085.
  • Fischer, G. (1995). "Derivations of the Rasch model". In Fischer, G.; Molenaar, I.W. (eds.). Rasch models: Foundations, recent developments, and applications. New York: Springer. pp. 15–38.
  • Gigerenzer, G.; Strube, G. (1983). "Are there limits to binaural additivity of loudness?". Journal of Experimental Psychology: Human Perception and Performance. 9 (1): 126–136. doi:10.1037/0096-1523.9.1.126. hdl:21.11116/0000-0000-BC9A-F. PMID 6220118.
  • Grayson, D. A. (September 1988). "Two-group classification and latent trait theory: scores with monotone likelihood ratio". Psychometrika. 53 (3): 383–392. doi:10.1007/BF02294219. S2CID 121684695.
  • Hölder, O. (1901). "Die Axiome der Quantität und die Lehre vom Mass". Berichte Uber die Verhandlungen der Koeniglich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physikaliche Klasse. 53: 1–46. (Part 1 translated by Michell, J.; Ernst, C. (September 1996). "The axioms of quantity and the theory of measurement". Journal of Mathematical Psychology. 40 (3): 235–252. doi:10.1006/jmps.1996.0023. PMID 8979975.
  • Humphry, S. M.; Andrich, D. (2008). "Understanding the unit in the Rasch model". Journal of Applied Measurement. 9 (3): 249–264. PMID 18753694.
  • Iverson, G.; Falmagne, J. C. (1985). "Statistical issues in measurement". Mathematical Social Sciences. 10 (2): 131–153. doi:10.1016/0165-4896(85)90031-9.
  • Johnson, T. (2001). "Controlling the effect of stimulus context change on attitude statements using Michell's binary tree procedure". Australian Journal of Psychology. 53: 23–28. doi:10.1080/00049530108255118.
  • Kahneman, D.; Tversky, A. (1979). "Prospect theory: an analysis of decision under risk". Econometrica. 47 (2): 263–291. CiteSeerX 10.1.1.407.1910. doi:10.2307/1914185. JSTOR 1914185.
  • Karabatsos, G. (2001). "The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory". Journal of Applied Measurement. 2 (4): 389–423. PMID 12011506.
  • Karabatsos, G. (February 2005). "The exchangeable multinomial model as an approach for testing axioms of choice and measurement" (PDF). Journal of Mathematical Psychology. 49 (1): 51–69. doi:10.1016/j.jmp.2004.11.001. Archived from the original (PDF) on 2006-02-06.
  • Karabatsos, G.; Sheu, C. F. (2004). "Bayesian order constrained inference for dichotomous models of unidimensional non-parametric item response theory". Applied Psychological Measurement. 28 (2): 110–125. doi:10.1177/0146621603260678. S2CID 122303701.
  • Karabatsos, G.; Ullrich, J. R. (2002). "Enumerating and testing conjoint measurement models". Mathematical Social Sciences. 43 (3): 485–504. doi:10.1016/S0165-4896(02)00024-0.
  • Krantz, D. H. (July 1964). "Conjoint measurement: the Luce–Tukey axiomatisation and some extensions". Journal of Mathematical Psychology. 1 (2): 248–277. doi:10.1016/0022-2496(64)90003-3.
  • Krantz, D. H. (1968). "A survey of measurement theory". In Danzig, G.B.; Veinott, A.F. (eds.). Mathematics of the Decision Sciences: Part 2. Providence, Rhode Island: American Mathematical Society. pp. 314–350.
  • Keats, J. A. (1967). "Test theory". Annual Review of Psychology. 18: 217–238. doi:10.1146/annurev.ps.18.020167.001245. PMID 5333423.
  • Kline, P. (1998). The New Psychometrics: Science, psychology and measurement. London: Routledge.[page needed]
  • Krantz, D. H.; Luce, R.D; Suppes, P.; Tversky, A. (1971). Foundations of Measurement, Vol. I: Additive and polynomial representations. New York: Academic Press.
  • Krantz, D. H.; Tversky, A. (1971). "Conjoint measurement analysis of composition rules in psychology". Psychological Review. 78 (2): 151–169. doi:10.1037/h0030637.
  • Kyngdon, A. (2006). "An empirical study into the theory of unidimensional unfolding". Journal of Applied Measurement. 7 (4): 369–393. PMID 17068378.
  • Kyngdon, A. (2008). "The Rasch model from the perspective of the representational theory of measurement". Theory & Psychology. 18: 89–109. doi:10.1177/0959354307086924. S2CID 143679173.
  • Kyngdon, A. (2011). "Plausible measurement analogies to some psychometric models of test performance". British Journal of Mathematical and Statistical Psychology. 64 (3): 478–497. doi:10.1348/2044-8317.002004. PMID 21973097.
  • Kyngdon, A.; Richards, B. (2007). "Attitudes, order and quantity: deterministic and direct probabilistic tests of unidimensional unfolding". Journal of Applied Measurement. 8 (1): 1–34. PMID 17215563.
  • Levelt, W. J. M.; Riemersma, J. B.; Bunt, A. A. (May 1972). "Binaural additivity of loudness" (PDF). British Journal of Mathematical and Statistical Psychology. 25 (1): 51–68. doi:10.1111/j.2044-8317.1972.tb00477.x. hdl:11858/00-001M-0000-0013-2CBF-1. PMID 5031649.
  • Luce, R. D.; Steingrimsson, R. (2011). "Theory and tests of the conjoint commutativity axiom for additive conjoint measurement" (PDF). Journal of Mathematical Psychology. 55 (5): 379–389. doi:10.1016/j.jmp.2011.05.004.
  • Luce, R. D.; Suppes, P. (2002). "Representational measurement theory". In Pashler, H.; Wixted, J. (eds.). Stevens' handbook of experimental psychology: Vol. 4. Methodology in experimental psychology (3rd ed.). New York: Wiley. pp. 1–41.
  • Luce, R. D.; Tukey, J. W. (January 1964). "Simultaneous conjoint measurement: a new scale type of fundamental measurement". Journal of Mathematical Psychology. 1 (1): 1–27. CiteSeerX 10.1.1.334.5018. doi:10.1016/0022-2496(64)90015-X.
  • McClelland, G. (June 1977). "A note on Arbuckle and Larimer: the number of two way tables satisfying certain additivity axioms". Journal of Mathematical Psychology. 15 (3): 292–5. doi:10.1016/0022-2496(77)90035-9.
  • Michell, J. (June 1994). "Measuring dimensions of belief by unidimensional unfolding". Journal of Mathematical Psychology. 38 (2): 224–273. doi:10.1006/jmps.1994.1016.
  • Michell, J. (December 1988). "Some problems in testing the double cancellation condition in conjoint measurement". Journal of Mathematical Psychology. 32 (4): 466–473. doi:10.1016/0022-2496(88)90024-7.
  • Michell, J. (1990). An Introduction to the Logic of Psychological Measurement. Hillsdale NJ: Erlbaum.[page needed]
  • Michell, J. (February 2009). "The psychometricians' fallacy: Too clever by half?". British Journal of Mathematical and Statistical Psychology. 62 (1): 41–55. doi:10.1348/000711007X243582. PMID 17908369.
  • Perline, R.; Wright, B. D.; Wainer, H. (1979). "The Rasch model as additive conjoint measurement". Applied Psychological Measurement. 3 (2): 237–255. doi:10.1177/014662167900300213. S2CID 53706504.
  • Scheiblechner, H. (September 1999). "Additive conjoint isotonic probabilistic models (ADISOP)". Psychometrika. 64 (3): 295–316. doi:10.1007/BF02294297. S2CID 120080826.
  • Scott, D. (July 1964). "Measurement models and linear inequalities". Journal of Mathematical Psychology. 1 (2): 233–247. doi:10.1016/0022-2496(64)90002-1.
  • Sherman, K. (April 1994). "The effect of change in context in Coombs's unfolding theory". Australian Journal of Psychology. 46 (1): 41–47. doi:10.1080/00049539408259468.
  • Stankov, L.; Cregan, A. (1993). "Quantitative and qualitative properties of an intelligence test: series completion". Learning and Individual Differences. 5 (2): 137–169. doi:10.1016/1041-6080(93)90009-H.
  • Steingrimsson, R; Luce, R. D. (2005). "Evaluating a model of global psychophysical judgments I: Behavioral properties of summations and productions" (PDF). Journal of Mathematical Psychology. 49 (4): 290–306. doi:10.1016/j.jmp.2005.03.003.
  • Stenner, A. J.; Burdick, H.; Sanford, E. E.; Burdick, D. S. (2006). "How accurate are Lexile text measures?". Journal of Applied Measurement. 7 (3): 307–322. PMID 16807496.
  • Stevens, S. S. (1946). "On the theory of scales of measurement". Science. 103 (2684): 667–680. Bibcode:1946Sci...103..677S. doi:10.1126/science.103.2684.677. PMID 17750512.
  • Stober, C. P. (2009). Luce's challenge: Quantitative models and statistical methodology.[full citation needed]
  • Thurstone, L. L. (1927). "A law of comparative judgement". Psychological Review. 34 (4): 278–286. doi:10.1037/h0070288.
  • Tversky, A. (1967). "A general theory of polynomial conjoint measurement" (PDF). Journal of Mathematical Psychology. 4: 1–20. doi:10.1016/0022-2496(67)90039-9. hdl:2027.42/33362.
  • Ullrich, J. R.; Wilson, R. E. (December 1993). "A note on the exact number of two and three way tables satisfying conjoint measurement and additivity axioms". Journal of Mathematical Psychology. 37 (4): 624–8. doi:10.1006/jmps.1993.1037.
  • van der Linden, W. (March 1994). "Review of Michell (1990)". Psychometrika. 59 (1): 139–142. doi:10.1007/BF02294273.
  • van der Ven, A. H. G. S. (1980). Introduction to Scaling. New York: Wiley.[page needed]


बाहरी संबंध