तापयुग्म
This article uses bare URLs, which are uninformative and vulnerable to link rot. (अगस्त 2022) (Learn how and when to remove this template message) |
| Thermoelectric effect |
|---|
तापयुग्म एक विद्युत उपकरण है, जिसे "तापवैद्युत तापमापी (थर्मामीटर)" भी कहा जाता है, जिसमें वैद्युत संधि बनाने वाले दो असमान वैद्युत चालक होते हैं। सीबेक प्रभाव के परिणामस्वरूप तापयुग्म तापमान-निर्भर विभव उत्पन्न करता है, और इस विभव को तापमान को मापने के लिए व्याखित किया जा सकता है। तापयुग्म का व्यापक रूप से तापमान संवेदक (सेंसर) के रूप में उपयोग किया जाता है।[1]
वाणिज्यिक तापयुग्म सस्ते होते हैं,[2] विनिमेय होते हैं, मानक संयोजक (कनेक्टर्स) के साथ आपूर्ति की जाती हैं, और तापमान की एक विस्तृत श्रृंखला को माप सकते हैं। तापमान मापन के अधिकांश अन्य तरीकों के विपरीत, तापयुग्म स्वयं संचालित होते हैं और किसी बाहरी प्रकार के उत्तेजना की आवश्यकता नहीं होती है। तापयुग्म के साथ मुख्य सीमा यथार्थता है, एक डिग्री सेल्सियस (°C) से कम की तंत्र त्रुटियों को प्राप्त करना कठिन हो सकता है।[3]
विज्ञान और उद्योग में तापयुग्म का व्यापक रूप से उपयोग किया जाता है। अनुप्रयोगों में भट्टों, गैस टर्बाइन निकास, डीजल इंजन और अन्य औद्योगिक प्रक्रियाओं के लिए तापमान माप शामिल हैं। तापयुग्म का उपयोग घरों, कार्यालयों और व्यवसायों में तापनियंत्रक (थर्मोस्टैट्स) में तापमान संवेदक के रूप में और गैस से चलने वाले उपकरणों के लिए सुरक्षा उपकरणों में अग्नि संवेदक के रूप में भी किया जाता है।
कार्य प्रणाली का सिद्धांत
1821 में, जर्मन भौतिक विज्ञानी थॉमस जोहान सीबेक ने पाया कि दो अलग-अलग धातुओं से बने परिपथ के पास रखी एक चुंबकीय सुई तब विक्षेपित हो जाती है जब असमान धातु संधियों को गर्म किया जाता है। उस समय, सीबेक ने इस परिणाम को ताप-चुम्बकत्व निर्दिष्ट किया। उनके द्वारा प्रेक्षित चुंबकीय क्षेत्र, जो ताप-वैद्युत धारा द्वारा उत्पन्न हुई थी। प्रयोगात्मक उपयोग में, दो अलग-अलग प्रकार के तारों के एक ही संधि पर उत्पन्न विभव प्रभावी होता है क्योंकि इसका उपयोग बहुत उच्च और निम्न तापमान पर तापमान को मापने के लिए किया जाता है। विभव का परिमाण उपयोग किए जा रहे तार के प्रकार पर निर्भर करता है। सामान्यतः विभव माइक्रोवोल्ट सीमा में होता है और एक उपयोगी माप प्राप्त करने के लिए संरक्षण आवश्यक है। एकल तापयुग्म संधि द्वारा बहुत कम धारा प्रवाहित होने पर भी, बिजली उत्पन्न की जा सकती है। कई तापयुग्म का उपयोग करके बिजली उत्पादन साधारण है, जैसे कि ताप पुंज (थर्मापाइल) में।
तापयुग्म के उपयोग के लिए आदर्श विन्यास को चित्र में दिखाया गया है। संक्षेप में, वांछित तापमान तीन इनपुटों का उपयोग करके प्राप्त किया जाता है- तापयुग्म का अभिलक्षण फलन E(T), मापित विभव V, और संदर्भ संधियों का तापमान । समीकरण E() = V + E() का हल उत्पन्न करता है। ये विवरण अक्सर उपयोगकर्ता से छिपाए जाते हैं क्योंकि संदर्भ संधि ब्लॉक ( थर्मामीटर के साथ), विभवमापी, और समीकरण हलकर्ता को एक उत्पाद में जोड़ा जाता है।
सीबेक प्रभाव
सीबेक प्रभाव विद्युत संचालक सामग्री के दो बिंदुओं पर एक विद्युत वाहक बल के उत्पन्न होने को संदर्भित करता है जब उन दो बिंदुओं के बीच तापमान अंतर होता है। खुले परिपथ (अर्थात अनंत प्रतिरोध) की परिस्थितियों में जहां कोई आंतरिक धारा का प्रवाह नहीं होता, विभव की प्रवणता () तापमान में प्रवणता () के सीधे आनुपातिक होती है:
जहाँ तापमान पर निर्भर भौतिक गुण है जिसे सीबेक गुणांक कहा जाता है।
आंकड़े में दिखाया गया मानक माप विन्यास चार तापमान क्षेत्रों को दर्शाता है और इस प्रकार चार विभव योगदान:
- निचले तांबे के तार में, से परिवर्तन।
- एल्यूमेल तार में से परिवर्तन।
- क्रोमेल वायर में से परिवर्तन।
- ऊपरी तांबे के तार में से परिवर्तन।
पहला और चौथा योगदान पूर्णतः रद्द हो जाता है, क्योंकि इन क्षेत्रों में एक ही तापमान परिवर्तन और समान सामग्री शामिल होती है। परिणामस्वरूप, मापित विभव को प्रभावित नहीं करता है। दूसरे और तीसरे योगदान को रद्द नहीं किया जाता है, क्योंकि उनमें विभिन्न सामग्री शामिल होती है।
मापित विभव निम्न प्राप्त होता है
जहां और क्रमशः विभवमापी के धनात्मक और ऋणात्मक सिरों से जुड़े चालकों के सीबेक गुणांक हैं (आकृति में क्रोमेल और एल्यूमेल)।
अभिलक्षण फलन
तापयुग्म की गतिविधि को अभिलक्षण फलन द्वारा प्राप्त किया जाता है, जिसे केवल दो तर्कों पर परामर्श करने की आवश्यकता होती है:
सीबेक गुणांकों के संदर्भ में, अभिलक्षणिक फलन को निम्न प्रकार परिभाषित किया जाता है
इस अनिशिचित समाकल में समाकलन स्थिरांक का कोई महत्व नहीं है, लेकिन इसे पारंपरिक रूप से इस प्रकार चुना जाता है कि ।
तापयुग्म निर्माता और मापविद्या मानक संगठन जैसे NIST फलन की तालिका प्रदान करते हैं जिन्हें विशेष तापयुग्म प्रकारों के लिए तापमान की एक सीमा पर मापा और प्रक्षेपित किया गया है (इन तालिकाओं तक पहुंच के लिए बाहरी लिंक अनुभाग देखें)।
संदर्भ संधि
का वांछित माप प्राप्त करने के लिए, केवल को मापना पर्याप्त नहीं है। संदर्भ संधियों पर तापमान पहले से ही ज्ञात होना चाहिए। यहां दो कार्यनीतियों का अक्सर उपयोग किया जाता है:
- "बर्फ स्नान" विधि: संदर्भ संधि ब्लॉक वायुमंडलीय दाब पर आसुत जल के अर्ध-जमे हुए स्नान में डूबा हुआ है। गलनांक चरण संक्रमण का सटीक तापमान एक प्राकृतिक थर्मोस्टेट के रूप में कार्य करता है, से 0° C (डिग्री सेल्सियस) को ठीक करता है।
- संदर्भ संधि संवेदक ("कोल्ड संधि मुआवजा" के रूप में जाना जाता है): संदर्भ संधि ब्लॉक को तापमान में भिन्न होने की अनुमति है, लेकिन इस ब्लॉक में तापमान को एक अलग तापमान संवेदक का उपयोग करके मापा जाता है। इस द्वितीयक माप का उपयोग संधि ब्लॉक में तापमान भिन्नता की भरपाई के लिए किया जाता है। तापयुग्म संधि अक्सर चरम वातावरण के संपर्क में आता है, जबकि संदर्भ संधि अक्सर उपकरण के स्थान के पास रखा जाता है। आधुनिक तापयुग्म उपकरणों में अक्सर सेमीकंडक्टर थर्मामीटर उपकरणों का उपयोग किया जाता है।
दोनों ही मामलों में के मान की गणना की जाती है, फिर फ़ंक्शन को एक मिलान मान के लिए खोजा जाता है। तर्क जहां यह मिलान होता है वह का मान होता है:
- ।
व्यावहारिक चिंताएं
तापयुग्म आदर्श रूप से बहुत ही सरल माप उपकरण होने चाहिए, प्रत्येक प्रकार को एक सटीक वक्र द्वारा चित्रित किया जाना चाहिए, जो किसी अन्य विवरण से स्वतंत्र हो। वास्तव में, तापयुग्म मिश्र धातु निर्माण अनिश्चितताओं, उम्र बढ़ने के प्रभावों और परिपथ डिजाइन की गलतियों / गलतफहमी जैसे मुद्दों से प्रभावित होते हैं।
परिपथ निर्माण
तापयुग्म के निर्माण में एक सामान्य त्रुटि कोल्ड संधि क्षतिपूर्ति से संबंधित है। यदि के अनुमान पर कोई त्रुटि होती है, तो तापमान माप में एक त्रुटि दिखाई देगी। सबसे सरल माप के लिए, तापयुग्म तार तांबे से गर्म या ठंडे बिंदु से दूर जुड़े होते हैं जिसका तापमान मापा जाता है; इस संदर्भ संधि को तब कमरे के तापमान पर माना जाता है, लेकिन वह तापमान भिन्न हो सकता है।[4] तापयुग्म विभव वक्र में गैर-रैखिकता के कारण, और में त्रुटियां आम तौर पर असमान मान हैं। कुछ तापयुग्म, जैसे प्रकार बी, में कमरे के तापमान के पास अपेक्षाकृत सपाट विभव वक्र होता है, जिसका अर्थ है कि कमरे के तापमान में एक बड़ी अनिश्चितता में केवल एक छोटी सी त्रुटि का अनुवाद करती है।
संधियों को विश्वसनीय तरीके से बनाया जाना चाहिए, लेकिन इसे पूरा करने के कई संभावित तरीके हैं। कम तापमान के लिए, संधियों को टांकना या मिलाप करना संभव है; हालांकि, एक उपयुक्त फ्लक्स खोजना मुश्किल हो सकता है और सोल्डर के कम गलनांक के कारण सेंसिंग संधि पर यह उपयुक्त नहीं हो सकता है। संदर्भ और विस्तार संधि इसलिए आमतौर पर स्क्रू टर्मिनल ब्लॉकों के साथ बनाए जाते हैं। उच्च तापमान के लिए, सबसे आम तरीका एक टिकाऊ सामग्री का उपयोग करके स्पॉट वेल्ड या क्रिंप है।[5]
तापयुग्म्स के बारे में एक आम मिथक यह है कि अवांछित जोड़े गए ईएमएफ से बचने के लिए संधियों को बिना किसी तीसरी धातु के साफ-सुथरा बनाया जाना चाहिए।[6] यह एक और आम गलतफहमी के परिणामस्वरूप हो सकता है कि विभव संधि पर उत्पन्न होता है।[7] वास्तव में, संधियों में सिद्धांत रूप में एक समान आंतरिक तापमान होना चाहिए; इसलिए, संधि पर कोई विभव नहीं बनता है। विभव तार के साथ, थर्मल ढाल में उत्पन्न होता है।
एक तापयुग्म छोटे सिग्नल उत्पन्न करता है, अक्सर परिमाण में माइक्रोवोल्ट। इस सिग्नल के सटीक माप के लिए कम इनपुट ऑफ़सेट विभव के साथ एक एम्पलीफायर की आवश्यकता होती है और थर्मल ईएमएफ को वोल्टमीटर के भीतर ही सेल्फ-हीटिंग से बचने के लिए देखभाल की जाती है। यदि किसी कारण से तापयुग्म तार का उच्च प्रतिरोध होता है (संधि पर खराब संपर्क, या तेज थर्मल प्रतिक्रिया के लिए उपयोग किए जाने वाले बहुत पतले तार), तो मापने वाले उपकरण में मापा विभव में एक ऑफसेट को रोकने के लिए उच्च इनपुट प्रतिबाधा होनी चाहिए। तापयुग्म इंस्ट्रूमेंटेशन में एक उपयोगी विशेषता एक साथ प्रतिरोध को मापेगी और वायरिंग या तापयुग्म संधियों में दोषपूर्ण कनेक्शन का पता लगाएगी।
धातुकर्म ग्रेड
जबकि तापयुग्म तार प्रकार को अक्सर इसकी रासायनिक संरचना द्वारा वर्णित किया जाता है, वास्तविक उद्देश्य तारों की एक जोड़ी का उत्पादन करना होता है जो एक मानकीकृत वक्र का पालन करते हैं।
अशुद्धियाँ धातु के प्रत्येक बैच को अलग तरह से प्रभावित करती हैं, जिससे चर सीबेक गुणांक उत्पन्न होते हैं। मानक व्यवहार से मेल खाने के लिए, तापयुग्म वायर निर्माता जानबूझकर अतिरिक्त अशुद्धियों को मिश्रित करके मिश्र धातु को "डोप" करेंगे, स्रोत सामग्री में अनियंत्रित विविधताओं की भरपाई करेंगे।[5] नतीजतन, तापयुग्म वायर के मानक और विशेष ग्रेड होते हैं, जो तापयुग्म व्यवहार में मांग की गई यथार्थता के स्तर पर निर्भर करता है। सटीक ग्रेड केवल मिलान जोड़े में उपलब्ध हो सकते हैं, जहां एक तार को दूसरे तार की कमियों की भरपाई के लिए संशोधित किया जाता है।
तापयुग्म तार के एक विशेष मामले को "विस्तार ग्रेड" के रूप में जाना जाता है, जिसे थर्मोइलेक्ट्रिक परिपथ को लंबी दूरी तक ले जाने के लिए डिज़ाइन किया गया है। विस्तार तार बताए गए वक्र का अनुसरण करते हैं लेकिन विभिन्न कारणों से उन्हें अत्यधिक वातावरण में उपयोग करने के लिए डिज़ाइन नहीं किया गया है और इसलिए कुछ अनुप्रयोगों में संवेदन संधि पर उनका उपयोग नहीं किया जा सकता है। उदाहरण के लिए, एक विस्तार तार एक अलग रूप में हो सकता है, जैसे फंसे हुए निर्माण और प्लास्टिक विद्युत्रोधन के साथ अत्यधिक लचीला, या कई तापयुग्म परिपथ को ले जाने के लिए एक बहु-तार केबल का हिस्सा हो सकता है। महंगे नोबल मेटल तापयुग्म्स के साथ, एक्सटेंशन वायर पूरी तरह से अलग, सस्ती सामग्री से भी बने हो सकते हैं जो कम तापमान सीमा पर मानक प्रकार की नकल करते हैं।[5]
उम्र बढ़ने
तापयुग्म अक्सर उच्च तापमान पर और प्रतिक्रियाशील भट्टी के वातावरण में उपयोग किए जाते हैं। इस मामले में, व्यावहारिक जीवनकाल तापयुग्म उम्र बढ़ने द्वारा सीमित है। बहुत उच्च तापमान को मापने के लिए उपयोग किए जाने वाले तापयुग्म में तारों के थर्मोइलेक्ट्रिक गुणांक समय के साथ बदल सकते हैं, और माप विभव तदनुसार कम हो जाता है। संधियों के तापमान अंतर और माप विभव के बीच सरल संबंध केवल तभी सही होता है जब प्रत्येक तार सजातीय हो (संरचना में समान)। एक प्रक्रिया में तापयुग्म की उम्र के रूप में, उनके कंडक्टर उच्च तापमान के अत्यधिक या लंबे समय तक संपर्क के कारण रासायनिक और धातुकर्म परिवर्तनों के कारण समरूपता खो सकते हैं। यदि तापयुग्म परिपथ के वृद्ध खंड को तापमान ढाल के संपर्क में लाया जाता है, तो मापा विभव अलग होगा, जिसके परिणामस्वरूप त्रुटि होगी।
वृद्ध तापयुग्म केवल आंशिक रूप से संशोधित हैं; उदाहरण के लिए, भट्टी के बाहर के भागों में अप्रभावित रहना। इस कारण से, वृद्ध तापयुग्म को उनके स्थापित स्थान से बाहर नहीं निकाला जा सकता है और त्रुटि निर्धारित करने के लिए स्नान या परीक्षण भट्टी में पुनर्गणना किया जा सकता है। यह यह भी बताता है कि जब एक वृद्ध तापयुग्म को आंशिक रूप से भट्ठी से बाहर निकाला जाता है तो त्रुटि क्यों देखी जा सकती है - जैसे संवेदक को वापस खींचा जाता है, वृद्ध वर्ग गर्म से ठंडे तापमान में वृद्धि के संपर्क में आ सकते हैं क्योंकि वृद्ध वर्ग अब कूलर अपवर्तक क्षेत्र से गुजरता है, जिससे माप में महत्वपूर्ण त्रुटि होती है। इसी तरह, एक वृद्ध तापयुग्म जिसे भट्टी में गहराई से धकेला जाता है, कभी-कभी अधिक सटीक रीडिंग प्रदान कर सकता है यदि भट्टी में आगे धकेलने से तापमान प्रवणता केवल एक ताजा खंड में उत्पन्न होती है।[8]
प्रकार
मिश्र धातुओं के कुछ संयोजन उद्योग के मानकों के रूप में लोकप्रिय हो गए हैं। संयोजन का चयन लागत, उपलब्धता, सुविधा, गलनांक, रासायनिक गुण, स्थिरता और आउटपुट द्वारा संचालित होता है। विभिन्न प्रकार विभिन्न अनुप्रयोगों के लिए सबसे उपयुक्त हैं। वे आमतौर पर आवश्यक तापमान सीमा और संवेदनशीलता के आधार पर चुने जाते हैं। कम संवेदनशीलता (बी, आर, और एस प्रकार) वाले तापयुग्म में संगत रूप से कम रिज़ॉल्यूशन होते हैं। अन्य चयन मानदंडों में तापयुग्म सामग्री की रासायनिक जड़ता और यह चुंबकीय है या नहीं, शामिल हैं। मानक तापयुग्म प्रकारों को पहले सकारात्मक इलेक्ट्रोड ( मानकर) के साथ नीचे सूचीबद्ध किया गया है, इसके बाद नकारात्मक इलेक्ट्रोड का नाम दिया गया है।
निकेल-अलॉय थर्मोक्यूलेस
प्रकार ई
प्रकार ई (क्रोमेल-कॉन्स्टेंटन) का उच्च आउटपुट (68 μV/°C) है, जो इसे क्रायोजेनिक उपयोग के लिए अच्छी तरह से अनुकूल बनाता है। इसके अतिरिक्त, यह गैर-चुंबकीय है। विस्तृत सीमा -270 डिग्री सेल्सियस से +740 डिग्री सेल्सियस और संकीर्ण सीमा -110 डिग्री सेल्सियस से +140 डिग्री सेल्सियस है।
प्रकार j
प्रकार J (लोहा-कॉन्स्टेंटन) में प्रकार K की तुलना में अधिक प्रतिबंधित सीमा (−40 °C से +750 °C) होती है, लेकिन लगभग 50 µV/°C की उच्च संवेदनशीलता होती है।[2] लोहे का क्यूरी प्वाइंट (770 °C)[9] विशेषता में एक सहज परिवर्तन का कारण बनता है, जो ऊपरी तापमान सीमा निर्धारित करता है। ध्यान दें, यूरोपीय/जर्मन प्रकार एल, जे प्रकार का एक प्रकार है, जिसमें ईएमएफ आउटपुट के लिए एक अलग विनिर्देश है (संदर्भ डीआईएन 43712: 1985-01[10])।
प्रकार k
प्रकार K (क्रोमेल-एल्यूमेल) लगभग 41 µV/°C की संवेदनशीलता के साथ सबसे सामान्य सामान्य प्रयोजन वाला तापयुग्म है।[11] यह सस्ता है, और इसके -200 डिग्री सेल्सियस से +1350 डिग्री सेल्सियस (-330 डिग्री फ़ारेनहाइट से +2460 डिग्री फ़ारेनहाइट) सीमा में कई तरह के प्रोब उपलब्ध हैं। प्रकार K को ऐसे समय में निर्दिष्ट किया गया था जब धातुकर्म आज की तुलना में कम उन्नत था, और फलस्वरूप नमूनों के बीच विशेषताओं में काफी भिन्नता हो सकती है। घटक धातुओं में से एक, निकेल चुंबकीय है; चुंबकीय सामग्री से बने तापयुग्म की एक विशेषता यह है कि जब सामग्री अपने क्यूरी बिंदु तक पहुंचती है, तो वे आउटपुट में विचलन से गुजरते हैं, जो लगभग 185 डिग्री सेल्सियस पर K तापयुग्म के प्रकार के लिए होता है।[citation needed]
वे ऑक्सीकरण वातावरण में बहुत अच्छा काम करते हैं। यदि, हालांकि, अधिकतर कम करने वाला वातावरण (जैसे ऑक्सीजन की एक छोटी मात्रा के साथ हाइड्रोजन) तारों के संपर्क में आता है, तो क्रोमेल मिश्र धातु में क्रोमियम ऑक्सीकरण होता है। इससे ईएमएफ आउटपुट कम हो जाता है, और तापयुग्म कम पढ़ता है। इस घटना को प्रभावित मिश्र धातु के रंग के कारण हरा सड़ांध के रूप में जाना जाता है। हालांकि हमेशा विशिष्ट रूप से हरा नहीं होता है, क्रोमेल तार एक धब्बेदार चांदी की त्वचा का विकास करेगा और चुंबकीय बन जाएगा। इस समस्या की जांच करने का एक आसान तरीका यह देखना है कि क्या दो तार चुंबकीय हैं (आमतौर पर, क्रोमेल गैर-चुंबकीय है)।
हरित सड़न का सामान्य कारण वातावरण में हाइड्रोजन है। उच्च तापमान पर, यह ठोस धातुओं या बरकरार धातु थर्मोवेल के माध्यम से फैल सकता है। यहां तक कि तापयुग्म को इन्सुलेट करने वाले मैग्नीशियम ऑक्साइड का एक आवरण भी हाइड्रोजन को बाहर नहीं रखेगा।[12]
हरित सड़ांध ऑक्सीजन, या ऑक्सीजन मुक्त वातावरण में पर्याप्त रूप से नहीं होती है। एक सीलबंद थर्मोवेल को अक्रिय गैस से भरा जा सकता है, या एक ऑक्सीजन मेहतर (उदाहरण के लिए एक बलिदान टाइटेनियम तार) जोड़ा जा सकता है। वैकल्पिक रूप से, थर्मोवेल में अतिरिक्त ऑक्सीजन को पेश किया जा सकता है। एक अन्य विकल्प निम्न-ऑक्सीजन वाले वातावरण के लिए एक अलग तापयुग्म प्रकार का उपयोग कर रहा है, जहां हरा सड़ांध हो सकता है; एक प्रकार का एन तापयुग्म एक उपयुक्त विकल्प है।[13][unreliable source?]
प्रकार एम
प्रकार M (82% Ni/18% Mo–99.2% Ni/0.8% Co, वजन के हिसाब से) का उपयोग निर्वात भट्टियों में उन्हीं कारणों से किया जाता है, जैसे प्रकार C (नीचे वर्णित) के साथ होता है। ऊपरी तापमान 1400 °C तक सीमित है। यह अन्य प्रकारों की तुलना में कम आम तौर पर प्रयोग किया जाता है।
प्रकार n
प्रकार एन (निकरोसेल-निसिल) तापयुग्म इसकी स्थिरता और ऑक्सीकरण प्रतिरोध के कारण -270 डिग्री सेल्सियस और +1300 डिग्री सेल्सियस के बीच उपयोग के लिए उपयुक्त हैं। 900 डिग्री सेल्सियस पर संवेदनशीलता लगभग 39 µV/°C होती है, जो K प्रकार की तुलना में थोड़ी कम होती है।
नोएल ए. बर्ले द्वारा ऑस्ट्रेलिया के रक्षा विज्ञान और प्रौद्योगिकी संगठन (डीएसटीओ) में डिज़ाइन किया गया, प्रकार-एन तापयुग्म मानक बेस-मेटल थर्मोएलेमेंट सामग्री में थर्मोइलेक्ट्रिक अस्थिरता के तीन प्रमुख विशिष्ट प्रकारों और कारणों पर काबू पाते हैं:[14]
- ऊंचे तापमान पर लंबे समय तक संपर्क में रहने पर थर्मल ईएमएफ में एक क्रमिक और आम तौर पर संचयी बहाव। यह सभी बेस-मेटल थर्मोएलेमेंट सामग्री में देखा जाता है और मुख्य रूप से ऑक्सीकरण, कार्बोबराइजेशन, या न्यूट्रॉन विकिरण के कारण होने वाले संरचनागत परिवर्तनों के कारण होता है जो परमाणु रिएक्टर वातावरण में रूपांतरण उत्पन्न कर सकते हैं। प्रकार-के तापयुग्म के मामले में, केएन (नकारात्मक) तार से मैंगनीज और एल्यूमीनियम परमाणु केपी (पॉजिटिव) तार की ओर पलायन करते हैं, जिसके परिणामस्वरूप रासायनिक संदूषण के कारण डाउन-स्केल बहाव होता है। यह प्रभाव संचयी तथा अपरिवर्तनीय है।
- तापमान में गर्म होने पर थर्मल ईएमएफ में एक अल्पकालिक चक्रीय परिवर्तन लगभग 250-650 डिग्री सेल्सियस होता है, जो कि के, जे, टी, और ई प्रकार के तापयुग्म में होता है। इस प्रकार की ईएमएफ अस्थिरता धातुकर्म संरचना में चुंबकीय शॉर्ट-सीमा ऑर्डर जैसे संरचनात्मक परिवर्तनों से जुड़ी होती है।
- विशिष्ट तापमान श्रेणियों में थर्मल ईएमएफ में एक समय-स्वतंत्र गड़बड़ी। यह संरचना-निर्भर चुंबकीय परिवर्तनों के कारण है जो थर्मल ईएमएफ को प्रकार-के तापयुग्म में लगभग 25-225 डिग्री सेल्सियस की सीमा में और प्रकार जे में 730 डिग्री सेल्सियस से ऊपर खराब कर देता है।
निक्रोसिल और निसिल तापयुग्म मिश्र धातु अन्य मानक बेस-मेटल तापयुग्म मिश्र धातुओं के सापेक्ष बहुत बढ़ी हुई थर्मोइलेक्ट्रिक स्थिरता दिखाते हैं क्योंकि उनकी रचनाएं ऊपर वर्णित थर्मोइलेक्ट्रिक अस्थिरता को काफी हद तक कम कर देती हैं। यह मुख्य रूप से निकेल के एक आधार में घटक विलेय सांद्रता (क्रोमियम और सिलिकॉन) को बढ़ाकर प्राप्त किया जाता है, जो ऑक्सीकरण के आंतरिक से बाहरी मोड में संक्रमण का कारण बनता है, और विलेय (सिलिकॉन और मैग्नीशियम) का चयन करके जो एक प्रसार-अवरोधक बनाने के लिए अधिमानतः ऑक्सीकरण करते हैं, और इसलिए ऑक्सीकरण-अवरोधक फिल्में बनाते हैं।[15]
प्रकार एन तापयुग्म निम्न-ऑक्सीजन स्थितियों के लिए प्रकार K के लिए उपयुक्त विकल्प हैं, जहां प्रकार K में हरित सड़ांध होने का खतरा होता है। वे निर्वात, अक्रिय वातावरण, ऑक्सीकरण वातावरण या शुष्क कम करने वाले वातावरण में उपयोग के लिए उपयुक्त हैं। वे गंधक की उपस्थिति को सहन नहीं करते हैं।[16]
प्रकार टी
प्रकार टी (ताँबा-कॉन्स्टेंटन) तापयुग्म −200 से 350 डिग्री सेल्सियस सीमा में माप के लिए अनुकूल हैं। अक्सर अंतर माप के रूप में उपयोग किया जाता है, क्योंकि केवल तांबे का तार जांच को छूता है। चूंकि दोनों कंडक्टर गैर-चुंबकीय हैं, इसलिए कोई क्यूरी बिंदु नहीं है और इस प्रकार विशेषताओं में अचानक कोई परिवर्तन नहीं होता है। प्रकार-टी तापयुग्म की संवेदनशीलता लगभग 43 μV/°C है। ध्यान दें कि तांबे में आमतौर पर तापयुग्म निर्माण में उपयोग की जाने वाली मिश्र धातुओं की तुलना में बहुत अधिक तापीय चालकता होती है, और इसलिए थर्मली एंकरिंग प्रकार-टी थर्मोक्यूल्स के साथ अतिरिक्त देखभाल करना आवश्यक है। जर्मन विनिर्देश डीआईएन 43712:1985-01 में अप्रचलित प्रकार यू में एक समान संरचना पाई जाती है।[10]
प्लैटिनम/रोडियम-मिश्र धातु थर्मोक्यूलेस
प्रकार बी, आर, और एस तापयुग्म प्रत्येक कंडक्टर के लिए प्लैटिनम या प्लैटिनम / रोडियम मिश्र धातु का उपयोग करते हैं। ये सबसे स्थिर तापयुग्म में से हैं, लेकिन अन्य प्रकारों की तुलना में कम संवेदनशीलता है, लगभग 10 μV / डिग्री सेल्सियस। प्रकार बी, आर, और एस तापयुग्म का उपयोग आमतौर पर केवल उच्च तापमान माप के लिए किया जाता है क्योंकि उनकी उच्च लागत और कम संवेदनशीलता होती है। प्रकार आर और एस तापयुग्म के लिए, तापयुग्म को मजबूत करने और उच्च तापमान और कठोर परिस्थितियों में होने वाले अनाज के विकास से विफलताओं को रोकने के लिए शुद्ध प्लैटिनम लेग के स्थान पर एचटीएक्स प्लैटिनम तार का उपयोग किया जा सकता है।
प्रकार बी
प्रकार बी (70% पीटी/30% आरएच-94% पीटी/6% आरएच, वजन के अनुसार) तापयुग्म 1800 डिग्री सेल्सियस तक उपयोग के लिए उपयुक्त हैं। प्रकार-बी तापयुग्म 0 डिग्री सेल्सियस और 42 डिग्री सेल्सियस पर समान उत्पादन करते हैं, उनके उपयोग को लगभग 50 डिग्री सेल्सियस से नीचे सीमित करते हैं। ईएमएफ फ़ंक्शन में कम से कम 21 डिग्री सेल्सियस होता है, जिसका अर्थ है कि कोल्ड-संधि मुआवजा आसानी से किया जाता है, क्योंकि मुआवजा विभव अनिवार्य रूप से सामान्य कमरे के तापमान पर एक संदर्भ के लिए स्थिर है। [17]
प्रकार आर
प्रकार R (87% Pt/13%Rh-Pt, वजन के हिसाब से) तापयुग्म का उपयोग 0 से 1600 °C तक होता है। प्रकार आर तापयुग्म काफी स्थिर होते हैं और स्वच्छ, अनुकूल परिस्थितियों में उपयोग किए जाने पर लंबे समय तक काम करने में सक्षम होते हैं। जब 1100 डिग्री सेल्सियस (2000 डिग्री फारेनहाइट) से ऊपर उपयोग किया जाता है, तो इन तापयुग्म्स को धातु और गैर-धातु वाष्पों के संपर्क से सुरक्षित किया जाना चाहिए। प्रकार आर धातु की रक्षा करने वाली ट्यूबों में सीधे प्रवेश के लिए उपयुक्त नहीं है। लंबे समय तक उच्च तापमान के संपर्क में अनाज के विकास का कारण बनता है जिससे यांत्रिक विफलता हो सकती है और रोडियम प्रसार के कारण शुद्ध प्लैटिनम पैर के साथ-साथ रोडियम वाष्पीकरण से नकारात्मक अंशांकन बहाव हो सकता है। इस प्रकार का उपयोग S प्रकार के समान है, लेकिन इसके साथ अदला-बदली नहीं की जा सकती।
प्रकार s
प्रकार एस (90% पीटी / 10% आरएच-पीटी, वजन से) तापयुग्म, प्रकार आर के समान, 1600 डिग्री सेल्सियस तक उपयोग किया जाता है। 1990 (आईटीएस-90) के अंतर्राष्ट्रीय तापमान पैमाने की शुरूआत से पहले, सुरमा, चांदी और सोने के हिमांक के बीच एक प्रक्षेप के आधार पर सटीक प्रकार-एस तापयुग्म का उपयोग 630 डिग्री सेल्सियस से 1064 डिग्री सेल्सियस की सीमा के लिए व्यावहारिक मानक थर्मामीटर के रूप में किया गया था। ITS-90 से शुरू होकर, प्लेटिनम प्रतिरोध थर्मामीटर ने इस सीमा को मानक थर्मामीटर के रूप में ग्रहण कर लिया है।[18]
टंगस्टन/रेनियम-मिश्र धातु थर्मोक्यूलेस
ये तापयुग्म अत्यधिक उच्च तापमान मापने के लिए उपयुक्त हैं। विशिष्ट उपयोग हाइड्रोजन और निष्क्रिय वातावरण, साथ ही निर्वात भट्टियां हैं। उच्च तापमान पर ऑक्सीडाइज़िंग वातावरण में इनका उपयोग उत्सर्जन के कारण नहीं होता है।[19]] एक विशिष्ट श्रेणी 0 से 2315 डिग्री सेल्सियस है, जिसे अक्रिय वातावरण में 2760 डिग्री सेल्सियस तक और संक्षिप्त माप के लिए 3000 डिग्री सेल्सियस तक बढ़ाया जा सकता है।[20]
उच्च तापमान पर शुद्ध टंगस्टन का पुन: क्रिस्टलीकरण होता है और भंगुर हो जाता है। इसलिए, कुछ अनुप्रयोगों में प्रकार C और D को G प्रकार से अधिक पसंद किया जाता है।
उच्च तापमान पर जल वाष्प की उपस्थिति में, टंगस्टन टंगस्टन ऑक्साइड से प्रतिक्रिया करता है, जो वाष्पित हो जाता है, और हाइड्रोजन। हाइड्रोजन फिर टंगस्टन ऑक्साइड के साथ प्रतिक्रिया करता है, फिर से जल बनता है। इस तरह के "जल चक्र" तापयुग्म के क्षरण और अंततः विफलता का कारण बन सकते हैं। इसलिए उच्च तापमान वाले निर्वात अनुप्रयोगों में जल के अंश की उपस्थिति से बचना वांछनीय है।[21]
टंगस्टन/रेनियम का एक विकल्प टंगस्टन/मोलिब्डेनम है, लेकिन विभव-तापमान प्रतिक्रिया कमजोर है और इसकी न्यूनतम मात्रा लगभग 1000 K है।
तापयुग्म का तापमान उपयोग की जाने वाली अन्य सामग्रियों से भी सीमित होता है। उदाहरण के लिए बेरिलियम ऑक्साइड, जो उच्च तापमान अनुप्रयोगों के लिए एक लोकप्रिय सामग्री है, तापमान के साथ चालकता प्राप्त करने की प्रवृत्ति रखती है; संवेदक के एक विशेष विन्यास में 2200 K पर मेगाहोम से 1000 K से 200 ओम पर विद्युत्रोधन प्रतिरोध गिरता था। उच्च तापमान पर, सामग्री रासायनिक प्रतिक्रिया से गुजरती है। 2700 K पर बेरिलियम ऑक्साइड टंगस्टन, टंगस्टन-रेनियम मिश्र धातु, और टैंटलम के साथ थोड़ा प्रतिक्रिया करता है; 2600 K पर मोलिब्डेनम BeO के साथ अभिक्रिया करता है, टंगस्टन प्रतिक्रिया नहीं करता। BeO लगभग 2820 K, मैग्नीशियम ऑक्साइड लगभग 3020 K पर पिघलना शुरू करता है।[22]
प्रकार सी
(95%W/5%Re-74%W/26%Re, वजन के हिसाब से)[19] अधिकतम तापमान को प्रकार-सी तापयुग्म 2329 ℃ से मापा जाएगा।
प्रकार डी
(97%W/3%Re-75%W/25%Re, भार के अनुसार)[19]
प्रकार g
(W-74%W/26%Re, भार के अनुसार)[19]
अन्य
क्रोमल-गॉल्ड/लौह-ऑलॉय थर्मोकेल
इन तापयुग्म (क्रोमेल-गोल्ड/ज्वालाह मिश्र धातु) में, नकारात्मक तार लोहे के एक छोटे अंश (0.03–0.15 परमाणु प्रतिशत) के साथ सोना है। अशुद्ध सोने के तार तापयुग्म को कम तापमान (उस तापमान पर अन्य तापयुग्म की तुलना में) पर उच्च संवेदनशीलता देते हैं, जबकि क्रोमेल तार कमरे के तापमान के पास संवेदनशीलता बनाए रखता है। इसका उपयोग क्रायोजेनिक्स अनुप्रयोगों के लिए किया जा सकता है (1.2-300 K और यहां तक कि 600 K तक)। संवेदनशीलता और तापमान सीमा दोनों ही लोहे की सघनता पर निर्भर करती हैं। संवेदनशीलता आमतौर पर कम तापमान पर लगभग 15 μV/K होती है, और सबसे कम प्रयोग करने योग्य तापमान 1.2 और 4.2 K के बीच होता है।
प्रकार पी (नोबल-मेटल मिश्र धातु) या प्लैटिनल II
प्रकार P (55%Pd/31%Pt/14%Au-65%Au/35%Pd, वजन के हिसाब से) तापयुग्म एक थर्मोइलेक्ट्रिक विभव देते हैं जो 500 °C से 1400 °C की सीमा में K के प्रकार की नकल करता है, हालांकि वे हैं विशुद्ध रूप से उत्कृष्ट धातुओं से निर्मित और इसलिए बढ़ी हुई जंग प्रतिरोध को दर्शाता है। इस संयोजन को प्लेटिनल II के नाम से भी जाना जाता है।[23]
प्लैटिनम/मोलिब्डेनम-अलॉय थर्मोक्यूलेस
प्लेटिनम/मोलिब्डेनम-मिश्र धातु के तापयुग्म (95% Pt/5% Mo–99.9% Pt/0.1% Mo, वजन के हिसाब से) कभी-कभी परमाणु रिएक्टरों में उपयोग किए जाते हैं, चूंकि वे प्लैटिनम/रोडियम-मिश्र धातु प्रकारों की तुलना में न्यूट्रॉन विकिरण द्वारा प्रेरित परमाणु रूपांतरण से कम बहाव दिखाते हैं।[24]
IRIDIUM/RHODIUM मिश्र धातु थर्मोक्यूलेस
इरिडियम/रोडियम मिश्र धातुओं के दो तारों का उपयोग तापयुग्म प्रदान कर सकता है जिसका उपयोग लगभग 2000 डिग्री सेल्सियस तक निष्क्रिय वातावरण में किया जा सकता है।[24]
शुद्ध नोबल-मेटल थर्मोकॉल्स एयू-पीटी, पीटी-पीडी
दो अलग-अलग, उच्च शुद्धता वाली महान धातुओं से बने तापयुग्म उच्च यथार्थता दिखा सकते हैं, भले ही अनियंत्रित, साथ ही साथ बहाव के निम्न स्तर भी हों। उपयोग में आने वाले दो संयोजन हैं सोना-प्लैटिनम और प्लैटिनम-पैलेडियम।[25] उनकी मुख्य सीमाएँ शामिल धातुओं के कम गलनांक (सोने के लिए 1064 °C और पैलेडियम के लिए 1555 °C) हैं। ये तापयुग्म S प्रकार की तुलना में अधिक सटीक होते हैं, और उनकी अर्थव्यवस्था और सादगी के कारण उन्हें प्लैटिनम प्रतिरोध थर्मामीटर के प्रतिस्पर्धी विकल्प के रूप में भी माना जाता है जो आमतौर पर मानक थर्मामीटर के रूप में उपयोग किए जाते हैं।[26]
HTIR-TC (उच्च तापमान विकिरण प्रतिरोधी) थर्मोक्यूलेस
एचटीआईआर-टीसी उच्च-तापमान प्रक्रियाओं को मापने में एक सफलता प्रदान करता है। इसकी विशेषताएं हैं: कम से कम 1700 डिग्री सेल्सियस तक उच्च तापमान पर टिकाऊ और विश्वसनीय; विकिरण प्रतिरोधी; सामान्य रूप से मूल्यांकित; विभिन्न प्रकार के कॉन्फ़िगरेशन में उपलब्ध - प्रत्येक एप्लिकेशन के लिए अनुकूल; आसान स्थापित। मूल रूप से परमाणु परीक्षण रिएक्टरों में उपयोग के लिए विकसित किया गया, एचटीआईआर-टीसी भविष्य के रिएक्टरों में संचालन की सुरक्षा को बढ़ा सकता है। इस तापयुग्म को इडाहो नेशनल लेबोरेटरी (आईएनएल) के शोधकर्ताओं द्वारा विकसित किया गया था।[27][28]
प्रकार की तुलना
नीचे दी गई तालिका में कई अलग-अलग तापयुग्म प्रकारों के गुणों का वर्णन किया गया है। टॉलरेंस कॉलम के भीतर, T गर्म संधि के तापमान को डिग्री सेल्सियस में दर्शाता है। उदाहरण के लिए, ±0.0025×T की सहनशीलता वाले तापयुग्म में 1000 डिग्री सेल्सियस पर ±2.5 डिग्री सेल्सियस की सहनशीलता होगी। कलर कोड कॉलम में प्रत्येक सेल एक तापयुग्म केबल के अंत को दर्शाता है, जो जैकेट का रंग और व्यक्तिगत लीड का रंग दिखाता है। पृष्ठभूमि का रंग कनेक्टर बॉडी के रंग को दर्शाता है।
| प्रकार | तापमान सीमा (°C) | सहिष्णुता वर्ग (°C) | रंग कोड | ||||||
|---|---|---|---|---|---|---|---|---|---|
| निरंतर | लघु अवधि | एक | दो | आईईसी[29] | बीएस | एएनएसआई | |||
| निम्न | उच्च | निम्न | उच्च | ||||||
| K | 0 | +1100 | −180 | +1370 | −40 – 375: ±1.5 375 – 1000: ±0.004×T |
−40 – 333: ±2.5 333 – 1200: ±0.0075×T |
|||
| J | 0 | +750 | −180 | +800 | −40 – 375: ±1.5 375 – 750: ±0.004×T |
−40 – 333: ±2.5 333 – 750: ±0.0075×T |
|||
| N | 0 | +1100 | −270 | +1300 | −40 – 375: ±1.5 375 – 1000: ±0.004×T |
−40 – 333: ±2.5 333 – 1200: ±0.0075×T |
|||
| R | 0 | +1600 | −50 | +1700 | 0 – 1100: ±1.0 1100 – 1600: ±0.003×(T − 767) |
0 – 600: ±1.5 600 – 1600: ±0.0025×T |
Not defined | ||
| S | 0 | +1600 | −50 | +1750 | 0 – 1100: ±1.0 1100 – 1600: ±0.003×(T − 767) |
0 – 600: ±1.5 600 – 1600: ±0.0025×T |
Not defined | ||
| B | +200 | +1700 | 0 | +1820 | उपलब्ध नहीं | 600 – 1700: ±0.0025×T | मानक नहीं | मानक नहीं | परिभाषित नहीं |
| T | −185 | +300 | −250 | +400 | −40 – 125: ±0.5 125 – 350: ±0.004×T |
−40 – 133: ±1.0 133 – 350: ±0.0075×T |
|||
| E | 0 | +800 | −40 | +900 | −40 – 375: ±1.5 375 – 800: ±0.004×T |
−40 – 333: ±2.5 333 – 900: ±0.0075×T |
|||
| क्रोमेल/एयूएफई | −272 | +300 | — | — | पुनरुत्पादकता विभव का 0.2%।
प्रत्येक संवेदक को अलग-अलग अंशांकन की आवश्यकता होती है I |
||||
तापयुग्म विद्युत्रोधन
तार विद्युत्रोधन
सेंसिंग संधि को छोड़कर, तापयुग्म बनाने वाले तारों को हर जगह एक दूसरे से इन्सुलेटर होना चाहिए। तारों के बीच कोई भी अतिरिक्त विद्युत संपर्क, या अन्य प्रवाहकीय वस्तुओं के लिए तार का संपर्क, विभव को संशोधित कर सकता है और तापमान का गलत रीडिंग दे सकता है।
तापयुग्म के कम तापमान वाले हिस्सों के लिए प्लास्टिक उपयुक्त इंसुलेटर हैं, जबकि सिरेमिक इंसुलेशन का उपयोग लगभग 1000 ° C तक किया जा सकता है। अन्य सरोकार (घर्षण और रासायनिक प्रतिरोध) भी सामग्री की उपयुक्तता को प्रभावित करते हैं।
जब तार विद्युत्रोधन विघटित हो जाता है, तो इसका परिणाम वांछित संवेदन बिंदु से एक अलग स्थान पर एक अनपेक्षित विद्युत संपर्क हो सकता है। यदि इस तरह के क्षतिग्रस्त तापयुग्म का उपयोग थर्मोस्टेट या अन्य तापमान नियंत्रक के बंद लूप नियंत्रण में किया जाता है, तो इससे एक भगोड़ा ओवरहीटिंग घटना और संभावित रूप से गंभीर क्षति हो सकती है, क्योंकि गलत तापमान रीडिंग आमतौर पर सेंसिंग संधि तापमान से कम होगी। असफल इंसुलेशन भी आमतौर पर विशिष्ट रूप से अपगैसित किये जाएंगे, जिससे प्रक्रिया संदूषण हो सकता है। बहुत अधिक तापमान पर या संदूषण-संवेदनशील अनुप्रयोगों में उपयोग किए जाने वाले तापयुग्म के कुछ हिस्सों के लिए, केवल उपयुक्त विद्युत्रोधन निर्वात या अक्रिय गैस हो सकता है; उन्हें अलग रखने के लिए तापयुग्म तारों की यांत्रिक कठोरता का उपयोग किया जाता है।
प्रतिक्रिया समय
माप प्रणाली की प्रतिक्रिया की गति न केवल डेटा अधिग्रहण प्रणाली पर निर्भर करती है, बल्कि तापयुग्म संवेदक के निर्माण पर भी निर्भर करती है। जब तापमान पढ़ने का समय कई एमएस में होता है। तापयुग्म का मापने वाला सिरा इंसुलेटेड है या नहीं। हालांकि, इतने तेज तापमान माप में रीडिंग त्रुटि तापयुग्म टिप के विद्युत्रोधन के कारण होती है। यहां तक कि एक सस्ते अधिग्रहण प्रणाली जैसे कि Arduino और तापयुग्म एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण या एम्पलीफायर में कई ms की प्रतिक्रिया गति हो सकती है, लेकिन तापयुग्म का डिज़ाइन महत्वपूर्ण होगा।
विद्युत्रोधन सामग्री की तालिका
This section needs additional citations for verification. (जून 2014) (Learn how and when to remove this template message) |
| विद्युत्रोधन का प्रकार | अधिकतम सतत तापमान | अधिकतम एकल पढ़ना | घर्षण प्रतिरोध | नमी प्रतिरोध | रासायनिक प्रतिरोध |
|---|---|---|---|---|---|
| माइका-ग्लास टेप | 649 °C/1200 °F | 705 °C/1300 °F | उत्तम | साधारण | उत्तम |
| टीएफई टेप, टीएफई-ग्लास टेप | 649 °C/1200 °F | 705 °C/1300 °F | उत्तम | साधारण | उत्तम |
| विटेरस-सिलिका वेणी | 871 °C/1600 °F | 1093 °C/2000 °F | साधारण | ख़राब | ख़राब |
| द्विक ग्लास वेणी | 482 °C/900 °F | 538 °C/1000 °F | उत्तम | उत्तम | उत्तम |
| इनेमल-ग्लास वेणी | 482 °C /900 °F | 538 °C/1000 °F | साधारण | उत्तम | उत्तम |
| द्विक ग्लास रैप | 482 °C/900 °F | 427 °C/800 °F | साधारण | उत्तम | उत्तम |
| गैर-अंतर्भरित कांच की वेणी | 482 °C/900 °F | 427 °C/800 °F | ख़राब | ख़राब | साधारण |
| स्काइव टीएफई टेप, टीएफई-ग्लास ब्रेड | 482 °C/900 °F | 538 °C/1000 °F | उत्तम | श्रेष्ठ | श्रेष्ठ |
| द्विक कॉटन वेणी | 88 °C/190 °F | 120 °C/248 °F | उत्तम | उत्तम | ख़राब |
| योजक के साथ "एस" ग्लास | 704 °C/1300 °F | 871 °C/1600 °F | साधारण | साधारण | उत्तम |
| नेक्स्टल सिरेमिक फाइबर | 1204 °C/2200 °F | 1427 °C/2600 °F | साधारण | साधारण | साधारण |
| पॉलीविनाइल/नायलॉन | 105 °C/221 °F | 120 °C/248 °F | श्रेष्ठ | श्रेष्ठ | उत्तम |
| पोलीविनाइल | 105 °C/221 °F | 105 °C/221 °F | उत्तम | श्रेष्ठ | उत्तम |
| नायलॉन | 150 °C/302 °F | 130 °C/266 °F | श्रेष्ठ | उत्तम | उत्तम |
| पीवीसी | 105 °C/221 °F | 105 °C/221 °F | उत्तम | श्रेष्ठ | उत्तम |
| एफईपी | 204 °C/400 °F | 260 °C/500 °F | श्रेष्ठ | श्रेष्ठ | श्रेष्ठ |
| लिपटे और जुड़े हुए टीएफई | 260 °C/500 °F | 316 °C/600 °F | उत्तम | श्रेष्ठ | श्रेष्ठ |
| कैप्टन | 316 °C/600 °F | 427 °C/800 °F | श्रेष्ठ | श्रेष्ठ | श्रेष्ठ |
| टेफ़ज़ेल | 150 °C/302 °F | 200 °C/392 °F | श्रेष्ठ | श्रेष्ठ | श्रेष्ठ |
| पीएफए | 260 °C/500 °F | 290 °C/550 °F | श्रेष्ठ | श्रेष्ठ | श्रेष्ठ |
| टी300* | 300 °C | – | उत्तम | श्रेष्ठ | श्रेष्ठ |
समग्र तापयुग्म निर्माण केबल में क्या होता है, इसके आधार पर विद्युत्रोधन के लिए तापमान रेटिंग भिन्न हो सकती है।
नोट: टी300 एक नई उच्च तापमान वाली सामग्री है जिसे हाल ही में UL द्वारा 300 °C प्रचालन तापमान के लिए अनुमोदित किया गया था।
अनुप्रयोग
तापयुग्म -270 से 3000 °C (थोड़े समय के लिए, निष्क्रिय वातावरण में) के बड़े तापमान सीमा को मापने के लिए उपयुक्त हैं।[20] अनुप्रयोगों में भट्टों के लिए तापमान माप, गैस टर्बाइन निकास, डीजल इंजन, अन्य औद्योगिक प्रक्रियाएं और कोहरे मशीन शामिल हैं। वे उन अनुप्रयोगों के लिए कम उपयुक्त होते हैं जहां छोटे तापमान अंतर को उच्च यथार्थता के साथ मापने की आवश्यकता होती है, उदाहरण के लिए 0.1 °C यथार्थता के साथ 0–100 °C की सीमा। इस तरह के अनुप्रयोगों के लिए ताप प्रतिरोधक (थर्मिस्टर्स), सिलिकॉन बैंडगैप तापमान संवेदक और प्रतिरोध थर्मामीटर अधिक उपयुक्त होते हैं।
इस्पात उद्योग
इस्पात बनाने की प्रक्रिया के दौरान तापमान और रसायन विज्ञान की निगरानी के लिए इस्पात और लौह उद्योगों में प्रकार बी, एस, आर और के तापयुग्म का व्यापक रूप से उपयोग किया जाता है। टैपिंग से पहले इस्पात के तापमान को सटीक रूप से मापने के लिए विद्युत् आर्क भट्टी प्रक्रिया में प्रयोज्य, निमज्जनीय, एस प्रकार तापयुग्म नियमित रूप से उपयोग किए जाते हैं। छोटे इस्पात के नमूने के शीतलन वक्र का विश्लेषण किया जा सकता है और पिघले हुए इस्पात की कार्बन सामग्री का अनुमान लगाने के लिए उपयोग किया जाता है।
गैस उपकरण सुरक्षा
कई गैस से चलने वाले ताप उपकरण जैसे ओवन और जल उष्मक आवश्यकता पड़ने पर मुख्य गैस दाहक (बर्नर) को प्रज्वलित करने के लिए प्रवर्तन ज्वाला का उपयोग करते हैं। यदि प्रवर्तक की ज्वाला बुझ जाती है, तो अप्रज्वलित गैस निकलती है, जो एक विस्फोट और स्वास्थ्य के लिए खतरा है। इसे रोकने के लिए, कुछ उपकरण दोष सुरक्षा परिपथ में तापयुग्म का उपयोग करते हैं, यह समझने के लिए कि जब प्रवर्तक लाइट जल रही हो। तापयुग्म की नोक को प्रवर्तक अग्नि में रखा जाता है, जिससे एक विभव उत्पन्न होता है जो आपूर्ति वाल्व को संचालित करता है जो प्रवर्तक को गैस को संचित करता है। जब तक प्रवर्तक की ज्वाला जलती रहती है, तब तक तापयुग्म गर्म रहता है, और प्रवर्तक गैस वाल्व खुला रहता है। यदि प्रवर्तक की रोशनी चली जाती है, तो तापयुग्म का तापमान गिर जाता है, जिससे तापयुग्म में विभव गिर जाता है और वाल्व बंद हो जाता है।
जहां प्रोब को आसानी से ज्वाला के ऊपर रखा जा सकता है, इसके बजाय प्रायः सुधारक संवेदक का उपयोग किया जा सकता है। भाग सिरेमिक निर्माण के साथ, उन्हें ज्वाला रॉड्स, ज्वाला संवेदक या ज्वाला संसूचक इलेक्ट्रोड के रूप में भी जाना जाता है।
कुछ संयुक्त मुख्य दाहक और प्रवर्तक गैस वाल्व (मुख्य रूप से हनीवेल द्वारा) एक प्रवर्तक (25 25 mV खुला परिपथ 10-12 mV, 0.2–0.25 A स्रोत से जुड़े कॉइल के साथ अर्ध से अवपाती है) द्वारा गर्म किए गए एकल सार्वभौमिक तापयुग्म की सीमा के भीतर बिजली की मांग को कम करते हैं, जिससे कॉइल को एक हल्के स्प्रिंग के विरुद्ध वाल्व खुला रखने में सक्षम होने के लिए कॉइल का आकार दिया जा सके, लेकिन प्रवर्तक के प्रकाश के दौरान स्प्रिंग को संपीड़ित करने के लिए एक बटन को दबाकर और पकड़े हुए उपयोगकर्ता द्वारा प्रारंभिक टर्न-ऑन बल प्रदान किया जाता है। प्रवर्तक लाइटिंग निर्देशों में इन प्रणालियों को "एक्स मिनट के लिए प्रेस और होल्ड" द्वारा पहचाना जा सकता है। (इस तरह के वाल्व की धारक धारा आवश्यकता एक बंद स्थिति से वाल्व को खींचने के लिए डिज़ाइन किए गए एक बड़े सोलनॉइड की तुलना में बहुत कम है।) वाल्व ढीला करना और धारक धाराओं की पुष्टि करने के लिए विशेष परीक्षण सेट बनाए जाते हैं, चूँकि यह गैस वाल्व कॉइल की तुलना में अधिक प्रतिरोध उत्पन्न करती है अतः साधारण मिलीमीटर का उपयोग नहीं किया जा सकता है। तापयुग्म के खुले परिपथ विभव और तापयुग्म गैस वाल्व कॉइल के माध्यम से लघु-परिपथ डीसी सांतत्व के परीक्षण के अलावा, सबसे आसान गैर-विशेषज्ञ परीक्षण ज्ञात उचित गैस वाल्व का प्रतिस्थापन है।
कुछ प्रणालियाँ, जिन्हें मिलीवोल्ट नियंत्रण प्रणाली के रूप में जाना जाता है, तापयुग्म अवधारणा को मुख्य गैस वाल्व को खोलने और बंद करने के लिए भी विस्तारित करती हैं। न केवल प्रवर्तक तापयुग्म द्वारा बनाया गया विभव प्रवर्तक गैस वाल्व को सक्रिय करता है, बल्कि इसे ताप नियंत्रक के माध्यम से मुख्य गैस वाल्व को भी बिजली देने के लिए रूट किया जाता है। यहां, ऊपर वर्णित एक प्रवर्तन ज्वाला सुरक्षा प्रणाली की तुलना में अत्यधिक विभव की आवश्यकता होती है, और ताप विद्युत पुंज का उपयोग तापयुग्म के बजाय किया जाता है। इस तरह की प्रणाली को इसके संचालन के लिए बिजली के किसी बाहरी स्रोत की आवश्यकता नहीं होती है और इस प्रकार बिजली की विफलता के दौरान काम कर सकती है, बशर्ते कि अन्य सभी संबंधित प्रणाली घटक इसके लिए अनुमति दें। यह सामान्य कृत्रिम वायु भट्टियों को बाहर करता है क्योंकि धमित्र (ब्लोअर) मोटर को संचालित करने के लिए बाहरी विद्युत शक्ति की आवश्यकता होती है, लेकिन यह सुविधा विशेष रूप से गैर-संचालित संवहन उष्मक के लिए उपयोगी है। तापयुग्म का उपयोग करते हुए एक समान गैस उपविरामक सुरक्षा तंत्र को कभी-कभी यह सुनिश्चित करने के लिए नियोजित किया जाता है कि मुख्य दाहक एक निश्चित समय अवधि के भीतर प्रज्वलित हो जाता है, मुख्य दाहक गैस आपूर्ति वाल्व को बंद नहीं करना चाहिए।
स्थायी प्रवर्तन ज्वाला द्वारा नष्ट होने वाली ऊर्जा के बारे में चिंता से, कई नए उपकरणों के अभिकल्पकों (डिजाइनरों) ने विद्युत् रूप से नियंत्रित प्रवर्तक-रहित ज्वाला पर स्थानांतरण किया है, जिसे आंतरायिक (इंटरमिटेंट) ज्वाला भी कहा जाता है। कोई स्थायी प्रवर्तन ज्वाला न होने से, गैस के निर्माण से ज्वाला के बहार निकलने का कोई खतरा नहीं होता, इसलिए इन उपकरणों को तापयुग्म-आधारित प्रवर्तक सुरक्षा स्विच की आवश्यकता नहीं होती है। चूंकि ये डिज़ाइन बिजली के निरंतर स्रोत के बिना संचालन के लाभ को खो देते हैं, कुछ उपकरणों में अभी भी स्थायी प्रवर्तकों का उपयोग किया जाता है। अपवाद बाद में तात्कालिक मॉडल (उर्फ "टैंक रहित) जल ऊष्मक है जो गैस दाहक को प्रज्वलित करने के लिए आवश्यक धारा उत्पन्न करने के लिए जल के प्रवाह का उपयोग करता है, ये डिज़ाइन एक तापयुग्म का उपयोग सुरक्षा विच्छेद उपकरण के रूप में भी करते हैं, अगर गैस प्रज्वलित करने में विफल रहती है, या यदि ज्वाला बुझ जाती है।
ताप विद्युत पुंज विकिरण संवेदक
ताप विद्युत पुंज का उपयोग आपतित विकिरण की तीव्रता को मापने के लिए किया जाता है, आमतौर पर दृश्यमान या अवरक्त प्रकाश, जो तप्त संधियों को गर्म करता है, जबकि अतप्त संधि ऊष्मा अभिगम पर होती हैं। व्यावसायिक रूप से उपलब्ध ताप विद्युत पुंज संवेदक से केवल कुछ μW/cm2 की विकिरण तीव्रता को मापना संभव है। उदाहरण के लिए, कुछ लेज़र शक्ति मीटर ऐसे संवेदक पर आधारित होते हैं, ये विशेष रूप से ताप विद्युत पुंज लेजर संवेदक के रूप में जाने जाते हैं।
ताप विद्युत पुंज संवेदक के संचालन का सिद्धांत एक बोलेमीटर से अलग है, क्योंकि बाद वाला प्रतिरोध में बदलाव पर निर्भर करता है।
विनिर्माण
तापयुग्म का उपयोग आम तौर पर प्रतिमान (प्रोटोप्रकार) विद्युत और यांत्रिक उपकरण के परीक्षण में किया जाता है। उदाहरण के लिए, इसकी धारा प्रवाह क्षमता के परीक्षण के अधीन स्विचगियर में उष्मीय चालन परिक्षण के दौरान तापयुग्म संस्थापित और निरक्षण किए जा सकते हैं, यह पुष्टि करने के लिए कि निर्धारित धारा पर तापमान में वृद्धि अभिहित की गई सीमा से अधिक नहीं होती है।
बिजली उत्पादन
तापयुग्म अतिरिक्त परिपथिकी और बिजली स्रोतों की आवश्यकता के बिना कुछ प्रक्रियाओं के सीधे संचालन के लिए विद्युत् धारा उत्पन्न कर सकता है। उदाहरण के लिए, तापमान में अंतर उत्पन्न होने पर तापयुग्म की शक्ति एक वॉल्व को सक्रीय कर सकती है। तापयुग्म द्वारा उत्पन्न विद्युत ऊर्जा को ऊष्मा से परिवर्तित किया जाता है जिसे विद्युत विभव को बनाए रखने के लिए तप्त पक्ष में आपूर्ति की जानी चाहिए। ऊष्मा का निरंतर स्थानांतरण आवश्यक है क्योंकि तापयुग्म के माध्यम से बहने वाली धारा तप्त पक्ष को अतप्त कर देती है और अतप्त पक्ष तप्त हो जाता है (पेल्टियर प्रभाव)।
तापयुग्म को एक ताप विद्युत पुंज बनाने के लिए श्रृंखला में जोड़ा जा सकता है, जहां सभी तप्त संधियों को उच्च तापमान और सभी अतप्त संधियों को निम्न तापमान के संपर्क में लाया जाता है। आउटपुट अलग-अलग संधियों पर विभव का योग होता है, जिससे अधिक विभव और बिजली उत्पादन होता है। रेडियोधर्मी समस्थानिक तापविद्युत् जनित्र में, ताप स्रोत के रूप में ट्रांसयूरानिक तत्वों के रेडियोधर्मी क्षय का उपयोग सौर ऊर्जा का उपयोग करने के लिए सूर्य से बहुत दूर मिशन पर अंतरिक्ष यान को शक्ति प्रदान करने के लिए किया जाता है।
मिट्टी के तेल के लैंप से गर्म किए गए ताप विद्युत पुंज का उपयोग अलग-अलग क्षेत्रों में बैटरी रहित रेडियो रिसीवर चलाने के लिए किया जाता था।[32] व्यावसायिक रूप से उत्पादित लालटेन, कई प्रकाश उत्सर्जक डायोड को संचालित करने के लिए मोमबत्ती से ऊष्मा का उपयोग करते हैं, और लकड़ी के स्टोव में वायु परिसंचरण और ऊष्मा वितरण में सुधार के लिए तापविद्युत रूप से संचालित पंखे हैं।
प्रक्रिया संयंत्र
रासायनिक उत्पादन और पेट्रोलियम रिफाइनरियां आमतौर पर उत्काष्ठन के लिए और प्रक्रिया से जुड़े कई तापमानों की सीमा परीक्षण के लिए कंप्यूटरों को नियोजित करती हैं, आमतौर पर सैकड़ों में। ऐसी स्थितियों के लिए, कई तापयुग्म लीड को एक सामान्य संदर्भ ब्लॉक (तांबे का एक बड़ा ब्लॉक) में लाया जाएगा जिसमें प्रत्येक परिपथ का दूसरा तापयुग्म होगा। ब्लॉक का तापमान बदले में एक ताप प्रतिरोधक (थर्मिस्टर) द्वारा मापा जाता है। प्रत्येक मापा स्थान पर तापमान निर्धारित करने के लिए सरल गणना का उपयोग किया जाता है।
तापयुग्म निर्वात गेज के रूप में
तापयुग्म का उपयोग लगभग 0.001 से 1 टॉर निरपेक्ष दाब की सीमा पर निर्वात गेज के रूप में किया जा सकता है। इस दबाव सीमा में, गैस का माध्य मुक्त पथ निर्वात कक्ष के आयामों के बराबर है, और प्रवाह व्यवस्था न तो विशुद्ध रूप से श्यान प्रवाह है और न ही विशुद्ध रूप से आणविक प्रवाह है।[33] इस विन्यास में, तापयुग्म संधि एक छोटे हीटिंग तार के केंद्र से जुड़ा होता है, जो आमतौर पर लगभग 5 एमए की निरंतर धारा से सक्रिय होता है, और गैस की तापीय चालकता से संबंधित दर पर ऊष्मा को हटा दिया जाता है।
का उपयोग लगभग 0.001 से 1 टॉर निरपेक्ष दाब की सीमा पर के रूप में किया जा सकता है। इस दाब सीमा में, गैस का माध्य मुक्त पथ के आयामों के बराबर है, और प्रवाह व्यवस्था न तो विशुद्ध रूप से है और न ही विशुद्ध रूप से आणविक है। इस विन्यास में, तापयुग्म संधि एक छोटे तापीय तार के केंद्र से जुड़ा होता है, जो आमतौर पर लगभग 5 mA की निरंतर धारा से सक्रिय होता है, और गैस की तापीय चालकता से संबंधित दर पर ऊष्मा को हटा दिया जाता है।
तापयुग्म संधि पर पता लगाया गया तापमान आसपास की गैस की तापीय चालकता पर निर्भर करता है, जो गैस के दाब पर निर्भर करता है। तापयुग्म द्वारा मापा गया विभवान्तर निम्न से मध्यम-निर्वात सीमा पर दाब के वर्ग के समानुपाती होता है। उच्च (श्यान प्रवाह) और निम्न (आणविक प्रवाह) दाबों पर, वायु या किसी अन्य गैस की तापीय चालकता अनिवार्य रूप से दाब से स्वतंत्र होती है। तापयुग्म का उपयोग सर्वप्रथम 1906 में वोएज द्वारा निर्वात गेज के रूप में किया गया था।[34] तापयुग्म के लिए एक निर्वात गेज के रूप में गणितीय मॉडल काफी जटिल है, जैसा कि वैन अट्टा द्वारा विस्तार से बताया गया है,[35] लेकिन इसे सरल बनाया जा सकता है:
जहां P गैस का दबाव है, B स्थिरांक है जो तापयुग्म तापमान, गैस संघटन और निर्वात-कक्ष ज्यामिति पर निर्भर करता है, V0 शून्य दाब (पूर्ण) पर तापयुग्म विभव है, और V तापयुग्म द्वारा इंगित विभव है।
विकल्प पिरनि गेज है, जो लगभग समान दाब सीमा पर एक समान रुप से संचालित होता है, परंतु यह केवल एक 2- अंतस्थ उपकरण है, जो तापयुग्म का उपयोग करने के बजाय एक पतले विद्युतीय रूप से गर्म तार के तापमान के साथ प्रतिरोध में परिवर्तन को महसूस करता है।
यह भी देखें
- गर्म प्रवाह संवेदक
- बोलोमीटर
- ग्यूसेप डोमेनिको बॉटो
- थर्मिस्टर
- थर्मोपावर
- संवेदक की सूची
- 1990 का अंतर्राष्ट्रीय तापमान स्केल
- बिमेटल (यांत्रिक)
संदर्भ
- ↑ "Thermocouple temperature sensors". Temperatures.com. Retrieved 2007-11-04.
- ↑ 2.0 2.1 Ramsden, Ed (September 1, 2000). "Temperature measurement". Sensors. Archived from the original on 2010-03-22. Retrieved 2010-02-19.
- ↑ "Technical Notes: Thermocouple Accuracy". IEC 584-2(1982)+A1(1989). Retrieved 2010-04-28.
- ↑ "How to Prevent Temperature Measurement Errors When Installing Thermocouple Sensors and Transmitters" (PDF). acromag.com. Acromag. Retrieved 3 February 2017.
- ↑ 5.0 5.1 5.2 Wang, T. P. (1990) "Thermocouple Materials" in ASM Handbook, Vol. 2. ISBN 978-0-87170-378-1
- ↑ Pyromation, Inc. "Thermocouple theory" (2009).
- ↑ Rowe, Martin (2013). "Thermocouples: Simple but misunderstood", EDN Network.
- ↑ Kerlin, T.W. & Johnson, M.P. (2012). Practical Thermocouple Thermometry (2nd Ed.). Research Triangle Park: ISA. pp. 110–112. ISBN 978-1-937560-27-0.
- ↑ Buschow, K. H. J. Encyclopedia of materials: science and technology, Elsevier, 2001 ISBN 0-08-043152-6, p. 5021, table 1.
- ↑ 10.0 10.1 https://www.beuth.de/en/standard/din-43710/2941650[bare URL]
- ↑ Manual on the Use of Thermocouples in Temperature Measurement (4th Ed.). ASTM. 1993. pp. 48–51. ISBN 978-0-8031-1466-1.
- ↑ "Helping thermocouples do the job... - Transcat". www.transcat.com.
- ↑ "Green Rot in Type K Thermocouples, and What to Do About It". WIKA blog (in English). 2018-05-29. Retrieved 2020-12-01.
- ↑ Burley, Noel A. Nicrosil/Nisil Type N Thermocouples Archived 2006-10-15 at the Wayback Machine. www.omega.com.
- ↑ Type N Thermocouple Versus Type K Thermocouple in A Brick Manufacturing Facility. jms-se.com.
- ↑ "Thermocouple sensor and thermocouple types - WIKA USA". www.wika.us. Retrieved 2020-12-01.
- ↑ "Thermocouple Theory". Capgo. Retrieved 17 December 2013.
- ↑ "Supplementary Information for the ITS-90". International Bureau of Weights and Measures. Archived from the original on 2012-09-10. Retrieved 2 February 2018.
- ↑ 19.0 19.1 19.2 19.3 OMEGA Engineering Inc. "Tungsten-Rhenium Thermocouples Calibration Equivalents".
- ↑ 20.0 20.1 Pollock, Daniel D. (1991). Thermocouples: Theory and Properties. CRC Press. pp. 249–. ISBN 978-0-8493-4243-1.
- ↑ "Archived copy" (PDF). Archived from the original (PDF) on 2020-12-08. Retrieved 2020-02-22.
{{cite web}}: CS1 maint: archived copy as title (link) - ↑ Article title[bare URL PDF]
- ↑ Other Types of Thermocouples. maniadsanat.com.[1]
- ↑ 24.0 24.1 Thermoelectricity: Theory, Thermometry, Tool, Issue 852 by Daniel D. Pollock.
- ↑ 5629 Gold Platinum Thermocouple Archived 2014-01-05 at the Wayback Machine. fluke.com.
- ↑ BIPM – "Techniques for Approximating the ITS-90" Archived 2014-02-01 at the Wayback Machine Chapter 9: Platinum Thermocouples.
- ↑ http://core.materials.ac.uk/search/detail.php?id=3629[dead link]
- ↑ "high-temperature irradiation-resistant thermocouples: Topics by Science.gov". www.science.gov. Retrieved 2020-12-02.
- ↑ IEC 60584-3:2007
- ↑ Maxim Integrated (2015-02-20). "MAX31855 Cold-Junction Compensated Thermocouple-to-Digital Converter - Maxim Integrated" (PDF). www.maximintegrated.com. Retrieved 2020-12-14.
- ↑ Flammable Vapor Ignition Resistant Water Heaters: Service Manual (238-44943-00D) (PDF). Bradford White. pp. 11–16. Retrieved 11 June 2014.
- ↑ "New Scientist". New Scientist Careers Guide: The Employer Contacts Book for Scientists. Reed Business Information: 67–. 10 January 1974. ISSN 0262-4079. Retrieved 28 May 2012.
- ↑ Hablanian, M. H. (1997) High-Vacuum Technology: A Practical Guide, Second Ed., Marcel Dekker Inc., pp. 19–22, 45–47 & 438–443, ISBN 0-8247-9834-1.
- ↑ Voege, W. (1906) Physik Zeit., 7: 498.
- ↑ Van Atta, C. M. (1965) Vacuum Science and Engineering, McGraw-Hill Book Co. pp. 78–90.
इस पृष्ठ में गुम आंतरिक लिंक की सूची
- प्रत्यावर्ती धारा
- फासोर
- चरण (तरंगें)
- विद्युतीय प्रतिरोध
- और एकजुट
- ध्रुवीय समन्वय तंत्र
- प्रतिबाधा पैरामीटर
- गुणात्मक प्रतिलोम
- वह
- बिजली की प्रतिक्रिया
- अधिष्ठापन
- धुवीय निर्देशांक
- काल्पनिक एकक
- वास्तविक भाग
- काल्पनिक भाग
- अधीरता सिद्धांत
- समय क्षेत्र
- वर्तमान विभक्त
- द्विघात चरण
- चरण बदलाव
- विद्युतीय विद्युत्रोधन
- संभावना
- चुंबकीय प्रवाह का घनत्व
- एकदिश धारा
- समकक्ष प्रतिबाधा बदल जाता है
- वैरिकैप
- दर्वाज़ी की घंटी
- कंपन
- कार्यवाही संभावना
- तंत्रिका परिपथ
- डेसिबल
- भट्ठा
- क्रोमेल
- एल्यूमेल
- अनिश्चितकालीन अभिन्न
- एकीकरण स्थिर
- प्रवाह (धातु विज्ञान)
- इनपुट उपस्थिति
- कॉन्स्टेंटन
- निसिल
- परमाणु रिऐक्टर
- ऊष्मीय चालकता
- 1990 का अंतर्राष्ट्रीय तापमान पैमाना
- प्लैटिनम प्रतिरोध थर्मामीटर
- सोना
- निर्वात भट्टी
- गले लगाना
- तापमान नियंत्रण
- आंकड़ा अधिग्रहण
- प्रतिरोधक थर्मामीटर
- कोहरे की मशीन
- विद्युत चाप भट्ठी
- जल तापन
- दबा कर जमाना
- सुरक्षा कम होना
- हनीवेल
- मजबूर हवाई भट्ठी
- शक्ति (भौतिकी)
- विद्युतीय ऊर्जा
- लकड़ी का चूल्हा
- टोर
- मुक्त पथ मतलब
- वर्ग संख्या
- द्विधात्वीय
बाहरी संबंध
- Thermocouple Operating Principle – University Of Cambridge
- Thermocouple Drift – University Of Cambridge
- Two Ways to Measure Temperature Using Thermocouples
Thermocouple data tables:
- Text tables: NIST ITS-90 Thermocouple Database (B,E,J,K,N,R,S,T)
- PDF tables: J K T E N R S B
- Python package thermocouples_reference containing characteristic curves of many thermocouple types.
- R package [2] Temperature Measurement with Thermocouples, RTD and IC Sensors.
- Data table: Thermocouple wire sizes
]
]