गॉसियन माप

From Vigyanwiki
Revision as of 23:14, 30 May 2023 by alpha>Samikshas (Let n ∈ N and let B0(Rn) denote the completion of the Borel σ-algebra on Rn. Let λn : B0(Rn) → [0, +∞] denote the usual n-dimensional Lebesgue measure. Then the standard Gaussian measure γn : B0(Rn) → [0, 1] is defined by)

गणित में, गाऊसी माप परिमित-आयामी यूक्लिडियन अंतरिक्ष Rn पर एक बोरेल माप है, जो आँकड़ों में सामान्य वितरण से निकटता से संबंधित है। वहाँ भी अनंत-आयामी रिक्त स्थान के लिए सामान्यीकरण है। गॉसियन माप का नाम जर्मनी के गणितज्ञ कार्ल फ्रेडरिक गॉस के नाम पर रखा गया है। संभाव्यता सिद्धांत में गॉसियन उपाय इतने सर्वव्यापी क्यों हैं इसका एक कारण केंद्रीय सीमा प्रमेय है। शिथिल रूप से बोलते हुए, यह बताता है कि यदि एक यादृच्छिक चर X क्रम 1 के स्वतंत्र यादृच्छिक चर के एक बड़ी संख्या N को योग करके प्राप्त किया जाता है, तो X क्रम का है और इसका कानून लगभग गॉसियन है।

परिभाषाएँ

मान लीजिए n ∈ 'N' और मान लीजिए B0(Rn) बोरेल सिग्मा बीजगणित के पूर्ण माप को दर्शाता है | 'Rn' पर बोरेल σ-बीजगणितएन. चलो एलएन : B0(Rn) → [0, +∞] सामान्य n-आयामी Lebesgue माप को दर्शाता है। फिर 'मानक गाऊसी उपाय' γएन :B0(Rn) → [0, 1] द्वारा परिभाषित किया गया है

किसी भी मापने योग्य सेट ए ∈ बी के लिए0(आरएन). रैडॉन-निकोडिम व्युत्पन्न के संदर्भ में,

अधिक आम तौर पर, गॉसियन उपाय माध्य μ ∈ 'R' के साथn और प्रसरण p2 > 0 द्वारा दिया गया है

माध्य μ = 0 वाले गाऊसी माप को 'केन्द्रित गाऊसी माप' के रूप में जाना जाता है।

डिराक माप δμ के माप का कमजोर अभिसरण है σ → 0 के रूप में, और इसे 'पतित गॉसियन उपाय' माना जाता है; इसके विपरीत, परिमित, गैर-शून्य प्रसरण वाले गॉसियन माप को 'गैर-पतित गॉसियन उपाय' कहा जाता है।

गुण

मानक गॉसियन उपाय γn 'आर' परएन

  • एक बोरेल माप है (वास्तव में, जैसा कि ऊपर बताया गया है, इसे बोरेल सिग्मा बीजगणित के पूरा होने पर परिभाषित किया गया है, जो एक बेहतर संरचना है);
  • Lebesgue माप के लिए तुल्यता (माप सिद्धांत) है: , कहाँ माप की पूर्ण निरंतरता के लिए खड़ा है;
  • सभी यूक्लिडियन अंतरिक्ष पर समर्थन (माप सिद्धांत) है: supp(γn) = 'आर'एन;
  • एक संभाव्यता उपाय है (γएन('आर'n) = 1), और इसलिए यह स्थानीय रूप से सीमित माप है;
  • सख्ती से सकारात्मक उपाय है: प्रत्येक गैर-खाली खुले सेट में सकारात्मक माप होता है;
  • आंतरिक नियमित उपाय है: सभी बोरेल सेट ए के लिए,
    इसलिए गाऊसी माप एक रेडॉन माप है;
  • अनुवाद (ज्यामिति) नहीं है - अपरिवर्तनीय (गणित), लेकिन संबंध को संतुष्ट करता है
    जहां बाईं ओर व्युत्पन्न रेडॉन-निकोडिम व्युत्पन्न है, और (टीh)(सीn) अनुवाद मानचित्र टी द्वारा मानक गॉसियन माप का पुशफॉरवर्ड माप हैh : Rn → 'R'n, टीh(एक्स) = एक्स + एच;
  • एक सामान्य वितरण संभाव्यता वितरण से जुड़ा प्रायिकता माप है:


अनंत-आयामी स्थान

यह दिखाया जा सकता है कि अनंत-आयामी सदिश स्थान पर कोई अनंत-आयामी लेबेस्गु माप नहीं है। फिर भी, अनंत-आयामी रिक्त स्थान पर गॉसियन माप को परिभाषित करना संभव है, मुख्य उदाहरण अमूर्त वीनर अंतरिक्ष निर्माण है। एक अलग करने योग्य स्थान पर एक बोरेल माप γ बनच स्थान ई को 'गैर-पतित (केंद्रित) गॉसियन माप' कहा जाता है, यदि प्रत्येक रैखिक कार्यात्मक एल ∈ ई के लिए एल = 0 को छोड़करधक्का देने वाला उपाय उपाय एल(γ) ऊपर परिभाषित अर्थ में 'आर' पर एक गैर-पतित (केंद्रित) गॉसियन उपाय है।

उदाहरण के लिए, निरंतर कार्य पथ (टोपोलॉजी) के स्थान पर शास्त्रीय वीनर अंतरिक्ष एक गॉसियन माप है।

संदर्भ

  • Bogachev, Vladimir (1998). Gaussian Measures. American Mathematical Society. ISBN 978-1470418694.
  • Stroock, Daniel (2010). Probability Theory: An Analytic View. Cambridge University Press. ISBN 978-0521132503.


यह भी देखें


श्रेणी:उपाय (माप सिद्धांत) श्रेणी:स्टोकेस्टिक प्रक्रियाएं